/home/arjun/llvm-project/mlir/unittests/Analysis/AffineStructuresTest.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "mlir/Analysis/AffineStructures.h" |
10 | | |
11 | | #include <gmock/gmock.h> |
12 | | #include <gtest/gtest.h> |
13 | | |
14 | | #include <numeric> |
15 | | |
16 | | namespace mlir { |
17 | | |
18 | | /// Evaluate the value of the given affine expression at the specified point. |
19 | | /// The expression is a list of coefficients for the dimensions followed by the |
20 | | /// constant term. |
21 | 51 | int64_t valueAt(ArrayRef<int64_t> expr, ArrayRef<int64_t> point) { |
22 | 51 | assert(expr.size() == 1 + point.size()); |
23 | 51 | int64_t value = expr.back(); |
24 | 195 | for (unsigned i = 0; i < point.size(); ++i) |
25 | 144 | value += expr[i] * point[i]; |
26 | 51 | return value; |
27 | 51 | } |
28 | | |
29 | | /// If hasValue is true, check that findIntegerSample returns a valid sample |
30 | | /// for the FlatAffineConstraints fac. |
31 | | /// |
32 | | /// If hasValue is false, check that findIntegerSample does not return None. |
33 | 25 | void checkSample(bool hasValue, const FlatAffineConstraints &fac) { |
34 | 25 | Optional<SmallVector<int64_t, 8>> maybeSample = fac.findIntegerSample(); |
35 | 25 | if (!hasValue) { |
36 | 11 | EXPECT_FALSE(maybeSample.hasValue()); |
37 | 11 | if (maybeSample.hasValue()) { |
38 | 0 | for (auto x : *maybeSample) |
39 | 0 | llvm::errs() << x << ' '; |
40 | 0 | llvm::errs() << '\n'; |
41 | 0 | } |
42 | 14 | } else { |
43 | 14 | ASSERT_TRUE(maybeSample.hasValue()); |
44 | 19 | for (unsigned i = 0; i < fac.getNumEqualities(); ++i) |
45 | 14 | EXPECT_EQ(valueAt(fac.getEquality(i), *maybeSample), 0); |
46 | 60 | for (unsigned i = 0; i < fac.getNumInequalities(); ++i) |
47 | 14 | EXPECT_GE(valueAt(fac.getInequality(i), *maybeSample), 0); |
48 | 14 | } |
49 | 25 | } |
50 | | |
51 | | /// Construct a FlatAffineConstraints from a set of inequality and |
52 | | /// equality constraints. |
53 | | FlatAffineConstraints |
54 | | makeFACFromConstraints(unsigned dims, |
55 | | SmallVector<SmallVector<int64_t, 4>, 4> ineqs, |
56 | 31 | SmallVector<SmallVector<int64_t, 4>, 4> eqs) { |
57 | 31 | FlatAffineConstraints fac(ineqs.size(), eqs.size(), dims + 1, dims); |
58 | 31 | for (const auto &eq : eqs) |
59 | 16 | fac.addEquality(eq); |
60 | 31 | for (const auto &ineq : ineqs) |
61 | 102 | fac.addInequality(ineq); |
62 | 31 | return fac; |
63 | 31 | } |
64 | | |
65 | | /// Check sampling for all the permutations of the dimensions for the given |
66 | | /// constraint set. Since the GBR algorithm progresses dimension-wise, different |
67 | | /// orderings may cause the algorithm to proceed differently. At lesast some of |
68 | | ///.these permutations should make it past the heuristics and test the |
69 | | /// implementation of the GBR algorithm itself. |
70 | | void checkPermutationsSample(bool hasValue, unsigned nDim, |
71 | | SmallVector<SmallVector<int64_t, 4>, 4> ineqs, |
72 | 2 | SmallVector<SmallVector<int64_t, 4>, 4> eqs) { |
73 | 2 | SmallVector<unsigned, 4> perm(nDim); |
74 | 2 | std::iota(perm.begin(), perm.end(), 0); |
75 | 48 | auto permute = [&perm](ArrayRef<int64_t> coeffs) { |
76 | 48 | SmallVector<int64_t, 4> permuted; |
77 | 48 | for (unsigned id : perm) |
78 | 144 | permuted.push_back(coeffs[id]); |
79 | 48 | permuted.push_back(coeffs.back()); |
80 | 48 | return permuted; |
81 | 48 | }; |
82 | 12 | do { |
83 | 12 | SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs; |
84 | 12 | for (const auto &ineq : ineqs) |
85 | 48 | permutedIneqs.push_back(permute(ineq)); |
86 | 12 | for (const auto &eq : eqs) |
87 | 0 | permutedEqs.push_back(permute(eq)); |
88 | 12 | checkSample(hasValue, |
89 | 12 | makeFACFromConstraints(nDim, permutedIneqs, permutedEqs)); |
90 | 12 | } while (std::next_permutation(perm.begin(), perm.end())); |
91 | 2 | } |
92 | | |
93 | 1 | TEST(FlatAffineConstraintsTest, FindSampleTest) { |
94 | 1 | // Bounded sets with only inequalities. |
95 | 1 | |
96 | 1 | // 0 <= 7x <= 5 |
97 | 1 | checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {})); |
98 | 1 | |
99 | 1 | // 1 <= 5x and 5x <= 4 (no solution). |
100 | 1 | checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {})); |
101 | 1 | |
102 | 1 | // 1 <= 5x and 5x <= 9 (solution: x = 1). |
103 | 1 | checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {})); |
104 | 1 | |
105 | 1 | // Bounded sets with equalities. |
106 | 1 | // x >= 8 and 40 >= y and x = y. |
107 | 1 | checkSample( |
108 | 1 | true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}})); |
109 | 1 | |
110 | 1 | // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z. |
111 | 1 | // solution: x = y = z = 10. |
112 | 1 | checkSample(true, makeFACFromConstraints( |
113 | 1 | 3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}}, |
114 | 1 | {{1, 2, -3, 0}})); |
115 | 1 | |
116 | 1 | // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z. |
117 | 1 | // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution. |
118 | 1 | checkSample(false, makeFACFromConstraints( |
119 | 1 | 3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}}, |
120 | 1 | {{1, 2, -3, 0}})); |
121 | 1 | |
122 | 1 | // 0 <= r and r <= 3 and 4q + r = 7. |
123 | 1 | // Solution: q = 1, r = 3. |
124 | 1 | checkSample(true, |
125 | 1 | makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}})); |
126 | 1 | |
127 | 1 | // 4q + r = 7 and r = 0. |
128 | 1 | // Solution: q = 1, r = 3. |
129 | 1 | checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}})); |
130 | 1 | |
131 | 1 | // The next two sets are large sets that should take a long time to sample |
132 | 1 | // with a naive branch and bound algorithm but can be sampled efficiently with |
133 | 1 | // the GBR algroithm. |
134 | 1 | // |
135 | 1 | // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000). |
136 | 1 | checkSample( |
137 | 1 | true, |
138 | 1 | makeFACFromConstraints( |
139 | 1 | 2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}}, |
140 | 1 | {})); |
141 | 1 | |
142 | 1 | // This is a tetrahedron with vertices at |
143 | 1 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000). |
144 | 1 | // The first three points form a triangular base on the xz plane with the |
145 | 1 | // apex at the fourth point, which is the only integer point. |
146 | 1 | checkPermutationsSample( |
147 | 1 | true, 3, |
148 | 1 | { |
149 | 1 | {0, 1, 0, 0}, // y >= 0 |
150 | 1 | {0, -1, 1, 0}, // z >= y |
151 | 1 | {300000, -299998, -1, |
152 | 1 | -100000}, // -300000x + 299998y + 100000 + z <= 0. |
153 | 1 | {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0. |
154 | 1 | }, |
155 | 1 | {}); |
156 | 1 | |
157 | 1 | // Same thing with some spurious extra dimensions equated to constants. |
158 | 1 | checkSample(true, |
159 | 1 | makeFACFromConstraints( |
160 | 1 | 5, |
161 | 1 | { |
162 | 1 | {0, 1, 0, 1, -1, 0}, |
163 | 1 | {0, -1, 1, -1, 1, 0}, |
164 | 1 | {300000, -299998, -1, -9, 21, -112000}, |
165 | 1 | {-150000, 149999, 0, -15, 47, 68000}, |
166 | 1 | }, |
167 | 1 | {{0, 0, 0, 1, -1, 0}, // p = q. |
168 | 1 | {0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000. |
169 | 1 | |
170 | 1 | // This is a tetrahedron with vertices at |
171 | 1 | // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100). |
172 | 1 | checkPermutationsSample(false, 3, |
173 | 1 | { |
174 | 1 | {0, 1, 0, 0}, |
175 | 1 | {0, -300, 299, 0}, |
176 | 1 | {300 * 299, -89400, -299, -100 * 299}, |
177 | 1 | {-897, 894, 0, 598}, |
178 | 1 | }, |
179 | 1 | {}); |
180 | 1 | |
181 | 1 | // Two tests involving equalities that are integer empty but not rational |
182 | 1 | // empty. |
183 | 1 | |
184 | 1 | // This is a line segment from (0, 1/3) to (100, 100 + 1/3). |
185 | 1 | checkSample(false, makeFACFromConstraints( |
186 | 1 | 2, |
187 | 1 | { |
188 | 1 | {1, 0, 0}, // x >= 0. |
189 | 1 | {-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100. |
190 | 1 | }, |
191 | 1 | { |
192 | 1 | {3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3. |
193 | 1 | })); |
194 | 1 | |
195 | 1 | // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3. |
196 | 1 | checkSample(false, makeFACFromConstraints(2, |
197 | 1 | { |
198 | 1 | {1, 0, 0}, // x >= 0. |
199 | 1 | {-1, 0, 100}, // x <= 100. |
200 | 1 | {3, -3, 2}, // 3x - 3y >= -2. |
201 | 1 | {-3, 3, -1}, // 3x - 3y <= -1. |
202 | 1 | }, |
203 | 1 | {})); |
204 | 1 | |
205 | 1 | checkSample(true, makeFACFromConstraints(2, |
206 | 1 | { |
207 | 1 | {2, 0, 0}, // 2x >= 1. |
208 | 1 | {-2, 0, 99}, // 2x <= 99. |
209 | 1 | {0, 2, 0}, // 2y >= 0. |
210 | 1 | {0, -2, 99}, // 2y <= 99. |
211 | 1 | }, |
212 | 1 | {})); |
213 | 1 | } |
214 | | |
215 | 1 | TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) { |
216 | 1 | // 1 <= 5x and 5x <= 4 (no solution). |
217 | 1 | EXPECT_TRUE( |
218 | 1 | makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty()); |
219 | 1 | // 1 <= 5x and 5x <= 9 (solution: x = 1). |
220 | 1 | EXPECT_FALSE( |
221 | 1 | makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty()); |
222 | 1 | |
223 | 1 | // An unbounded set, which isIntegerEmpty should detect as unbounded and |
224 | 1 | // return without calling findIntegerSample. |
225 | 1 | EXPECT_FALSE(makeFACFromConstraints(3, |
226 | 1 | { |
227 | 1 | {2, 0, 0, -1}, |
228 | 1 | {-2, 0, 0, 1}, |
229 | 1 | {0, 2, 0, -1}, |
230 | 1 | {0, -2, 0, 1}, |
231 | 1 | {0, 0, 2, -1}, |
232 | 1 | }, |
233 | 1 | {}) |
234 | 1 | .isIntegerEmpty()); |
235 | 1 | |
236 | 1 | // FlatAffineConstraints::isEmpty() does not detect the following sets to be |
237 | 1 | // empty. |
238 | 1 | |
239 | 1 | // 3x + 7y = 1 and 0 <= x, y <= 10. |
240 | 1 | // Since x and y are non-negative, 3x + 7y can never be 1. |
241 | 1 | EXPECT_TRUE( |
242 | 1 | makeFACFromConstraints( |
243 | 1 | 2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}}) |
244 | 1 | .isIntegerEmpty()); |
245 | 1 | |
246 | 1 | // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100. |
247 | 1 | // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2. |
248 | 1 | // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty. |
249 | 1 | EXPECT_TRUE( |
250 | 1 | makeFACFromConstraints(3, |
251 | 1 | { |
252 | 1 | {1, 0, 0, 0}, |
253 | 1 | {-1, 0, 0, 100}, |
254 | 1 | {0, 1, 0, 0}, |
255 | 1 | {0, -1, 0, 100}, |
256 | 1 | }, |
257 | 1 | {{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}}) |
258 | 1 | .isIntegerEmpty()); |
259 | 1 | |
260 | 1 | // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100. |
261 | 1 | // 2x = 3y implies x is a multiple of 3 and y is even. |
262 | 1 | // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have |
263 | 1 | // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying |
264 | 1 | // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty. |
265 | 1 | EXPECT_TRUE(makeFACFromConstraints( |
266 | 1 | 4, |
267 | 1 | { |
268 | 1 | {1, 0, 0, 0, 0}, |
269 | 1 | {-1, 0, 0, 0, 100}, |
270 | 1 | {0, 1, 0, 0, 0}, |
271 | 1 | {0, -1, 0, 0, 100}, |
272 | 1 | }, |
273 | 1 | {{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}}) |
274 | 1 | .isIntegerEmpty()); |
275 | 1 | } |
276 | | |
277 | | } // namespace mlir |