/home/arjun/llvm-project/mlir/lib/IR/SymbolTable.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  |  | 
| 9 |  | #include "mlir/IR/SymbolTable.h" | 
| 10 |  | #include "llvm/ADT/SetVector.h" | 
| 11 |  | #include "llvm/ADT/SmallPtrSet.h" | 
| 12 |  | #include "llvm/ADT/SmallString.h" | 
| 13 |  | #include "llvm/ADT/StringSwitch.h" | 
| 14 |  |  | 
| 15 |  | using namespace mlir; | 
| 16 |  |  | 
| 17 |  | /// Return true if the given operation is unknown and may potentially define a | 
| 18 |  | /// symbol table. | 
| 19 | 0 | static bool isPotentiallyUnknownSymbolTable(Operation *op) { | 
| 20 | 0 |   return !op->getDialect() && op->getNumRegions() == 1; | 
| 21 | 0 | } | 
| 22 |  |  | 
| 23 |  | /// Returns the string name of the given symbol, or None if this is not a | 
| 24 |  | /// symbol. | 
| 25 | 0 | static Optional<StringRef> getNameIfSymbol(Operation *symbol) { | 
| 26 | 0 |   auto nameAttr = | 
| 27 | 0 |       symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName()); | 
| 28 | 0 |   return nameAttr ? nameAttr.getValue() : Optional<StringRef>(); | 
| 29 | 0 | } | 
| 30 |  |  | 
| 31 |  | /// Computes the nested symbol reference attribute for the symbol 'symbolName' | 
| 32 |  | /// that are usable within the symbol table operations from 'symbol' as far up | 
| 33 |  | /// to the given operation 'within', where 'within' is an ancestor of 'symbol'. | 
| 34 |  | /// Returns success if all references up to 'within' could be computed. | 
| 35 |  | static LogicalResult | 
| 36 |  | collectValidReferencesFor(Operation *symbol, StringRef symbolName, | 
| 37 |  |                           Operation *within, | 
| 38 | 0 |                           SmallVectorImpl<SymbolRefAttr> &results) { | 
| 39 | 0 |   assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor"); | 
| 40 | 0 |   MLIRContext *ctx = symbol->getContext(); | 
| 41 | 0 | 
 | 
| 42 | 0 |   auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx); | 
| 43 | 0 |   results.push_back(leafRef); | 
| 44 | 0 | 
 | 
| 45 | 0 |   // Early exit for when 'within' is the parent of 'symbol'. | 
| 46 | 0 |   Operation *symbolTableOp = symbol->getParentOp(); | 
| 47 | 0 |   if (within == symbolTableOp) | 
| 48 | 0 |     return success(); | 
| 49 | 0 |  | 
| 50 | 0 |   // Collect references until 'symbolTableOp' reaches 'within'. | 
| 51 | 0 |   SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef); | 
| 52 | 0 |   do { | 
| 53 | 0 |     // Each parent of 'symbol' should define a symbol table. | 
| 54 | 0 |     if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) | 
| 55 | 0 |       return failure(); | 
| 56 | 0 |     // Each parent of 'symbol' should also be a symbol. | 
| 57 | 0 |     Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp); | 
| 58 | 0 |     if (!symbolTableName) | 
| 59 | 0 |       return failure(); | 
| 60 | 0 |     results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx)); | 
| 61 | 0 | 
 | 
| 62 | 0 |     symbolTableOp = symbolTableOp->getParentOp(); | 
| 63 | 0 |     if (symbolTableOp == within) | 
| 64 | 0 |       break; | 
| 65 | 0 |     nestedRefs.insert(nestedRefs.begin(), | 
| 66 | 0 |                       FlatSymbolRefAttr::get(*symbolTableName, ctx)); | 
| 67 | 0 |   } while (true); | 
| 68 | 0 |   return success(); | 
| 69 | 0 | } | 
| 70 |  |  | 
| 71 |  | //===----------------------------------------------------------------------===// | 
| 72 |  | // SymbolTable | 
| 73 |  | //===----------------------------------------------------------------------===// | 
| 74 |  |  | 
| 75 |  | /// Build a symbol table with the symbols within the given operation. | 
| 76 |  | SymbolTable::SymbolTable(Operation *symbolTableOp) | 
| 77 |  |     : symbolTableOp(symbolTableOp) { | 
| 78 |  |   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() && | 
| 79 |  |          "expected operation to have SymbolTable trait"); | 
| 80 |  |   assert(symbolTableOp->getNumRegions() == 1 && | 
| 81 |  |          "expected operation to have a single region"); | 
| 82 |  |   assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) && | 
| 83 |  |          "expected operation to have a single block"); | 
| 84 |  |  | 
| 85 |  |   for (auto &op : symbolTableOp->getRegion(0).front()) { | 
| 86 |  |     Optional<StringRef> name = getNameIfSymbol(&op); | 
| 87 |  |     if (!name) | 
| 88 |  |       continue; | 
| 89 |  |  | 
| 90 |  |     auto inserted = symbolTable.insert({*name, &op}); | 
| 91 |  |     (void)inserted; | 
| 92 |  |     assert(inserted.second && | 
| 93 |  |            "expected region to contain uniquely named symbol operations"); | 
| 94 |  |   } | 
| 95 |  | } | 
| 96 |  |  | 
| 97 |  | /// Look up a symbol with the specified name, returning null if no such name | 
| 98 |  | /// exists. Names never include the @ on them. | 
| 99 | 0 | Operation *SymbolTable::lookup(StringRef name) const { | 
| 100 | 0 |   return symbolTable.lookup(name); | 
| 101 | 0 | } | 
| 102 |  |  | 
| 103 |  | /// Erase the given symbol from the table. | 
| 104 |  | void SymbolTable::erase(Operation *symbol) { | 
| 105 |  |   Optional<StringRef> name = getNameIfSymbol(symbol); | 
| 106 |  |   assert(name && "expected valid 'name' attribute"); | 
| 107 |  |   assert(symbol->getParentOp() == symbolTableOp && | 
| 108 |  |          "expected this operation to be inside of the operation with this " | 
| 109 |  |          "SymbolTable"); | 
| 110 |  |  | 
| 111 |  |   auto it = symbolTable.find(*name); | 
| 112 |  |   if (it != symbolTable.end() && it->second == symbol) { | 
| 113 |  |     symbolTable.erase(it); | 
| 114 |  |     symbol->erase(); | 
| 115 |  |   } | 
| 116 |  | } | 
| 117 |  |  | 
| 118 |  | /// Insert a new symbol into the table and associated operation, and rename it | 
| 119 |  | /// as necessary to avoid collisions. | 
| 120 | 0 | void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) { | 
| 121 | 0 |   auto &body = symbolTableOp->getRegion(0).front(); | 
| 122 | 0 |   if (insertPt == Block::iterator() || insertPt == body.end()) | 
| 123 | 0 |     insertPt = Block::iterator(body.getTerminator()); | 
| 124 | 0 | 
 | 
| 125 | 0 |   assert(insertPt->getParentOp() == symbolTableOp && | 
| 126 | 0 |          "expected insertPt to be in the associated module operation"); | 
| 127 | 0 | 
 | 
| 128 | 0 |   body.getOperations().insert(insertPt, symbol); | 
| 129 | 0 | 
 | 
| 130 | 0 |   // Add this symbol to the symbol table, uniquing the name if a conflict is | 
| 131 | 0 |   // detected. | 
| 132 | 0 |   StringRef name = getSymbolName(symbol); | 
| 133 | 0 |   if (symbolTable.insert({name, symbol}).second) | 
| 134 | 0 |     return; | 
| 135 | 0 |   // If a conflict was detected, then the symbol will not have been added to | 
| 136 | 0 |   // the symbol table. Try suffixes until we get to a unique name that works. | 
| 137 | 0 |   SmallString<128> nameBuffer(name); | 
| 138 | 0 |   unsigned originalLength = nameBuffer.size(); | 
| 139 | 0 | 
 | 
| 140 | 0 |   // Iteratively try suffixes until we find one that isn't used. | 
| 141 | 0 |   do { | 
| 142 | 0 |     nameBuffer.resize(originalLength); | 
| 143 | 0 |     nameBuffer += '_'; | 
| 144 | 0 |     nameBuffer += std::to_string(uniquingCounter++); | 
| 145 | 0 |   } while (!symbolTable.insert({nameBuffer, symbol}).second); | 
| 146 | 0 |   setSymbolName(symbol, nameBuffer); | 
| 147 | 0 | } | 
| 148 |  |  | 
| 149 |  | /// Returns the name of the given symbol operation. | 
| 150 | 0 | StringRef SymbolTable::getSymbolName(Operation *symbol) { | 
| 151 | 0 |   Optional<StringRef> name = getNameIfSymbol(symbol); | 
| 152 | 0 |   assert(name && "expected valid symbol name"); | 
| 153 | 0 |   return *name; | 
| 154 | 0 | } | 
| 155 |  | /// Sets the name of the given symbol operation. | 
| 156 | 0 | void SymbolTable::setSymbolName(Operation *symbol, StringRef name) { | 
| 157 | 0 |   symbol->setAttr(getSymbolAttrName(), | 
| 158 | 0 |                   StringAttr::get(name, symbol->getContext())); | 
| 159 | 0 | } | 
| 160 |  |  | 
| 161 |  | /// Returns the visibility of the given symbol operation. | 
| 162 | 0 | SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) { | 
| 163 | 0 |   // If the attribute doesn't exist, assume public. | 
| 164 | 0 |   StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName()); | 
| 165 | 0 |   if (!vis) | 
| 166 | 0 |     return Visibility::Public; | 
| 167 | 0 |  | 
| 168 | 0 |   // Otherwise, switch on the string value. | 
| 169 | 0 |   return llvm::StringSwitch<Visibility>(vis.getValue()) | 
| 170 | 0 |       .Case("private", Visibility::Private) | 
| 171 | 0 |       .Case("nested", Visibility::Nested) | 
| 172 | 0 |       .Case("public", Visibility::Public); | 
| 173 | 0 | } | 
| 174 |  | /// Sets the visibility of the given symbol operation. | 
| 175 | 0 | void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) { | 
| 176 | 0 |   MLIRContext *ctx = symbol->getContext(); | 
| 177 | 0 | 
 | 
| 178 | 0 |   // If the visibility is public, just drop the attribute as this is the | 
| 179 | 0 |   // default. | 
| 180 | 0 |   if (vis == Visibility::Public) { | 
| 181 | 0 |     symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx)); | 
| 182 | 0 |     return; | 
| 183 | 0 |   } | 
| 184 | 0 |  | 
| 185 | 0 |   // Otherwise, update the attribute. | 
| 186 | 0 |   assert((vis == Visibility::Private || vis == Visibility::Nested) && | 
| 187 | 0 |          "unknown symbol visibility kind"); | 
| 188 | 0 | 
 | 
| 189 | 0 |   StringRef visName = vis == Visibility::Private ? "private" : "nested"; | 
| 190 | 0 |   symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx)); | 
| 191 | 0 | } | 
| 192 |  |  | 
| 193 |  | /// Returns the nearest symbol table from a given operation `from`. Returns | 
| 194 |  | /// nullptr if no valid parent symbol table could be found. | 
| 195 | 0 | Operation *SymbolTable::getNearestSymbolTable(Operation *from) { | 
| 196 | 0 |   assert(from && "expected valid operation"); | 
| 197 | 0 |   if (isPotentiallyUnknownSymbolTable(from)) | 
| 198 | 0 |     return nullptr; | 
| 199 | 0 |  | 
| 200 | 0 |   while (!from->hasTrait<OpTrait::SymbolTable>()) { | 
| 201 | 0 |     from = from->getParentOp(); | 
| 202 | 0 | 
 | 
| 203 | 0 |     // Check that this is a valid op and isn't an unknown symbol table. | 
| 204 | 0 |     if (!from || isPotentiallyUnknownSymbolTable(from)) | 
| 205 | 0 |       return nullptr; | 
| 206 | 0 |   } | 
| 207 | 0 |   return from; | 
| 208 | 0 | } | 
| 209 |  |  | 
| 210 |  | /// Walks all symbol table operations nested within, and including, `op`. For | 
| 211 |  | /// each symbol table operation, the provided callback is invoked with the op | 
| 212 |  | /// and a boolean signifying if the symbols within that symbol table can be | 
| 213 |  | /// treated as if all uses are visible. `allSymUsesVisible` identifies whether | 
| 214 |  | /// all of the symbol uses of symbols within `op` are visible. | 
| 215 |  | void SymbolTable::walkSymbolTables( | 
| 216 |  |     Operation *op, bool allSymUsesVisible, | 
| 217 | 0 |     function_ref<void(Operation *, bool)> callback) { | 
| 218 | 0 |   bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>(); | 
| 219 | 0 |   if (isSymbolTable) { | 
| 220 | 0 |     SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op); | 
| 221 | 0 |     allSymUsesVisible |= !symbol || symbol.isPrivate(); | 
| 222 | 0 |   } else { | 
| 223 | 0 |     // Otherwise if 'op' is not a symbol table, any nested symbols are | 
| 224 | 0 |     // guaranteed to be hidden. | 
| 225 | 0 |     allSymUsesVisible = true; | 
| 226 | 0 |   } | 
| 227 | 0 | 
 | 
| 228 | 0 |   for (Region ®ion : op->getRegions()) | 
| 229 | 0 |     for (Block &block : region) | 
| 230 | 0 |       for (Operation &nestedOp : block) | 
| 231 | 0 |         walkSymbolTables(&nestedOp, allSymUsesVisible, callback); | 
| 232 | 0 | 
 | 
| 233 | 0 |   // If 'op' had the symbol table trait, visit it after any nested symbol | 
| 234 | 0 |   // tables. | 
| 235 | 0 |   if (isSymbolTable) | 
| 236 | 0 |     callback(op, allSymUsesVisible); | 
| 237 | 0 | } | 
| 238 |  |  | 
| 239 |  | /// Returns the operation registered with the given symbol name with the | 
| 240 |  | /// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation | 
| 241 |  | /// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol | 
| 242 |  | /// was found. | 
| 243 |  | Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, | 
| 244 | 0 |                                        StringRef symbol) { | 
| 245 | 0 |   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); | 
| 246 | 0 | 
 | 
| 247 | 0 |   // Look for a symbol with the given name. | 
| 248 | 0 |   for (auto &op : symbolTableOp->getRegion(0).front().without_terminator()) | 
| 249 | 0 |     if (getNameIfSymbol(&op) == symbol) | 
| 250 | 0 |       return &op; | 
| 251 | 0 |   return nullptr; | 
| 252 | 0 | } | 
| 253 |  | Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp, | 
| 254 | 0 |                                        SymbolRefAttr symbol) { | 
| 255 | 0 |   SmallVector<Operation *, 4> resolvedSymbols; | 
| 256 | 0 |   if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols))) | 
| 257 | 0 |     return nullptr; | 
| 258 | 0 |   return resolvedSymbols.back(); | 
| 259 | 0 | } | 
| 260 |  |  | 
| 261 |  | LogicalResult | 
| 262 |  | SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol, | 
| 263 | 0 |                             SmallVectorImpl<Operation *> &symbols) { | 
| 264 | 0 |   assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>()); | 
| 265 | 0 | 
 | 
| 266 | 0 |   // Lookup the root reference for this symbol. | 
| 267 | 0 |   symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference()); | 
| 268 | 0 |   if (!symbolTableOp) | 
| 269 | 0 |     return failure(); | 
| 270 | 0 |   symbols.push_back(symbolTableOp); | 
| 271 | 0 | 
 | 
| 272 | 0 |   // If there are no nested references, just return the root symbol directly. | 
| 273 | 0 |   ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences(); | 
| 274 | 0 |   if (nestedRefs.empty()) | 
| 275 | 0 |     return success(); | 
| 276 | 0 |  | 
| 277 | 0 |   // Verify that the root is also a symbol table. | 
| 278 | 0 |   if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>()) | 
| 279 | 0 |     return failure(); | 
| 280 | 0 |  | 
| 281 | 0 |   // Otherwise, lookup each of the nested non-leaf references and ensure that | 
| 282 | 0 |   // each corresponds to a valid symbol table. | 
| 283 | 0 |   for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) { | 
| 284 | 0 |     symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue()); | 
| 285 | 0 |     if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>()) | 
| 286 | 0 |       return failure(); | 
| 287 | 0 |     symbols.push_back(symbolTableOp); | 
| 288 | 0 |   } | 
| 289 | 0 |   symbols.push_back(lookupSymbolIn(symbolTableOp, symbol.getLeafReference())); | 
| 290 | 0 |   return success(symbols.back()); | 
| 291 | 0 | } | 
| 292 |  |  | 
| 293 |  | /// Returns the operation registered with the given symbol name within the | 
| 294 |  | /// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns | 
| 295 |  | /// nullptr if no valid symbol was found. | 
| 296 |  | Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, | 
| 297 | 0 |                                                 StringRef symbol) { | 
| 298 | 0 |   Operation *symbolTableOp = getNearestSymbolTable(from); | 
| 299 | 0 |   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; | 
| 300 | 0 | } | 
| 301 |  | Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from, | 
| 302 | 0 |                                                 SymbolRefAttr symbol) { | 
| 303 | 0 |   Operation *symbolTableOp = getNearestSymbolTable(from); | 
| 304 | 0 |   return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr; | 
| 305 | 0 | } | 
| 306 |  |  | 
| 307 |  | //===----------------------------------------------------------------------===// | 
| 308 |  | // SymbolTable Trait Types | 
| 309 |  | //===----------------------------------------------------------------------===// | 
| 310 |  |  | 
| 311 | 0 | LogicalResult detail::verifySymbolTable(Operation *op) { | 
| 312 | 0 |   if (op->getNumRegions() != 1) | 
| 313 | 0 |     return op->emitOpError() | 
| 314 | 0 |            << "Operations with a 'SymbolTable' must have exactly one region"; | 
| 315 | 0 |   if (!llvm::hasSingleElement(op->getRegion(0))) | 
| 316 | 0 |     return op->emitOpError() | 
| 317 | 0 |            << "Operations with a 'SymbolTable' must have exactly one block"; | 
| 318 | 0 |  | 
| 319 | 0 |   // Check that all symbols are uniquely named within child regions. | 
| 320 | 0 |   DenseMap<Attribute, Location> nameToOrigLoc; | 
| 321 | 0 |   for (auto &block : op->getRegion(0)) { | 
| 322 | 0 |     for (auto &op : block) { | 
| 323 | 0 |       // Check for a symbol name attribute. | 
| 324 | 0 |       auto nameAttr = | 
| 325 | 0 |           op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()); | 
| 326 | 0 |       if (!nameAttr) | 
| 327 | 0 |         continue; | 
| 328 | 0 |  | 
| 329 | 0 |       // Try to insert this symbol into the table. | 
| 330 | 0 |       auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc()); | 
| 331 | 0 |       if (!it.second) | 
| 332 | 0 |         return op.emitError() | 
| 333 | 0 |             .append("redefinition of symbol named '", nameAttr.getValue(), "'") | 
| 334 | 0 |             .attachNote(it.first->second) | 
| 335 | 0 |             .append("see existing symbol definition here"); | 
| 336 | 0 |     } | 
| 337 | 0 |   } | 
| 338 | 0 |   return success(); | 
| 339 | 0 | } | 
| 340 |  |  | 
| 341 | 0 | LogicalResult detail::verifySymbol(Operation *op) { | 
| 342 | 0 |   // Verify the name attribute. | 
| 343 | 0 |   if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName())) | 
| 344 | 0 |     return op->emitOpError() << "requires string attribute '" | 
| 345 | 0 |                              << mlir::SymbolTable::getSymbolAttrName() << "'"; | 
| 346 | 0 |  | 
| 347 | 0 |   // Verify the visibility attribute. | 
| 348 | 0 |   if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) { | 
| 349 | 0 |     StringAttr visStrAttr = vis.dyn_cast<StringAttr>(); | 
| 350 | 0 |     if (!visStrAttr) | 
| 351 | 0 |       return op->emitOpError() << "requires visibility attribute '" | 
| 352 | 0 |                                << mlir::SymbolTable::getVisibilityAttrName() | 
| 353 | 0 |                                << "' to be a string attribute, but got " << vis; | 
| 354 | 0 |  | 
| 355 | 0 |     if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"}, | 
| 356 | 0 |                             visStrAttr.getValue())) | 
| 357 | 0 |       return op->emitOpError() | 
| 358 | 0 |              << "visibility expected to be one of [\"public\", \"private\", " | 
| 359 | 0 |                 "\"nested\"], but got " | 
| 360 | 0 |              << visStrAttr; | 
| 361 | 0 |   } | 
| 362 | 0 |   return success(); | 
| 363 | 0 | } | 
| 364 |  |  | 
| 365 |  | //===----------------------------------------------------------------------===// | 
| 366 |  | // Symbol Use Lists | 
| 367 |  | //===----------------------------------------------------------------------===// | 
| 368 |  |  | 
| 369 |  | /// Walk all of the symbol references within the given operation, invoking the | 
| 370 |  | /// provided callback for each found use. The callbacks takes as arguments: the | 
| 371 |  | /// use of the symbol, and the nested access chain to the attribute within the | 
| 372 |  | /// operation dictionary. An access chain is a set of indices into nested | 
| 373 |  | /// container attributes. For example, a symbol use in an attribute dictionary | 
| 374 |  | /// that looks like the following: | 
| 375 |  | /// | 
| 376 |  | ///    {use = [{other_attr, @symbol}]} | 
| 377 |  | /// | 
| 378 |  | /// May have the following access chain: | 
| 379 |  | /// | 
| 380 |  | ///     [0, 0, 1] | 
| 381 |  | /// | 
| 382 |  | static WalkResult walkSymbolRefs( | 
| 383 |  |     Operation *op, | 
| 384 | 0 |     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { | 
| 385 | 0 |   // Check to see if the operation has any attributes. | 
| 386 | 0 |   if (op->getMutableAttrDict().empty()) | 
| 387 | 0 |     return WalkResult::advance(); | 
| 388 | 0 |   DictionaryAttr attrDict = op->getAttrDictionary(); | 
| 389 | 0 | 
 | 
| 390 | 0 |   // A worklist of a container attribute and the current index into the held | 
| 391 | 0 |   // attribute list. | 
| 392 | 0 |   SmallVector<Attribute, 1> attrWorklist(1, attrDict); | 
| 393 | 0 |   SmallVector<int, 1> curAccessChain(1, /*Value=*/-1); | 
| 394 | 0 | 
 | 
| 395 | 0 |   // Process the symbol references within the given nested attribute range. | 
| 396 | 0 |   auto processAttrs = [&](int &index, auto attrRange) -> WalkResult { | 
| 397 | 0 |     for (Attribute attr : llvm::drop_begin(attrRange, index)) { | 
| 398 | 0 |       /// Check for a nested container attribute, these will also need to be | 
| 399 | 0 |       /// walked. | 
| 400 | 0 |       if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) { | 
| 401 | 0 |         attrWorklist.push_back(attr); | 
| 402 | 0 |         curAccessChain.push_back(-1); | 
| 403 | 0 |         return WalkResult::advance(); | 
| 404 | 0 |       } | 
| 405 | 0 |  | 
| 406 | 0 |       // Invoke the provided callback if we find a symbol use and check for a | 
| 407 | 0 |       // requested interrupt. | 
| 408 | 0 |       if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>()) | 
| 409 | 0 |         if (callback({op, symbolRef}, curAccessChain).wasInterrupted()) | 
| 410 | 0 |           return WalkResult::interrupt(); | 
| 411 | 0 |  | 
| 412 | 0 |       // Make sure to keep the index counter in sync. | 
| 413 | 0 |       ++index; | 
| 414 | 0 |     } | 
| 415 | 0 | 
 | 
| 416 | 0 |     // Pop this container attribute from the worklist. | 
| 417 | 0 |     attrWorklist.pop_back(); | 
| 418 | 0 |     curAccessChain.pop_back(); | 
| 419 | 0 |     return WalkResult::advance(); | 
| 420 | 0 |   }; Unexecuted instantiation: SymbolTable.cpp:_ZZL14walkSymbolRefsPN4mlir9OperationEN4llvm12function_refIFNS_10WalkResultENS_11SymbolTable9SymbolUseENS2_8ArrayRefIiEEEEEENK3$_1clINS2_14iterator_rangeINS2_15mapped_iteratorIPKSt4pairINS_10IdentifierENS_9AttributeEEZNS2_17make_second_rangeINS7_ISI_EEEEDaOT_EUlRSJ_E_RKSH_EEEEEES4_RiSN_Unexecuted instantiation: SymbolTable.cpp:_ZZL14walkSymbolRefsPN4mlir9OperationEN4llvm12function_refIFNS_10WalkResultENS_11SymbolTable9SymbolUseENS2_8ArrayRefIiEEEEEENK3$_1clINS7_INS_9AttributeEEEEES4_RiT_ | 
| 421 | 0 | 
 | 
| 422 | 0 |   WalkResult result = WalkResult::advance(); | 
| 423 | 0 |   do { | 
| 424 | 0 |     Attribute attr = attrWorklist.back(); | 
| 425 | 0 |     int &index = curAccessChain.back(); | 
| 426 | 0 |     ++index; | 
| 427 | 0 | 
 | 
| 428 | 0 |     // Process the given attribute, which is guaranteed to be a container. | 
| 429 | 0 |     if (auto dict = attr.dyn_cast<DictionaryAttr>()) | 
| 430 | 0 |       result = processAttrs(index, make_second_range(dict.getValue())); | 
| 431 | 0 |     else | 
| 432 | 0 |       result = processAttrs(index, attr.cast<ArrayAttr>().getValue()); | 
| 433 | 0 |   } while (!attrWorklist.empty() && !result.wasInterrupted()); | 
| 434 | 0 |   return result; | 
| 435 | 0 | } | 
| 436 |  |  | 
| 437 |  | /// Walk all of the uses, for any symbol, that are nested within the given | 
| 438 |  | /// regions, invoking the provided callback for each. This does not traverse | 
| 439 |  | /// into any nested symbol tables. | 
| 440 |  | static Optional<WalkResult> walkSymbolUses( | 
| 441 |  |     MutableArrayRef<Region> regions, | 
| 442 | 0 |     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { | 
| 443 | 0 |   SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions)); | 
| 444 | 0 |   while (!worklist.empty()) { | 
| 445 | 0 |     for (Operation &op : worklist.pop_back_val()->getOps()) { | 
| 446 | 0 |       if (walkSymbolRefs(&op, callback).wasInterrupted()) | 
| 447 | 0 |         return WalkResult::interrupt(); | 
| 448 | 0 |  | 
| 449 | 0 |       // Check that this isn't a potentially unknown symbol table. | 
| 450 | 0 |       if (isPotentiallyUnknownSymbolTable(&op)) | 
| 451 | 0 |         return llvm::None; | 
| 452 | 0 |  | 
| 453 | 0 |       // If this op defines a new symbol table scope, we can't traverse. Any | 
| 454 | 0 |       // symbol references nested within 'op' are different semantically. | 
| 455 | 0 |       if (!op.hasTrait<OpTrait::SymbolTable>()) { | 
| 456 | 0 |         for (Region ®ion : op.getRegions()) | 
| 457 | 0 |           worklist.push_back(®ion); | 
| 458 | 0 |       } | 
| 459 | 0 |     } | 
| 460 | 0 |   } | 
| 461 | 0 |   return WalkResult::advance(); | 
| 462 | 0 | } | 
| 463 |  | /// Walk all of the uses, for any symbol, that are nested within the given | 
| 464 |  | /// operation 'from', invoking the provided callback for each. This does not | 
| 465 |  | /// traverse into any nested symbol tables. | 
| 466 |  | static Optional<WalkResult> walkSymbolUses( | 
| 467 |  |     Operation *from, | 
| 468 | 0 |     function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) { | 
| 469 | 0 |   // If this operation has regions, and it, as well as its dialect, isn't | 
| 470 | 0 |   // registered then conservatively fail. The operation may define a | 
| 471 | 0 |   // symbol table, so we can't opaquely know if we should traverse to find | 
| 472 | 0 |   // nested uses. | 
| 473 | 0 |   if (isPotentiallyUnknownSymbolTable(from)) | 
| 474 | 0 |     return llvm::None; | 
| 475 | 0 |  | 
| 476 | 0 |   // Walk the uses on this operation. | 
| 477 | 0 |   if (walkSymbolRefs(from, callback).wasInterrupted()) | 
| 478 | 0 |     return WalkResult::interrupt(); | 
| 479 | 0 |  | 
| 480 | 0 |   // Only recurse if this operation is not a symbol table. A symbol table | 
| 481 | 0 |   // defines a new scope, so we can't walk the attributes from within the symbol | 
| 482 | 0 |   // table op. | 
| 483 | 0 |   if (!from->hasTrait<OpTrait::SymbolTable>()) | 
| 484 | 0 |     return walkSymbolUses(from->getRegions(), callback); | 
| 485 | 0 |   return WalkResult::advance(); | 
| 486 | 0 | } | 
| 487 |  |  | 
| 488 |  | namespace { | 
| 489 |  | /// This class represents a single symbol scope. A symbol scope represents the | 
| 490 |  | /// set of operations nested within a symbol table that may reference symbols | 
| 491 |  | /// within that table. A symbol scope does not contain the symbol table | 
| 492 |  | /// operation itself, just its contained operations. A scope ends at leaf | 
| 493 |  | /// operations or another symbol table operation. | 
| 494 |  | struct SymbolScope { | 
| 495 |  |   /// Walk the symbol uses within this scope, invoking the given callback. | 
| 496 |  |   /// This variant is used when the callback type matches that expected by | 
| 497 |  |   /// 'walkSymbolUses'. | 
| 498 |  |   template <typename CallbackT, | 
| 499 |  |             typename std::enable_if_t<!std::is_same< | 
| 500 |  |                 typename llvm::function_traits<CallbackT>::result_t, | 
| 501 |  |                 void>::value> * = nullptr> | 
| 502 | 0 |   Optional<WalkResult> walk(CallbackT cback) { | 
| 503 | 0 |     if (Region *region = limit.dyn_cast<Region *>()) | 
| 504 | 0 |       return walkSymbolUses(*region, cback); | 
| 505 | 0 |     return walkSymbolUses(limit.get<Operation *>(), cback); | 
| 506 | 0 |   } Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZNS0_4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS4_8OptionalINS6_11SymbolTable8UseRangeEEET_PT0_EUlNS9_9SymbolUseEE_LPv0EEENS8_INS6_10WalkResultEEESC_EUlSF_NS4_8ArrayRefIiEEE_LSH_0EEESJ_SC_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZNS0_4walkIZL17getSymbolUsesImplIPN4mlir9OperationES5_EN4llvm8OptionalINS4_11SymbolTable8UseRangeEEET_PT0_EUlNS9_9SymbolUseEE_LPv0EEENS8_INS4_10WalkResultEEESC_EUlSF_NS7_8ArrayRefIiEEE_LSH_0EEESJ_SC_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZNS0_4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS4_8OptionalINS6_11SymbolTable8UseRangeEEET_PT0_EUlNS9_9SymbolUseEE_LPv0EEENS8_INS6_10WalkResultEEESC_EUlSF_NS4_8ArrayRefIiEEE_LSH_0EEESJ_SC_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZNS0_4walkIZL17getSymbolUsesImplIPN4mlir9OperationENS4_6RegionEEN4llvm8OptionalINS4_11SymbolTable8UseRangeEEET_PT0_EUlNSA_9SymbolUseEE_LPv0EEENS9_INS4_10WalkResultEEESD_EUlSG_NS8_8ArrayRefIiEEE_LSI_0EEESK_SD_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir9OperationEEbT_PT0_EUlNS5_11SymbolTable9SymbolUseENS3_8ArrayRefIiEEE_LPv0EEENS3_8OptionalINS5_10WalkResultEEES7_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL23symbolKnownUseEmptyImplIPN4mlir9OperationES4_EbT_PT0_EUlNS3_11SymbolTable9SymbolUseEN4llvm8ArrayRefIiEEE_LPv0EEENSB_8OptionalINS3_10WalkResultEEES6_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir6RegionEEbT_PT0_EUlNS5_11SymbolTable9SymbolUseENS3_8ArrayRefIiEEE_LPv0EEENS3_8OptionalINS5_10WalkResultEEES7_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL23symbolKnownUseEmptyImplIPN4mlir9OperationENS3_6RegionEEbT_PT0_EUlNS3_11SymbolTable9SymbolUseEN4llvm8ArrayRefIiEEE_LPv0EEENSC_8OptionalINS3_10WalkResultEEES7_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS5_13LogicalResultET_S4_PT0_EUlNS5_11SymbolTable9SymbolUseENS3_8ArrayRefIiEEE_LPv0EEENS3_8OptionalINS5_10WalkResultEEES8_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL24replaceAllSymbolUsesImplIPN4mlir9OperationES4_ENS3_13LogicalResultET_N4llvm9StringRefEPT0_EUlNS3_11SymbolTable9SymbolUseENS8_8ArrayRefIiEEE_LPv0EEENS8_8OptionalINS3_10WalkResultEEES7_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS5_13LogicalResultET_S4_PT0_EUlNS5_11SymbolTable9SymbolUseENS3_8ArrayRefIiEEE_LPv0EEENS3_8OptionalINS5_10WalkResultEEES8_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL24replaceAllSymbolUsesImplIPN4mlir9OperationENS3_6RegionEENS3_13LogicalResultET_N4llvm9StringRefEPT0_EUlNS3_11SymbolTable9SymbolUseENS9_8ArrayRefIiEEE_LPv0EEENS9_8OptionalINS3_10WalkResultEEES8_ | 
| 507 |  |   /// This variant is used when the callback type matches a stripped down type: | 
| 508 |  |   /// void(SymbolTable::SymbolUse use) | 
| 509 |  |   template <typename CallbackT, | 
| 510 |  |             typename std::enable_if_t<std::is_same< | 
| 511 |  |                 typename llvm::function_traits<CallbackT>::result_t, | 
| 512 |  |                 void>::value> * = nullptr> | 
| 513 | 0 |   Optional<WalkResult> walk(CallbackT cback) { | 
| 514 | 0 |     return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) { | 
| 515 | 0 |       return cback(use), WalkResult::advance(); | 
| 516 | 0 |     }); Unexecuted instantiation: SymbolTable.cpp:_ZZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS3_8OptionalINS5_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS5_10WalkResultEEESB_ENKUlSE_NS3_8ArrayRefIiEEE_clESE_SK_Unexecuted instantiation: SymbolTable.cpp:_ZZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIPN4mlir9OperationES4_EN4llvm8OptionalINS3_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS3_10WalkResultEEESB_ENKUlSE_NS6_8ArrayRefIiEEE_clESE_SK_Unexecuted instantiation: SymbolTable.cpp:_ZZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS3_8OptionalINS5_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS5_10WalkResultEEESB_ENKUlSE_NS3_8ArrayRefIiEEE_clESE_SK_Unexecuted instantiation: SymbolTable.cpp:_ZZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIPN4mlir9OperationENS3_6RegionEEN4llvm8OptionalINS3_11SymbolTable8UseRangeEEET_PT0_EUlNS9_9SymbolUseEE_LPv0EEENS8_INS3_10WalkResultEEESC_ENKUlSF_NS7_8ArrayRefIiEEE_clESF_SL_ | 
| 517 | 0 |   } Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS3_8OptionalINS5_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS5_10WalkResultEEESB_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIPN4mlir9OperationES4_EN4llvm8OptionalINS3_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS3_10WalkResultEEESB_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS3_8OptionalINS5_11SymbolTable8UseRangeEEET_PT0_EUlNS8_9SymbolUseEE_LPv0EEENS7_INS5_10WalkResultEEESB_Unexecuted instantiation: SymbolTable.cpp:_ZN12_GLOBAL__N_111SymbolScope4walkIZL17getSymbolUsesImplIPN4mlir9OperationENS3_6RegionEEN4llvm8OptionalINS3_11SymbolTable8UseRangeEEET_PT0_EUlNS9_9SymbolUseEE_LPv0EEENS8_INS3_10WalkResultEEESC_ | 
| 518 |  |  | 
| 519 |  |   /// The representation of the symbol within this scope. | 
| 520 |  |   SymbolRefAttr symbol; | 
| 521 |  |  | 
| 522 |  |   /// The IR unit representing this scope. | 
| 523 |  |   llvm::PointerUnion<Operation *, Region *> limit; | 
| 524 |  | }; | 
| 525 |  | } // end anonymous namespace | 
| 526 |  |  | 
| 527 |  | /// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'. | 
| 528 |  | static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, | 
| 529 | 0 |                                                        Operation *limit) { | 
| 530 | 0 |   StringRef symName = SymbolTable::getSymbolName(symbol); | 
| 531 | 0 |   assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit); | 
| 532 | 0 | 
 | 
| 533 | 0 |   // Compute the ancestors of 'limit'. | 
| 534 | 0 |   llvm::SetVector<Operation *, SmallVector<Operation *, 4>, | 
| 535 | 0 |                   SmallPtrSet<Operation *, 4>> | 
| 536 | 0 |       limitAncestors; | 
| 537 | 0 |   Operation *limitAncestor = limit; | 
| 538 | 0 |   do { | 
| 539 | 0 |     // Check to see if 'symbol' is an ancestor of 'limit'. | 
| 540 | 0 |     if (limitAncestor == symbol) { | 
| 541 | 0 |       // Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr | 
| 542 | 0 |       // doesn't support parent references. | 
| 543 | 0 |       if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) == | 
| 544 | 0 |           symbol->getParentOp()) | 
| 545 | 0 |         return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}}; | 
| 546 | 0 |       return {}; | 
| 547 | 0 |     } | 
| 548 | 0 |  | 
| 549 | 0 |     limitAncestors.insert(limitAncestor); | 
| 550 | 0 |   } while ((limitAncestor = limitAncestor->getParentOp())); | 
| 551 | 0 | 
 | 
| 552 | 0 |   // Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'. | 
| 553 | 0 |   Operation *commonAncestor = symbol->getParentOp(); | 
| 554 | 0 |   do { | 
| 555 | 0 |     if (limitAncestors.count(commonAncestor)) | 
| 556 | 0 |       break; | 
| 557 | 0 |   } while ((commonAncestor = commonAncestor->getParentOp())); | 
| 558 | 0 |   assert(commonAncestor && "'limit' and 'symbol' have no common ancestor"); | 
| 559 | 0 | 
 | 
| 560 | 0 |   // Compute the set of valid nested references for 'symbol' as far up to the | 
| 561 | 0 |   // common ancestor as possible. | 
| 562 | 0 |   SmallVector<SymbolRefAttr, 2> references; | 
| 563 | 0 |   bool collectedAllReferences = succeeded( | 
| 564 | 0 |       collectValidReferencesFor(symbol, symName, commonAncestor, references)); | 
| 565 | 0 | 
 | 
| 566 | 0 |   // Handle the case where the common ancestor is 'limit'. | 
| 567 | 0 |   if (commonAncestor == limit) { | 
| 568 | 0 |     SmallVector<SymbolScope, 2> scopes; | 
| 569 | 0 | 
 | 
| 570 | 0 |     // Walk each of the ancestors of 'symbol', calling the compute function for | 
| 571 | 0 |     // each one. | 
| 572 | 0 |     Operation *limitIt = symbol->getParentOp(); | 
| 573 | 0 |     for (size_t i = 0, e = references.size(); i != e; | 
| 574 | 0 |          ++i, limitIt = limitIt->getParentOp()) { | 
| 575 | 0 |       assert(limitIt->hasTrait<OpTrait::SymbolTable>()); | 
| 576 | 0 |       scopes.push_back({references[i], &limitIt->getRegion(0)}); | 
| 577 | 0 |     } | 
| 578 | 0 |     return scopes; | 
| 579 | 0 |   } | 
| 580 | 0 | 
 | 
| 581 | 0 |   // Otherwise, we just need the symbol reference for 'symbol' that will be | 
| 582 | 0 |   // used within 'limit'. This is the last reference in the list we computed | 
| 583 | 0 |   // above if we were able to collect all references. | 
| 584 | 0 |   if (!collectedAllReferences) | 
| 585 | 0 |     return {}; | 
| 586 | 0 |   return {{references.back(), limit}}; | 
| 587 | 0 | } | 
| 588 |  | static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol, | 
| 589 | 0 |                                                        Region *limit) { | 
| 590 | 0 |   auto scopes = collectSymbolScopes(symbol, limit->getParentOp()); | 
| 591 | 0 | 
 | 
| 592 | 0 |   // If we collected some scopes to walk, make sure to constrain the one for | 
| 593 | 0 |   // limit to the specific region requested. | 
| 594 | 0 |   if (!scopes.empty()) | 
| 595 | 0 |     scopes.back().limit = limit; | 
| 596 | 0 |   return scopes; | 
| 597 | 0 | } | 
| 598 |  | template <typename IRUnit> | 
| 599 |  | static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol, | 
| 600 | 0 |                                                        IRUnit *limit) { | 
| 601 | 0 |   return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}}; | 
| 602 | 0 | } Unexecuted instantiation: SymbolTable.cpp:_ZL19collectSymbolScopesIN4mlir9OperationEEN4llvm11SmallVectorIN12_GLOBAL__N_111SymbolScopeELj1EEENS2_9StringRefEPT_Unexecuted instantiation: SymbolTable.cpp:_ZL19collectSymbolScopesIN4mlir6RegionEEN4llvm11SmallVectorIN12_GLOBAL__N_111SymbolScopeELj1EEENS2_9StringRefEPT_ | 
| 603 |  |  | 
| 604 |  | /// Returns true if the given reference 'SubRef' is a sub reference of the | 
| 605 |  | /// reference 'ref', i.e. 'ref' is a further qualified reference. | 
| 606 | 0 | static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) { | 
| 607 | 0 |   if (ref == subRef) | 
| 608 | 0 |     return true; | 
| 609 | 0 |  | 
| 610 | 0 |   // If the references are not pointer equal, check to see if `subRef` is a | 
| 611 | 0 |   // prefix of `ref`. | 
| 612 | 0 |   if (ref.isa<FlatSymbolRefAttr>() || | 
| 613 | 0 |       ref.getRootReference() != subRef.getRootReference()) | 
| 614 | 0 |     return false; | 
| 615 | 0 |  | 
| 616 | 0 |   auto refLeafs = ref.getNestedReferences(); | 
| 617 | 0 |   auto subRefLeafs = subRef.getNestedReferences(); | 
| 618 | 0 |   return subRefLeafs.size() < refLeafs.size() && | 
| 619 | 0 |          subRefLeafs == refLeafs.take_front(subRefLeafs.size()); | 
| 620 | 0 | } | 
| 621 |  |  | 
| 622 |  | //===----------------------------------------------------------------------===// | 
| 623 |  | // SymbolTable::getSymbolUses | 
| 624 |  |  | 
| 625 |  | /// The implementation of SymbolTable::getSymbolUses below. | 
| 626 |  | template <typename FromT> | 
| 627 | 0 | static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) { | 
| 628 | 0 |   std::vector<SymbolTable::SymbolUse> uses; | 
| 629 | 0 |   auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { | 
| 630 | 0 |     uses.push_back(symbolUse); | 
| 631 | 0 |     return WalkResult::advance(); | 
| 632 | 0 |   }; Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIPN4mlir9OperationEEN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_ENKUlNS5_9SymbolUseENS3_8ArrayRefIiEEE_clES9_SB_Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIN4llvm15MutableArrayRefIN4mlir6RegionEEEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_ENKUlNS6_9SymbolUseENS0_8ArrayRefIiEEE_clESA_SC_ | 
| 633 | 0 |   auto result = walkSymbolUses(from, walkFn); | 
| 634 | 0 |   return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None; | 
| 635 | 0 | } Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIPN4mlir9OperationEEN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIN4llvm15MutableArrayRefIN4mlir6RegionEEEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_ | 
| 636 |  |  | 
| 637 |  | /// Get an iterator range for all of the uses, for any symbol, that are nested | 
| 638 |  | /// within the given operation 'from'. This does not traverse into any nested | 
| 639 |  | /// symbol tables, and will also only return uses on 'from' if it does not | 
| 640 |  | /// also define a symbol table. This is because we treat the region as the | 
| 641 |  | /// boundary of the symbol table, and not the op itself. This function returns | 
| 642 |  | /// None if there are any unknown operations that may potentially be symbol | 
| 643 |  | /// tables. | 
| 644 | 0 | auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> { | 
| 645 | 0 |   return getSymbolUsesImpl(from); | 
| 646 | 0 | } | 
| 647 | 0 | auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> { | 
| 648 | 0 |   return getSymbolUsesImpl(MutableArrayRef<Region>(*from)); | 
| 649 | 0 | } | 
| 650 |  |  | 
| 651 |  | //===----------------------------------------------------------------------===// | 
| 652 |  | // SymbolTable::getSymbolUses | 
| 653 |  |  | 
| 654 |  | /// The implementation of SymbolTable::getSymbolUses below. | 
| 655 |  | template <typename SymbolT, typename IRUnitT> | 
| 656 |  | static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol, | 
| 657 | 0 |                                                          IRUnitT *limit) { | 
| 658 | 0 |   std::vector<SymbolTable::SymbolUse> uses; | 
| 659 | 0 |   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { | 
| 660 | 0 |     if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) { | 
| 661 | 0 |           if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())) | 
| 662 | 0 |             uses.push_back(symbolUse); | 
| 663 | 0 |         })) Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_PT0_ENKUlNS5_9SymbolUseEE_clESB_Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIPN4mlir9OperationES1_EN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_PT0_ENKUlNS5_9SymbolUseEE_clESB_Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_PT0_ENKUlNS5_9SymbolUseEE_clESB_Unexecuted instantiation: SymbolTable.cpp:_ZZL17getSymbolUsesImplIPN4mlir9OperationENS0_6RegionEEN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_PT0_ENKUlNS6_9SymbolUseEE_clESC_ | 
| 664 | 0 |       return llvm::None; | 
| 665 | 0 |   } | 
| 666 | 0 |   return SymbolTable::UseRange(std::move(uses)); | 
| 667 | 0 | } Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIPN4mlir9OperationES1_EN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS0_8OptionalINS2_11SymbolTable8UseRangeEEET_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL17getSymbolUsesImplIPN4mlir9OperationENS0_6RegionEEN4llvm8OptionalINS0_11SymbolTable8UseRangeEEET_PT0_ | 
| 668 |  |  | 
| 669 |  | /// Get all of the uses of the given symbol that are nested within the given | 
| 670 |  | /// operation 'from', invoking the provided callback for each. This does not | 
| 671 |  | /// traverse into any nested symbol tables. This function returns None if there | 
| 672 |  | /// are any unknown operations that may potentially be symbol tables. | 
| 673 |  | auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from) | 
| 674 | 0 |     -> Optional<UseRange> { | 
| 675 | 0 |   return getSymbolUsesImpl(symbol, from); | 
| 676 | 0 | } | 
| 677 |  | auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from) | 
| 678 | 0 |     -> Optional<UseRange> { | 
| 679 | 0 |   return getSymbolUsesImpl(symbol, from); | 
| 680 | 0 | } | 
| 681 |  | auto SymbolTable::getSymbolUses(StringRef symbol, Region *from) | 
| 682 | 0 |     -> Optional<UseRange> { | 
| 683 | 0 |   return getSymbolUsesImpl(symbol, from); | 
| 684 | 0 | } | 
| 685 |  | auto SymbolTable::getSymbolUses(Operation *symbol, Region *from) | 
| 686 | 0 |     -> Optional<UseRange> { | 
| 687 | 0 |   return getSymbolUsesImpl(symbol, from); | 
| 688 | 0 | } | 
| 689 |  |  | 
| 690 |  | //===----------------------------------------------------------------------===// | 
| 691 |  | // SymbolTable::symbolKnownUseEmpty | 
| 692 |  |  | 
| 693 |  | /// The implementation of SymbolTable::symbolKnownUseEmpty below. | 
| 694 |  | template <typename SymbolT, typename IRUnitT> | 
| 695 | 0 | static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) { | 
| 696 | 0 |   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { | 
| 697 | 0 |     // Walk all of the symbol uses looking for a reference to 'symbol'. | 
| 698 | 0 |     if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) { | 
| 699 | 0 |           return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()) | 
| 700 | 0 |                      ? WalkResult::interrupt() | 
| 701 | 0 |                      : WalkResult::advance(); | 
| 702 | 0 |         }) != WalkResult::advance()) Unexecuted instantiation: SymbolTable.cpp:_ZZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir9OperationEEbT_PT0_ENKUlNS2_11SymbolTable9SymbolUseENS0_8ArrayRefIiEEE_clES8_SA_Unexecuted instantiation: SymbolTable.cpp:_ZZL23symbolKnownUseEmptyImplIPN4mlir9OperationES1_EbT_PT0_ENKUlNS0_11SymbolTable9SymbolUseEN4llvm8ArrayRefIiEEE_clES7_SA_Unexecuted instantiation: SymbolTable.cpp:_ZZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir6RegionEEbT_PT0_ENKUlNS2_11SymbolTable9SymbolUseENS0_8ArrayRefIiEEE_clES8_SA_Unexecuted instantiation: SymbolTable.cpp:_ZZL23symbolKnownUseEmptyImplIPN4mlir9OperationENS0_6RegionEEbT_PT0_ENKUlNS0_11SymbolTable9SymbolUseEN4llvm8ArrayRefIiEEE_clES8_SB_ | 
| 703 | 0 |       return false; | 
| 704 | 0 |   } | 
| 705 | 0 |   return true; | 
| 706 | 0 | } Unexecuted instantiation: SymbolTable.cpp:_ZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir9OperationEEbT_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL23symbolKnownUseEmptyImplIPN4mlir9OperationES1_EbT_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL23symbolKnownUseEmptyImplIN4llvm9StringRefEN4mlir6RegionEEbT_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL23symbolKnownUseEmptyImplIPN4mlir9OperationENS0_6RegionEEbT_PT0_ | 
| 707 |  |  | 
| 708 |  | /// Return if the given symbol is known to have no uses that are nested within | 
| 709 |  | /// the given operation 'from'. This does not traverse into any nested symbol | 
| 710 |  | /// tables. This function will also return false if there are any unknown | 
| 711 |  | /// operations that may potentially be symbol tables. | 
| 712 | 0 | bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) { | 
| 713 | 0 |   return symbolKnownUseEmptyImpl(symbol, from); | 
| 714 | 0 | } | 
| 715 | 0 | bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) { | 
| 716 | 0 |   return symbolKnownUseEmptyImpl(symbol, from); | 
| 717 | 0 | } | 
| 718 | 0 | bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) { | 
| 719 | 0 |   return symbolKnownUseEmptyImpl(symbol, from); | 
| 720 | 0 | } | 
| 721 | 0 | bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) { | 
| 722 | 0 |   return symbolKnownUseEmptyImpl(symbol, from); | 
| 723 | 0 | } | 
| 724 |  |  | 
| 725 |  | //===----------------------------------------------------------------------===// | 
| 726 |  | // SymbolTable::replaceAllSymbolUses | 
| 727 |  |  | 
| 728 |  | /// Rebuild the given attribute container after replacing all references to a | 
| 729 |  | /// symbol with the updated attribute in 'accesses'. | 
| 730 |  | static Attribute rebuildAttrAfterRAUW( | 
| 731 |  |     Attribute container, | 
| 732 |  |     ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses, | 
| 733 | 0 |     unsigned depth) { | 
| 734 | 0 |   // Given a range of Attributes, update the ones referred to by the given | 
| 735 | 0 |   // access chains to point to the new symbol attribute. | 
| 736 | 0 |   auto updateAttrs = [&](auto &&attrRange) { | 
| 737 | 0 |     auto attrBegin = std::begin(attrRange); | 
| 738 | 0 |     for (unsigned i = 0, e = accesses.size(); i != e;) { | 
| 739 | 0 |       ArrayRef<int> access = accesses[i].first; | 
| 740 | 0 |       Attribute &attr = *std::next(attrBegin, access[depth]); | 
| 741 | 0 | 
 | 
| 742 | 0 |       // Check to see if this is a leaf access, i.e. a SymbolRef. | 
| 743 | 0 |       if (access.size() == depth + 1) { | 
| 744 | 0 |         attr = accesses[i].second; | 
| 745 | 0 |         ++i; | 
| 746 | 0 |         continue; | 
| 747 | 0 |       } | 
| 748 | 0 |  | 
| 749 | 0 |       // Otherwise, this is a container. Collect all of the accesses for this | 
| 750 | 0 |       // index and recurse. The recursion here is bounded by the size of the | 
| 751 | 0 |       // largest access array. | 
| 752 | 0 |       auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) { | 
| 753 | 0 |         ArrayRef<int> nextAccess = it.first; | 
| 754 | 0 |         return nextAccess.size() > depth + 1 && | 
| 755 | 0 |                nextAccess[depth] == access[depth]; | 
| 756 | 0 |       }); Unexecuted instantiation: SymbolTable.cpp:_ZZZL20rebuildAttrAfterRAUWN4mlir9AttributeEN4llvm8ArrayRefISt4pairINS1_11SmallVectorIiLj1EEENS_13SymbolRefAttrEEEEjENK3$_0clINS1_14iterator_rangeINS1_15mapped_iteratorIPS3_INS_10IdentifierES0_EZNS1_17make_second_rangeIRNS4_ISE_Lj4EEEEEDaOT_EUlRSE_E_RS0_EEEEEEDaSK_ENKUlTyRSJ_E_clIKS7_EEDaSQ_Unexecuted instantiation: SymbolTable.cpp:_ZZZL20rebuildAttrAfterRAUWN4mlir9AttributeEN4llvm8ArrayRefISt4pairINS1_11SmallVectorIiLj1EEENS_13SymbolRefAttrEEEEjENK3$_0clIRNS4_IS0_Lj4EEEEEDaOT_ENKUlTyRSD_E_clIKS7_EEDaSF_ | 
| 757 | 0 |       attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1); | 
| 758 | 0 | 
 | 
| 759 | 0 |       // Skip over all of the accesses that refer to the nested container. | 
| 760 | 0 |       i += nestedAccesses.size(); | 
| 761 | 0 |     } | 
| 762 | 0 |   }; Unexecuted instantiation: SymbolTable.cpp:_ZZL20rebuildAttrAfterRAUWN4mlir9AttributeEN4llvm8ArrayRefISt4pairINS1_11SmallVectorIiLj1EEENS_13SymbolRefAttrEEEEjENK3$_0clINS1_14iterator_rangeINS1_15mapped_iteratorIPS3_INS_10IdentifierES0_EZNS1_17make_second_rangeIRNS4_ISE_Lj4EEEEEDaOT_EUlRSE_E_RS0_EEEEEEDaSK_Unexecuted instantiation: SymbolTable.cpp:_ZZL20rebuildAttrAfterRAUWN4mlir9AttributeEN4llvm8ArrayRefISt4pairINS1_11SmallVectorIiLj1EEENS_13SymbolRefAttrEEEEjENK3$_0clIRNS4_IS0_Lj4EEEEEDaOT_ | 
| 763 | 0 | 
 | 
| 764 | 0 |   if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) { | 
| 765 | 0 |     auto newAttrs = llvm::to_vector<4>(dictAttr.getValue()); | 
| 766 | 0 |     updateAttrs(make_second_range(newAttrs)); | 
| 767 | 0 |     return DictionaryAttr::get(newAttrs, dictAttr.getContext()); | 
| 768 | 0 |   } | 
| 769 | 0 |   auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue()); | 
| 770 | 0 |   updateAttrs(newAttrs); | 
| 771 | 0 |   return ArrayAttr::get(newAttrs, container.getContext()); | 
| 772 | 0 | } | 
| 773 |  |  | 
| 774 |  | /// Generates a new symbol reference attribute with a new leaf reference. | 
| 775 |  | static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr, | 
| 776 | 0 |                                         FlatSymbolRefAttr newLeafAttr) { | 
| 777 | 0 |   if (oldAttr.isa<FlatSymbolRefAttr>()) | 
| 778 | 0 |     return newLeafAttr; | 
| 779 | 0 |   auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences()); | 
| 780 | 0 |   nestedRefs.back() = newLeafAttr; | 
| 781 | 0 |   return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs, | 
| 782 | 0 |                             oldAttr.getContext()); | 
| 783 | 0 | } | 
| 784 |  |  | 
| 785 |  | /// The implementation of SymbolTable::replaceAllSymbolUses below. | 
| 786 |  | template <typename SymbolT, typename IRUnitT> | 
| 787 |  | static LogicalResult | 
| 788 | 0 | replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) { | 
| 789 | 0 |   // A collection of operations along with their new attribute dictionary. | 
| 790 | 0 |   std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts; | 
| 791 | 0 | 
 | 
| 792 | 0 |   // The current operation being processed. | 
| 793 | 0 |   Operation *curOp = nullptr; | 
| 794 | 0 | 
 | 
| 795 | 0 |   // The set of access chains into the attribute dictionary of the current | 
| 796 | 0 |   // operation, as well as the replacement attribute to use. | 
| 797 | 0 |   SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains; | 
| 798 | 0 | 
 | 
| 799 | 0 |   // Generate a new attribute dictionary for the current operation by replacing | 
| 800 | 0 |   // references to the old symbol. | 
| 801 | 0 |   auto generateNewAttrDict = [&] { | 
| 802 | 0 |     auto oldDict = curOp->getAttrDictionary(); | 
| 803 | 0 |     auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0); | 
| 804 | 0 |     return newDict.cast<DictionaryAttr>(); | 
| 805 | 0 |   }; Unexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS2_13LogicalResultET_S1_PT0_ENKUlvE_clEvUnexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIPN4mlir9OperationES1_ENS0_13LogicalResultET_N4llvm9StringRefEPT0_ENKUlvE_clEvUnexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS2_13LogicalResultET_S1_PT0_ENKUlvE_clEvUnexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIPN4mlir9OperationENS0_6RegionEENS0_13LogicalResultET_N4llvm9StringRefEPT0_ENKUlvE_clEv | 
| 806 | 0 | 
 | 
| 807 | 0 |   // Generate a new attribute to replace the given attribute. | 
| 808 | 0 |   MLIRContext *ctx = limit->getContext(); | 
| 809 | 0 |   FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx); | 
| 810 | 0 |   for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) { | 
| 811 | 0 |     SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr); | 
| 812 | 0 |     auto walkFn = [&](SymbolTable::SymbolUse symbolUse, | 
| 813 | 0 |                       ArrayRef<int> accessChain) { | 
| 814 | 0 |       SymbolRefAttr useRef = symbolUse.getSymbolRef(); | 
| 815 | 0 |       if (!isReferencePrefixOf(scope.symbol, useRef)) | 
| 816 | 0 |         return WalkResult::advance(); | 
| 817 | 0 |  | 
| 818 | 0 |       // If we have a valid match, check to see if this is a proper | 
| 819 | 0 |       // subreference. If it is, then we will need to generate a different new | 
| 820 | 0 |       // attribute specifically for this use. | 
| 821 | 0 |       SymbolRefAttr replacementRef = newAttr; | 
| 822 | 0 |       if (useRef != scope.symbol) { | 
| 823 | 0 |         if (scope.symbol.isa<FlatSymbolRefAttr>()) { | 
| 824 | 0 |           replacementRef = | 
| 825 | 0 |               SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx); | 
| 826 | 0 |         } else { | 
| 827 | 0 |           auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences()); | 
| 828 | 0 |           nestedRefs[scope.symbol.getNestedReferences().size() - 1] = | 
| 829 | 0 |               newLeafAttr; | 
| 830 | 0 |           replacementRef = | 
| 831 | 0 |               SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx); | 
| 832 | 0 |         } | 
| 833 | 0 |       } | 
| 834 | 0 | 
 | 
| 835 | 0 |       // If there was a previous operation, generate a new attribute dict | 
| 836 | 0 |       // for it. This means that we've finished processing the current | 
| 837 | 0 |       // operation, so generate a new dictionary for it. | 
| 838 | 0 |       if (curOp && symbolUse.getUser() != curOp) { | 
| 839 | 0 |         updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); | 
| 840 | 0 |         accessChains.clear(); | 
| 841 | 0 |       } | 
| 842 | 0 | 
 | 
| 843 | 0 |       // Record this access. | 
| 844 | 0 |       curOp = symbolUse.getUser(); | 
| 845 | 0 |       accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef}); | 
| 846 | 0 |       return WalkResult::advance(); | 
| 847 | 0 |     }; Unexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS2_13LogicalResultET_S1_PT0_ENKUlNS2_11SymbolTable9SymbolUseENS0_8ArrayRefIiEEE_clES9_SB_Unexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIPN4mlir9OperationES1_ENS0_13LogicalResultET_N4llvm9StringRefEPT0_ENKUlNS0_11SymbolTable9SymbolUseENS5_8ArrayRefIiEEE_clESA_SC_Unexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS2_13LogicalResultET_S1_PT0_ENKUlNS2_11SymbolTable9SymbolUseENS0_8ArrayRefIiEEE_clES9_SB_Unexecuted instantiation: SymbolTable.cpp:_ZZL24replaceAllSymbolUsesImplIPN4mlir9OperationENS0_6RegionEENS0_13LogicalResultET_N4llvm9StringRefEPT0_ENKUlNS0_11SymbolTable9SymbolUseENS6_8ArrayRefIiEEE_clESB_SD_ | 
| 848 | 0 |     if (!scope.walk(walkFn)) | 
| 849 | 0 |       return failure(); | 
| 850 | 0 |  | 
| 851 | 0 |     // Check to see if we have a dangling op that needs to be processed. | 
| 852 | 0 |     if (curOp) { | 
| 853 | 0 |       updatedAttrDicts.push_back({curOp, generateNewAttrDict()}); | 
| 854 | 0 |       curOp = nullptr; | 
| 855 | 0 |     } | 
| 856 | 0 |   } | 
| 857 | 0 | 
 | 
| 858 | 0 |   // Update the attribute dictionaries as necessary. | 
| 859 | 0 |   for (auto &it : updatedAttrDicts) | 
| 860 | 0 |     it.first->setAttrs(it.second); | 
| 861 | 0 |   return success(); | 
| 862 | 0 | } Unexecuted instantiation: SymbolTable.cpp:_ZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir9OperationEENS2_13LogicalResultET_S1_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL24replaceAllSymbolUsesImplIPN4mlir9OperationES1_ENS0_13LogicalResultET_N4llvm9StringRefEPT0_Unexecuted instantiation: SymbolTable.cpp:_ZL24replaceAllSymbolUsesImplIN4llvm9StringRefEN4mlir6RegionEENS2_13LogicalResultET_S1_PT0_Unexecuted instantiation: SymbolTable.cpp:_ZL24replaceAllSymbolUsesImplIPN4mlir9OperationENS0_6RegionEENS0_13LogicalResultET_N4llvm9StringRefEPT0_ | 
| 863 |  |  | 
| 864 |  | /// Attempt to replace all uses of the given symbol 'oldSymbol' with the | 
| 865 |  | /// provided symbol 'newSymbol' that are nested within the given operation | 
| 866 |  | /// 'from'. This does not traverse into any nested symbol tables. If there are | 
| 867 |  | /// any unknown operations that may potentially be symbol tables, no uses are | 
| 868 |  | /// replaced and failure is returned. | 
| 869 |  | LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, | 
| 870 |  |                                                 StringRef newSymbol, | 
| 871 | 0 |                                                 Operation *from) { | 
| 872 | 0 |   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); | 
| 873 | 0 | } | 
| 874 |  | LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, | 
| 875 |  |                                                 StringRef newSymbol, | 
| 876 | 0 |                                                 Operation *from) { | 
| 877 | 0 |   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); | 
| 878 | 0 | } | 
| 879 |  | LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol, | 
| 880 |  |                                                 StringRef newSymbol, | 
| 881 | 0 |                                                 Region *from) { | 
| 882 | 0 |   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); | 
| 883 | 0 | } | 
| 884 |  | LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol, | 
| 885 |  |                                                 StringRef newSymbol, | 
| 886 | 0 |                                                 Region *from) { | 
| 887 | 0 |   return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from); | 
| 888 | 0 | } | 
| 889 |  |  | 
| 890 |  | //===----------------------------------------------------------------------===// | 
| 891 |  | // Symbol Interfaces | 
| 892 |  | //===----------------------------------------------------------------------===// | 
| 893 |  |  | 
| 894 |  | /// Include the generated symbol interfaces. | 
| 895 |  | #include "mlir/IR/SymbolInterfaces.cpp.inc" |