Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/mlir/lib/IR/Attributes.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "mlir/IR/Attributes.h"
10
#include "AttributeDetail.h"
11
#include "mlir/IR/AffineMap.h"
12
#include "mlir/IR/Diagnostics.h"
13
#include "mlir/IR/Dialect.h"
14
#include "mlir/IR/Function.h"
15
#include "mlir/IR/IntegerSet.h"
16
#include "mlir/IR/Types.h"
17
#include "llvm/ADT/Sequence.h"
18
#include "llvm/ADT/Twine.h"
19
#include "llvm/Support/Endian.h"
20
21
using namespace mlir;
22
using namespace mlir::detail;
23
24
//===----------------------------------------------------------------------===//
25
// AttributeStorage
26
//===----------------------------------------------------------------------===//
27
28
AttributeStorage::AttributeStorage(Type type)
29
0
    : type(type.getAsOpaquePointer()) {}
30
0
AttributeStorage::AttributeStorage() : type(nullptr) {}
31
32
0
Type AttributeStorage::getType() const {
33
0
  return Type::getFromOpaquePointer(type);
34
0
}
35
0
void AttributeStorage::setType(Type newType) {
36
0
  type = newType.getAsOpaquePointer();
37
0
}
38
39
//===----------------------------------------------------------------------===//
40
// Attribute
41
//===----------------------------------------------------------------------===//
42
43
/// Return the type of this attribute.
44
0
Type Attribute::getType() const { return impl->getType(); }
45
46
/// Return the context this attribute belongs to.
47
0
MLIRContext *Attribute::getContext() const { return getType().getContext(); }
48
49
/// Get the dialect this attribute is registered to.
50
0
Dialect &Attribute::getDialect() const { return impl->getDialect(); }
51
52
//===----------------------------------------------------------------------===//
53
// AffineMapAttr
54
//===----------------------------------------------------------------------===//
55
56
0
AffineMapAttr AffineMapAttr::get(AffineMap value) {
57
0
  return Base::get(value.getContext(), StandardAttributes::AffineMap, value);
58
0
}
59
60
0
AffineMap AffineMapAttr::getValue() const { return getImpl()->value; }
61
62
//===----------------------------------------------------------------------===//
63
// ArrayAttr
64
//===----------------------------------------------------------------------===//
65
66
0
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
67
0
  return Base::get(context, StandardAttributes::Array, value);
68
0
}
69
70
0
ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; }
71
72
0
Attribute ArrayAttr::operator[](unsigned idx) const {
73
0
  assert(idx < size() && "index out of bounds");
74
0
  return getValue()[idx];
75
0
}
76
77
//===----------------------------------------------------------------------===//
78
// BoolAttr
79
//===----------------------------------------------------------------------===//
80
81
0
bool BoolAttr::getValue() const { return getImpl()->value; }
82
83
//===----------------------------------------------------------------------===//
84
// DictionaryAttr
85
//===----------------------------------------------------------------------===//
86
87
/// Helper function that does either an in place sort or sorts from source array
88
/// into destination. If inPlace then storage is both the source and the
89
/// destination, else value is the source and storage destination. Returns
90
/// whether source was sorted.
91
template <bool inPlace>
92
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
93
0
                               SmallVectorImpl<NamedAttribute> &storage) {
94
0
  // Specialize for the common case.
95
0
  switch (value.size()) {
96
0
  case 0:
97
0
    // Zero already sorted.
98
0
    break;
99
0
  case 1:
100
0
    // One already sorted but may need to be copied.
101
0
    if (!inPlace)
102
0
      storage.assign({value[0]});
103
0
    break;
104
0
  case 2: {
105
0
    assert(value[0].first != value[1].first &&
106
0
           "DictionaryAttr element names must be unique");
107
0
    bool isSorted = value[0] < value[1];
108
0
    if (inPlace) {
109
0
      if (!isSorted)
110
0
        std::swap(storage[0], storage[1]);
111
0
    } else if (isSorted) {
112
0
      storage.assign({value[0], value[1]});
113
0
    } else {
114
0
      storage.assign({value[1], value[0]});
115
0
    }
116
0
    return !isSorted;
117
0
  }
118
0
  default:
119
0
    if (!inPlace)
120
0
      storage.assign(value.begin(), value.end());
121
0
    // Check to see they are sorted already.
122
0
    bool isSorted = llvm::is_sorted(value);
123
0
    if (!isSorted) {
124
0
      // If not, do a general sort.
125
0
      llvm::array_pod_sort(storage.begin(), storage.end());
126
0
      value = storage;
127
0
    }
128
0
129
0
    // Ensure that the attribute elements are unique.
130
0
    assert(std::adjacent_find(value.begin(), value.end(),
131
0
                              [](NamedAttribute l, NamedAttribute r) {
132
0
                                return l.first == r.first;
133
0
                              }) == value.end() &&
134
0
           "DictionaryAttr element names must be unique");
135
0
    return !isSorted;
136
0
  }
137
0
  return false;
138
0
}
Unexecuted instantiation: Attributes.cpp:_ZL18dictionaryAttrSortILb0EEbN4llvm8ArrayRefISt4pairIN4mlir10IdentifierENS3_9AttributeEEEERNS0_15SmallVectorImplIS6_EE
Unexecuted instantiation: Attributes.cpp:_ZL18dictionaryAttrSortILb1EEbN4llvm8ArrayRefISt4pairIN4mlir10IdentifierENS3_9AttributeEEEERNS0_15SmallVectorImplIS6_EE
139
140
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
141
0
                          SmallVectorImpl<NamedAttribute> &storage) {
142
0
  return dictionaryAttrSort</*inPlace=*/false>(value, storage);
143
0
}
144
145
0
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
146
0
  return dictionaryAttrSort</*inPlace=*/true>(array, array);
147
0
}
148
149
DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value,
150
0
                                   MLIRContext *context) {
151
0
  if (value.empty())
152
0
    return DictionaryAttr::getEmpty(context);
153
0
  assert(llvm::all_of(value,
154
0
                      [](const NamedAttribute &attr) { return attr.second; }) &&
155
0
         "value cannot have null entries");
156
0
157
0
  // We need to sort the element list to canonicalize it.
158
0
  SmallVector<NamedAttribute, 8> storage;
159
0
  if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
160
0
    value = storage;
161
0
162
0
  return Base::get(context, StandardAttributes::Dictionary, value);
163
0
}
164
/// Construct a dictionary with an array of values that is known to already be
165
/// sorted by name and uniqued.
166
DictionaryAttr DictionaryAttr::getWithSorted(ArrayRef<NamedAttribute> value,
167
0
                                             MLIRContext *context) {
168
0
  if (value.empty())
169
0
    return DictionaryAttr::getEmpty(context);
170
0
  // Ensure that the attribute elements are unique and sorted.
171
0
  assert(llvm::is_sorted(value,
172
0
                         [](NamedAttribute l, NamedAttribute r) {
173
0
                           return l.first.strref() < r.first.strref();
174
0
                         }) &&
175
0
         "expected attribute values to be sorted");
176
0
  assert(std::adjacent_find(value.begin(), value.end(),
177
0
                            [](NamedAttribute l, NamedAttribute r) {
178
0
                              return l.first == r.first;
179
0
                            }) == value.end() &&
180
0
         "DictionaryAttr element names must be unique");
181
0
  return Base::get(context, StandardAttributes::Dictionary, value);
182
0
}
183
184
0
ArrayRef<NamedAttribute> DictionaryAttr::getValue() const {
185
0
  return getImpl()->getElements();
186
0
}
187
188
/// Return the specified attribute if present, null otherwise.
189
0
Attribute DictionaryAttr::get(StringRef name) const {
190
0
  Optional<NamedAttribute> attr = getNamed(name);
191
0
  return attr ? attr->second : nullptr;
192
0
}
193
0
Attribute DictionaryAttr::get(Identifier name) const {
194
0
  Optional<NamedAttribute> attr = getNamed(name);
195
0
  return attr ? attr->second : nullptr;
196
0
}
197
198
/// Return the specified named attribute if present, None otherwise.
199
0
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
200
0
  ArrayRef<NamedAttribute> values = getValue();
201
0
  const auto *it = llvm::lower_bound(values, name);
202
0
  return it != values.end() && it->first == name ? *it
203
0
                                                 : Optional<NamedAttribute>();
204
0
}
205
0
Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const {
206
0
  for (auto elt : getValue())
207
0
    if (elt.first == name)
208
0
      return elt;
209
0
  return llvm::None;
210
0
}
211
212
0
DictionaryAttr::iterator DictionaryAttr::begin() const {
213
0
  return getValue().begin();
214
0
}
215
0
DictionaryAttr::iterator DictionaryAttr::end() const {
216
0
  return getValue().end();
217
0
}
218
0
size_t DictionaryAttr::size() const { return getValue().size(); }
219
220
//===----------------------------------------------------------------------===//
221
// FloatAttr
222
//===----------------------------------------------------------------------===//
223
224
0
FloatAttr FloatAttr::get(Type type, double value) {
225
0
  return Base::get(type.getContext(), StandardAttributes::Float, type, value);
226
0
}
227
228
0
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
229
0
  return Base::getChecked(loc, StandardAttributes::Float, type, value);
230
0
}
231
232
0
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
233
0
  return Base::get(type.getContext(), StandardAttributes::Float, type, value);
234
0
}
235
236
0
FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) {
237
0
  return Base::getChecked(loc, StandardAttributes::Float, type, value);
238
0
}
239
240
0
APFloat FloatAttr::getValue() const { return getImpl()->getValue(); }
241
242
0
double FloatAttr::getValueAsDouble() const {
243
0
  return getValueAsDouble(getValue());
244
0
}
245
0
double FloatAttr::getValueAsDouble(APFloat value) {
246
0
  if (&value.getSemantics() != &APFloat::IEEEdouble()) {
247
0
    bool losesInfo = false;
248
0
    value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
249
0
                  &losesInfo);
250
0
  }
251
0
  return value.convertToDouble();
252
0
}
253
254
/// Verify construction invariants.
255
0
static LogicalResult verifyFloatTypeInvariants(Location loc, Type type) {
256
0
  if (!type.isa<FloatType>())
257
0
    return emitError(loc, "expected floating point type");
258
0
  return success();
259
0
}
260
261
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
262
0
                                                      double value) {
263
0
  return verifyFloatTypeInvariants(loc, type);
264
0
}
265
266
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
267
0
                                                      const APFloat &value) {
268
0
  // Verify that the type is correct.
269
0
  if (failed(verifyFloatTypeInvariants(loc, type)))
270
0
    return failure();
271
0
272
0
  // Verify that the type semantics match that of the value.
273
0
  if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
274
0
    return emitError(
275
0
        loc, "FloatAttr type doesn't match the type implied by its value");
276
0
  }
277
0
  return success();
278
0
}
279
280
//===----------------------------------------------------------------------===//
281
// SymbolRefAttr
282
//===----------------------------------------------------------------------===//
283
284
0
FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) {
285
0
  return Base::get(ctx, StandardAttributes::SymbolRef, value, llvm::None)
286
0
      .cast<FlatSymbolRefAttr>();
287
0
}
288
289
SymbolRefAttr SymbolRefAttr::get(StringRef value,
290
                                 ArrayRef<FlatSymbolRefAttr> nestedReferences,
291
0
                                 MLIRContext *ctx) {
292
0
  return Base::get(ctx, StandardAttributes::SymbolRef, value, nestedReferences);
293
0
}
294
295
0
StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; }
296
297
0
StringRef SymbolRefAttr::getLeafReference() const {
298
0
  ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
299
0
  return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
300
0
}
301
302
0
ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const {
303
0
  return getImpl()->getNestedRefs();
304
0
}
305
306
//===----------------------------------------------------------------------===//
307
// IntegerAttr
308
//===----------------------------------------------------------------------===//
309
310
0
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
311
0
  return Base::get(type.getContext(), StandardAttributes::Integer, type, value);
312
0
}
313
314
0
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
315
0
  // This uses 64 bit APInts by default for index type.
316
0
  if (type.isIndex())
317
0
    return get(type, APInt(IndexType::kInternalStorageBitWidth, value));
318
0
319
0
  auto intType = type.cast<IntegerType>();
320
0
  return get(type, APInt(intType.getWidth(), value, intType.isSignedInteger()));
321
0
}
322
323
0
APInt IntegerAttr::getValue() const { return getImpl()->getValue(); }
324
325
0
int64_t IntegerAttr::getInt() const {
326
0
  assert((getImpl()->getType().isIndex() ||
327
0
          getImpl()->getType().isSignlessInteger()) &&
328
0
         "must be signless integer");
329
0
  return getValue().getSExtValue();
330
0
}
331
332
0
int64_t IntegerAttr::getSInt() const {
333
0
  assert(getImpl()->getType().isSignedInteger() && "must be signed integer");
334
0
  return getValue().getSExtValue();
335
0
}
336
337
0
uint64_t IntegerAttr::getUInt() const {
338
0
  assert(getImpl()->getType().isUnsignedInteger() &&
339
0
         "must be unsigned integer");
340
0
  return getValue().getZExtValue();
341
0
}
342
343
0
static LogicalResult verifyIntegerTypeInvariants(Location loc, Type type) {
344
0
  if (type.isa<IntegerType>() || type.isa<IndexType>())
345
0
    return success();
346
0
  return emitError(loc, "expected integer or index type");
347
0
}
348
349
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
350
0
                                                        int64_t value) {
351
0
  return verifyIntegerTypeInvariants(loc, type);
352
0
}
353
354
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
355
0
                                                        const APInt &value) {
356
0
  if (failed(verifyIntegerTypeInvariants(loc, type)))
357
0
    return failure();
358
0
  if (auto integerType = type.dyn_cast<IntegerType>())
359
0
    if (integerType.getWidth() != value.getBitWidth())
360
0
      return emitError(loc, "integer type bit width (")
361
0
             << integerType.getWidth() << ") doesn't match value bit width ("
362
0
             << value.getBitWidth() << ")";
363
0
  return success();
364
0
}
365
366
//===----------------------------------------------------------------------===//
367
// IntegerSetAttr
368
//===----------------------------------------------------------------------===//
369
370
0
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
371
0
  return Base::get(value.getConstraint(0).getContext(),
372
0
                   StandardAttributes::IntegerSet, value);
373
0
}
374
375
0
IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; }
376
377
//===----------------------------------------------------------------------===//
378
// OpaqueAttr
379
//===----------------------------------------------------------------------===//
380
381
OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type,
382
0
                           MLIRContext *context) {
383
0
  return Base::get(context, StandardAttributes::Opaque, dialect, attrData,
384
0
                   type);
385
0
}
386
387
OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData,
388
0
                                  Type type, Location location) {
389
0
  return Base::getChecked(location, StandardAttributes::Opaque, dialect,
390
0
                          attrData, type);
391
0
}
392
393
/// Returns the dialect namespace of the opaque attribute.
394
0
Identifier OpaqueAttr::getDialectNamespace() const {
395
0
  return getImpl()->dialectNamespace;
396
0
}
397
398
/// Returns the raw attribute data of the opaque attribute.
399
0
StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; }
400
401
/// Verify the construction of an opaque attribute.
402
LogicalResult OpaqueAttr::verifyConstructionInvariants(Location loc,
403
                                                       Identifier dialect,
404
                                                       StringRef attrData,
405
0
                                                       Type type) {
406
0
  if (!Dialect::isValidNamespace(dialect.strref()))
407
0
    return emitError(loc, "invalid dialect namespace '") << dialect << "'";
408
0
  return success();
409
0
}
410
411
//===----------------------------------------------------------------------===//
412
// StringAttr
413
//===----------------------------------------------------------------------===//
414
415
0
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
416
0
  return get(bytes, NoneType::get(context));
417
0
}
418
419
/// Get an instance of a StringAttr with the given string and Type.
420
0
StringAttr StringAttr::get(StringRef bytes, Type type) {
421
0
  return Base::get(type.getContext(), StandardAttributes::String, bytes, type);
422
0
}
423
424
0
StringRef StringAttr::getValue() const { return getImpl()->value; }
425
426
//===----------------------------------------------------------------------===//
427
// TypeAttr
428
//===----------------------------------------------------------------------===//
429
430
0
TypeAttr TypeAttr::get(Type value) {
431
0
  return Base::get(value.getContext(), StandardAttributes::Type, value);
432
0
}
433
434
0
Type TypeAttr::getValue() const { return getImpl()->value; }
435
436
//===----------------------------------------------------------------------===//
437
// ElementsAttr
438
//===----------------------------------------------------------------------===//
439
440
0
ShapedType ElementsAttr::getType() const {
441
0
  return Attribute::getType().cast<ShapedType>();
442
0
}
443
444
/// Returns the number of elements held by this attribute.
445
0
int64_t ElementsAttr::getNumElements() const {
446
0
  return getType().getNumElements();
447
0
}
448
449
/// Return the value at the given index. If index does not refer to a valid
450
/// element, then a null attribute is returned.
451
0
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
452
0
  switch (getKind()) {
453
0
  case StandardAttributes::DenseIntOrFPElements:
454
0
    return cast<DenseElementsAttr>().getValue(index);
455
0
  case StandardAttributes::OpaqueElements:
456
0
    return cast<OpaqueElementsAttr>().getValue(index);
457
0
  case StandardAttributes::SparseElements:
458
0
    return cast<SparseElementsAttr>().getValue(index);
459
0
  default:
460
0
    llvm_unreachable("unknown ElementsAttr kind");
461
0
  }
462
0
}
463
464
/// Return if the given 'index' refers to a valid element in this attribute.
465
0
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
466
0
  auto type = getType();
467
0
468
0
  // Verify that the rank of the indices matches the held type.
469
0
  auto rank = type.getRank();
470
0
  if (rank != static_cast<int64_t>(index.size()))
471
0
    return false;
472
0
473
0
  // Verify that all of the indices are within the shape dimensions.
474
0
  auto shape = type.getShape();
475
0
  return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
476
0
    return static_cast<int64_t>(index[i]) < shape[i];
477
0
  });
478
0
}
479
480
ElementsAttr
481
ElementsAttr::mapValues(Type newElementType,
482
0
                        function_ref<APInt(const APInt &)> mapping) const {
483
0
  switch (getKind()) {
484
0
  case StandardAttributes::DenseIntOrFPElements:
485
0
    return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
486
0
  default:
487
0
    llvm_unreachable("unsupported ElementsAttr subtype");
488
0
  }
489
0
}
490
491
ElementsAttr
492
ElementsAttr::mapValues(Type newElementType,
493
0
                        function_ref<APInt(const APFloat &)> mapping) const {
494
0
  switch (getKind()) {
495
0
  case StandardAttributes::DenseIntOrFPElements:
496
0
    return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
497
0
  default:
498
0
    llvm_unreachable("unsupported ElementsAttr subtype");
499
0
  }
500
0
}
501
502
/// Returns the 1 dimensional flattened row-major index from the given
503
/// multi-dimensional index.
504
0
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
505
0
  assert(isValidIndex(index) && "expected valid multi-dimensional index");
506
0
  auto type = getType();
507
0
508
0
  // Reduce the provided multidimensional index into a flattended 1D row-major
509
0
  // index.
510
0
  auto rank = type.getRank();
511
0
  auto shape = type.getShape();
512
0
  uint64_t valueIndex = 0;
513
0
  uint64_t dimMultiplier = 1;
514
0
  for (int i = rank - 1; i >= 0; --i) {
515
0
    valueIndex += index[i] * dimMultiplier;
516
0
    dimMultiplier *= shape[i];
517
0
  }
518
0
  return valueIndex;
519
0
}
520
521
//===----------------------------------------------------------------------===//
522
// DenseElementAttr Utilities
523
//===----------------------------------------------------------------------===//
524
525
/// Get the bitwidth of a dense element type within the buffer.
526
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
527
0
static size_t getDenseElementStorageWidth(size_t origWidth) {
528
0
  return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
529
0
}
530
0
static size_t getDenseElementStorageWidth(Type elementType) {
531
0
  return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
532
0
}
533
534
/// Set a bit to a specific value.
535
0
static void setBit(char *rawData, size_t bitPos, bool value) {
536
0
  if (value)
537
0
    rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
538
0
  else
539
0
    rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
540
0
}
541
542
/// Return the value of the specified bit.
543
0
static bool getBit(const char *rawData, size_t bitPos) {
544
0
  return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
545
0
}
546
547
/// Get start position of actual data in `value`. Actual data is
548
/// stored in last `bitWidth`/CHAR_BIT bytes in big endian.
549
0
static char *getAPIntDataPos(APInt &value, size_t bitWidth) {
550
0
  char *dataPos =
551
0
      const_cast<char *>(reinterpret_cast<const char *>(value.getRawData()));
552
0
  if (llvm::support::endian::system_endianness() ==
553
0
      llvm::support::endianness::big)
554
0
    dataPos = dataPos + 8 - llvm::divideCeil(bitWidth, CHAR_BIT);
555
0
  return dataPos;
556
0
}
557
558
/// Read APInt `value` from appropriate position.
559
0
static void readAPInt(APInt &value, size_t bitWidth, char *outData) {
560
0
  char *dataPos = getAPIntDataPos(value, bitWidth);
561
0
  std::copy_n(dataPos, llvm::divideCeil(bitWidth, CHAR_BIT), outData);
562
0
}
563
564
/// Write `inData` to appropriate position of APInt `value`.
565
0
static void writeAPInt(const char *inData, size_t bitWidth, APInt &value) {
566
0
  char *dataPos = getAPIntDataPos(value, bitWidth);
567
0
  std::copy_n(inData, llvm::divideCeil(bitWidth, CHAR_BIT), dataPos);
568
0
}
569
570
/// Writes value to the bit position `bitPos` in array `rawData`.
571
0
static void writeBits(char *rawData, size_t bitPos, APInt value) {
572
0
  size_t bitWidth = value.getBitWidth();
573
0
574
0
  // If the bitwidth is 1 we just toggle the specific bit.
575
0
  if (bitWidth == 1)
576
0
    return setBit(rawData, bitPos, value.isOneValue());
577
0
578
0
  // Otherwise, the bit position is guaranteed to be byte aligned.
579
0
  assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
580
0
  readAPInt(value, bitWidth, rawData + (bitPos / CHAR_BIT));
581
0
}
582
583
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
584
/// `rawData`.
585
0
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
586
0
  // Handle a boolean bit position.
587
0
  if (bitWidth == 1)
588
0
    return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
589
0
590
0
  // Otherwise, the bit position must be 8-bit aligned.
591
0
  assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
592
0
  APInt result(bitWidth, 0);
593
0
  writeAPInt(rawData + (bitPos / CHAR_BIT), bitWidth, result);
594
0
  return result;
595
0
}
596
597
/// Returns if 'values' corresponds to a splat, i.e. one element, or has the
598
/// same element count as 'type'.
599
template <typename Values>
600
0
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
601
0
  return (values.size() == 1) ||
602
0
         (type.getNumElements() == static_cast<int64_t>(values.size()));
603
0
}
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefIN4mlir9AttributeEEEEbNS2_10ShapedTypeERKT_
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefIbEEEbN4mlir10ShapedTypeERKT_
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefINS0_5APIntEEEEbN4mlir10ShapedTypeERKT_
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefISt7complexINS0_5APIntEEEEEbN4mlir10ShapedTypeERKT_
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefINS0_7APFloatEEEEbN4mlir10ShapedTypeERKT_
Unexecuted instantiation: Attributes.cpp:_ZL22hasSameElementsOrSplatIN4llvm8ArrayRefISt7complexINS0_7APFloatEEEEEbN4mlir10ShapedTypeERKT_
604
605
//===----------------------------------------------------------------------===//
606
// DenseElementAttr Iterators
607
//===----------------------------------------------------------------------===//
608
609
//===----------------------------------------------------------------------===//
610
// AttributeElementIterator
611
612
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
613
    DenseElementsAttr attr, size_t index)
614
    : llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
615
                                      Attribute, Attribute, Attribute>(
616
0
          attr.getAsOpaquePointer(), index) {}
617
618
0
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
619
0
  auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
620
0
  Type eltTy = owner.getType().getElementType();
621
0
  if (auto intEltTy = eltTy.dyn_cast<IntegerType>()) {
622
0
    if (intEltTy.getWidth() == 1)
623
0
      return BoolAttr::get((*IntElementIterator(owner, index)).isOneValue(),
624
0
                           owner.getContext());
625
0
    return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
626
0
  }
627
0
  if (eltTy.isa<IndexType>())
628
0
    return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
629
0
  if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
630
0
    IntElementIterator intIt(owner, index);
631
0
    FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
632
0
    return FloatAttr::get(eltTy, *floatIt);
633
0
  }
634
0
  if (owner.isa<DenseStringElementsAttr>()) {
635
0
    ArrayRef<StringRef> vals = owner.getRawStringData();
636
0
    return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
637
0
  }
638
0
  llvm_unreachable("unexpected element type");
639
0
}
640
641
//===----------------------------------------------------------------------===//
642
// BoolElementIterator
643
644
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
645
    DenseElementsAttr attr, size_t dataIndex)
646
    : DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
647
0
          attr.getRawData().data(), attr.isSplat(), dataIndex) {}
648
649
0
bool DenseElementsAttr::BoolElementIterator::operator*() const {
650
0
  return getBit(getData(), getDataIndex());
651
0
}
652
653
//===----------------------------------------------------------------------===//
654
// IntElementIterator
655
656
DenseElementsAttr::IntElementIterator::IntElementIterator(
657
    DenseElementsAttr attr, size_t dataIndex)
658
    : DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
659
          attr.getRawData().data(), attr.isSplat(), dataIndex),
660
0
      bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {}
661
662
0
APInt DenseElementsAttr::IntElementIterator::operator*() const {
663
0
  return readBits(getData(),
664
0
                  getDataIndex() * getDenseElementStorageWidth(bitWidth),
665
0
                  bitWidth);
666
0
}
667
668
//===----------------------------------------------------------------------===//
669
// ComplexIntElementIterator
670
671
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
672
    DenseElementsAttr attr, size_t dataIndex)
673
    : DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
674
                                      std::complex<APInt>, std::complex<APInt>,
675
                                      std::complex<APInt>>(
676
0
          attr.getRawData().data(), attr.isSplat(), dataIndex) {
677
0
  auto complexType = attr.getType().getElementType().cast<ComplexType>();
678
0
  bitWidth = getDenseElementBitWidth(complexType.getElementType());
679
0
}
680
681
std::complex<APInt>
682
0
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
683
0
  size_t storageWidth = getDenseElementStorageWidth(bitWidth);
684
0
  size_t offset = getDataIndex() * storageWidth * 2;
685
0
  return {readBits(getData(), offset, bitWidth),
686
0
          readBits(getData(), offset + storageWidth, bitWidth)};
687
0
}
688
689
//===----------------------------------------------------------------------===//
690
// FloatElementIterator
691
692
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
693
    const llvm::fltSemantics &smt, IntElementIterator it)
694
    : llvm::mapped_iterator<IntElementIterator,
695
                            std::function<APFloat(const APInt &)>>(
696
0
          it, [&](const APInt &val) { return APFloat(smt, val); }) {}
697
698
//===----------------------------------------------------------------------===//
699
// ComplexFloatElementIterator
700
701
DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator(
702
    const llvm::fltSemantics &smt, ComplexIntElementIterator it)
703
    : llvm::mapped_iterator<
704
          ComplexIntElementIterator,
705
          std::function<std::complex<APFloat>(const std::complex<APInt> &)>>(
706
0
          it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> {
707
0
            return {APFloat(smt, val.real()), APFloat(smt, val.imag())};
708
0
          }) {}
709
710
//===----------------------------------------------------------------------===//
711
// DenseElementsAttr
712
//===----------------------------------------------------------------------===//
713
714
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
715
0
                                         ArrayRef<Attribute> values) {
716
0
  assert(hasSameElementsOrSplat(type, values));
717
0
718
0
  // If the element type is not based on int/float/index, assume it is a string
719
0
  // type.
720
0
  auto eltType = type.getElementType();
721
0
  if (!type.getElementType().isIntOrIndexOrFloat()) {
722
0
    SmallVector<StringRef, 8> stringValues;
723
0
    stringValues.reserve(values.size());
724
0
    for (Attribute attr : values) {
725
0
      assert(attr.isa<StringAttr>() &&
726
0
             "expected string value for non integer/index/float element");
727
0
      stringValues.push_back(attr.cast<StringAttr>().getValue());
728
0
    }
729
0
    return get(type, stringValues);
730
0
  }
731
0
732
0
  // Otherwise, get the raw storage width to use for the allocation.
733
0
  size_t bitWidth = getDenseElementBitWidth(eltType);
734
0
  size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
735
0
736
0
  // Compress the attribute values into a character buffer.
737
0
  SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
738
0
                            values.size());
739
0
  APInt intVal;
740
0
  for (unsigned i = 0, e = values.size(); i < e; ++i) {
741
0
    assert(eltType == values[i].getType() &&
742
0
           "expected attribute value to have element type");
743
0
744
0
    switch (eltType.getKind()) {
745
0
    case StandardTypes::BF16:
746
0
    case StandardTypes::F16:
747
0
    case StandardTypes::F32:
748
0
    case StandardTypes::F64:
749
0
      intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
750
0
      break;
751
0
    case StandardTypes::Integer:
752
0
    case StandardTypes::Index:
753
0
      intVal = values[i].isa<BoolAttr>()
754
0
                   ? APInt(1, values[i].cast<BoolAttr>().getValue() ? 1 : 0)
755
0
                   : values[i].cast<IntegerAttr>().getValue();
756
0
      break;
757
0
    default:
758
0
      llvm_unreachable("unexpected element type");
759
0
    }
760
0
    assert(intVal.getBitWidth() == bitWidth &&
761
0
           "expected value to have same bitwidth as element type");
762
0
    writeBits(data.data(), i * storageBitWidth, intVal);
763
0
  }
764
0
  return DenseIntOrFPElementsAttr::getRaw(type, data,
765
0
                                          /*isSplat=*/(values.size() == 1));
766
0
}
767
768
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
769
0
                                         ArrayRef<bool> values) {
770
0
  assert(hasSameElementsOrSplat(type, values));
771
0
  assert(type.getElementType().isInteger(1));
772
0
773
0
  std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
774
0
  for (int i = 0, e = values.size(); i != e; ++i)
775
0
    setBit(buff.data(), i, values[i]);
776
0
  return DenseIntOrFPElementsAttr::getRaw(type, buff,
777
0
                                          /*isSplat=*/(values.size() == 1));
778
0
}
779
780
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
781
0
                                         ArrayRef<StringRef> values) {
782
0
  assert(!type.getElementType().isIntOrFloat());
783
0
  return DenseStringElementsAttr::get(type, values);
784
0
}
785
786
/// Constructs a dense integer elements attribute from an array of APInt
787
/// values. Each APInt value is expected to have the same bitwidth as the
788
/// element type of 'type'.
789
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
790
0
                                         ArrayRef<APInt> values) {
791
0
  assert(type.getElementType().isIntOrIndex());
792
0
  assert(hasSameElementsOrSplat(type, values));
793
0
  size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
794
0
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
795
0
                                          /*isSplat=*/(values.size() == 1));
796
0
}
797
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
798
0
                                         ArrayRef<std::complex<APInt>> values) {
799
0
  ComplexType complex = type.getElementType().cast<ComplexType>();
800
0
  assert(complex.getElementType().isa<IntegerType>());
801
0
  assert(hasSameElementsOrSplat(type, values));
802
0
  size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
803
0
  ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
804
0
                          values.size() * 2);
805
0
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
806
0
                                          /*isSplat=*/(values.size() == 1));
807
0
}
808
809
// Constructs a dense float elements attribute from an array of APFloat
810
// values. Each APFloat value is expected to have the same bitwidth as the
811
// element type of 'type'.
812
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
813
0
                                         ArrayRef<APFloat> values) {
814
0
  assert(type.getElementType().isa<FloatType>());
815
0
  assert(hasSameElementsOrSplat(type, values));
816
0
  size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
817
0
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
818
0
                                          /*isSplat=*/(values.size() == 1));
819
0
}
820
DenseElementsAttr
821
DenseElementsAttr::get(ShapedType type,
822
0
                       ArrayRef<std::complex<APFloat>> values) {
823
0
  ComplexType complex = type.getElementType().cast<ComplexType>();
824
0
  assert(complex.getElementType().isa<FloatType>());
825
0
  assert(hasSameElementsOrSplat(type, values));
826
0
  ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
827
0
                           values.size() * 2);
828
0
  size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
829
0
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
830
0
                                          /*isSplat=*/(values.size() == 1));
831
0
}
832
833
/// Construct a dense elements attribute from a raw buffer representing the
834
/// data for this attribute. Users should generally not use this methods as
835
/// the expected buffer format may not be a form the user expects.
836
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
837
                                                      ArrayRef<char> rawBuffer,
838
0
                                                      bool isSplatBuffer) {
839
0
  return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
840
0
}
841
842
/// Returns true if the given buffer is a valid raw buffer for the given type.
843
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
844
                                         ArrayRef<char> rawBuffer,
845
0
                                         bool &detectedSplat) {
846
0
  size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
847
0
  size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
848
0
849
0
  // Storage width of 1 is special as it is packed by the bit.
850
0
  if (storageWidth == 1) {
851
0
    // Check for a splat, or a buffer equal to the number of elements.
852
0
    if ((detectedSplat = rawBuffer.size() == 1))
853
0
      return true;
854
0
    return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
855
0
  }
856
0
  // All other types are 8-bit aligned.
857
0
  if ((detectedSplat = rawBufferWidth == storageWidth))
858
0
    return true;
859
0
  return rawBufferWidth == (storageWidth * type.getNumElements());
860
0
}
861
862
/// Check the information for a C++ data type, check if this type is valid for
863
/// the current attribute. This method is used to verify specific type
864
/// invariants that the templatized 'getValues' method cannot.
865
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
866
0
                              bool isSigned) {
867
0
  // Make sure that the data element size is the same as the type element width.
868
0
  if (getDenseElementBitWidth(type) !=
869
0
      static_cast<size_t>(dataEltSize * CHAR_BIT))
870
0
    return false;
871
0
872
0
  // Check that the element type is either float or integer or index.
873
0
  if (!isInt)
874
0
    return type.isa<FloatType>();
875
0
  if (type.isIndex())
876
0
    return true;
877
0
878
0
  auto intType = type.dyn_cast<IntegerType>();
879
0
  if (!intType)
880
0
    return false;
881
0
882
0
  // Make sure signedness semantics is consistent.
883
0
  if (intType.isSignless())
884
0
    return true;
885
0
  return intType.isSigned() ? isSigned : !isSigned;
886
0
}
887
888
/// Defaults down the subclass implementation.
889
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
890
                                                   ArrayRef<char> data,
891
                                                   int64_t dataEltSize,
892
0
                                                   bool isInt, bool isSigned) {
893
0
  return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
894
0
                                                 isSigned);
895
0
}
896
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
897
                                                      ArrayRef<char> data,
898
                                                      int64_t dataEltSize,
899
                                                      bool isInt,
900
0
                                                      bool isSigned) {
901
0
  return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
902
0
                                                    isInt, isSigned);
903
0
}
904
905
/// A method used to verify specific type invariants that the templatized 'get'
906
/// method cannot.
907
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
908
0
                                          bool isSigned) const {
909
0
  return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt,
910
0
                             isSigned);
911
0
}
912
913
/// Check the information for a C++ data type, check if this type is valid for
914
/// the current attribute.
915
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
916
0
                                       bool isSigned) const {
917
0
  return ::isValidIntOrFloat(
918
0
      getType().getElementType().cast<ComplexType>().getElementType(),
919
0
      dataEltSize / 2, isInt, isSigned);
920
0
}
921
922
/// Returns if this attribute corresponds to a splat, i.e. if all element
923
/// values are the same.
924
0
bool DenseElementsAttr::isSplat() const {
925
0
  return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
926
0
}
927
928
/// Return the held element values as a range of Attributes.
929
auto DenseElementsAttr::getAttributeValues() const
930
0
    -> llvm::iterator_range<AttributeElementIterator> {
931
0
  return {attr_value_begin(), attr_value_end()};
932
0
}
933
0
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
934
0
  return AttributeElementIterator(*this, 0);
935
0
}
936
0
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
937
0
  return AttributeElementIterator(*this, getNumElements());
938
0
}
939
940
/// Return the held element values as a range of bool. The element type of
941
/// this attribute must be of integer type of bitwidth 1.
942
auto DenseElementsAttr::getBoolValues() const
943
0
    -> llvm::iterator_range<BoolElementIterator> {
944
0
  auto eltType = getType().getElementType().dyn_cast<IntegerType>();
945
0
  assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
946
0
  (void)eltType;
947
0
  return {BoolElementIterator(*this, 0),
948
0
          BoolElementIterator(*this, getNumElements())};
949
0
}
950
951
/// Return the held element values as a range of APInts. The element type of
952
/// this attribute must be of integer type.
953
auto DenseElementsAttr::getIntValues() const
954
0
    -> llvm::iterator_range<IntElementIterator> {
955
0
  assert(getType().getElementType().isIntOrIndex() && "expected integral type");
956
0
  return {raw_int_begin(), raw_int_end()};
957
0
}
958
0
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
959
0
  assert(getType().getElementType().isIntOrIndex() && "expected integral type");
960
0
  return raw_int_begin();
961
0
}
962
0
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
963
0
  assert(getType().getElementType().isIntOrIndex() && "expected integral type");
964
0
  return raw_int_end();
965
0
}
966
auto DenseElementsAttr::getComplexIntValues() const
967
0
    -> llvm::iterator_range<ComplexIntElementIterator> {
968
0
  Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
969
0
  (void)eltTy;
970
0
  assert(eltTy.isa<IntegerType>() && "expected complex integral type");
971
0
  return {ComplexIntElementIterator(*this, 0),
972
0
          ComplexIntElementIterator(*this, getNumElements())};
973
0
}
974
975
/// Return the held element values as a range of APFloat. The element type of
976
/// this attribute must be of float type.
977
auto DenseElementsAttr::getFloatValues() const
978
0
    -> llvm::iterator_range<FloatElementIterator> {
979
0
  auto elementType = getType().getElementType().cast<FloatType>();
980
0
  const auto &elementSemantics = elementType.getFloatSemantics();
981
0
  return {FloatElementIterator(elementSemantics, raw_int_begin()),
982
0
          FloatElementIterator(elementSemantics, raw_int_end())};
983
0
}
984
0
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
985
0
  return getFloatValues().begin();
986
0
}
987
0
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
988
0
  return getFloatValues().end();
989
0
}
990
auto DenseElementsAttr::getComplexFloatValues() const
991
0
    -> llvm::iterator_range<ComplexFloatElementIterator> {
992
0
  Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
993
0
  assert(eltTy.isa<FloatType>() && "expected complex float type");
994
0
  const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
995
0
  return {{semantics, {*this, 0}},
996
0
          {semantics, {*this, static_cast<size_t>(getNumElements())}}};
997
0
}
998
999
/// Return the raw storage data held by this attribute.
1000
0
ArrayRef<char> DenseElementsAttr::getRawData() const {
1001
0
  return static_cast<DenseIntOrFPElementsAttributeStorage *>(impl)->data;
1002
0
}
1003
1004
0
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
1005
0
  return static_cast<DenseStringElementsAttributeStorage *>(impl)->data;
1006
0
}
1007
1008
/// Return a new DenseElementsAttr that has the same data as the current
1009
/// attribute, but has been reshaped to 'newType'. The new type must have the
1010
/// same total number of elements as well as element type.
1011
0
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
1012
0
  ShapedType curType = getType();
1013
0
  if (curType == newType)
1014
0
    return *this;
1015
0
1016
0
  (void)curType;
1017
0
  assert(newType.getElementType() == curType.getElementType() &&
1018
0
         "expected the same element type");
1019
0
  assert(newType.getNumElements() == curType.getNumElements() &&
1020
0
         "expected the same number of elements");
1021
0
  return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
1022
0
}
1023
1024
DenseElementsAttr
1025
DenseElementsAttr::mapValues(Type newElementType,
1026
0
                             function_ref<APInt(const APInt &)> mapping) const {
1027
0
  return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
1028
0
}
1029
1030
DenseElementsAttr DenseElementsAttr::mapValues(
1031
0
    Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
1032
0
  return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
1033
0
}
1034
1035
//===----------------------------------------------------------------------===//
1036
// DenseStringElementsAttr
1037
//===----------------------------------------------------------------------===//
1038
1039
DenseStringElementsAttr
1040
0
DenseStringElementsAttr::get(ShapedType type, ArrayRef<StringRef> values) {
1041
0
  return Base::get(type.getContext(), StandardAttributes::DenseStringElements,
1042
0
                   type, values, (values.size() == 1));
1043
0
}
1044
1045
//===----------------------------------------------------------------------===//
1046
// DenseIntOrFPElementsAttr
1047
//===----------------------------------------------------------------------===//
1048
1049
/// Utility method to write a range of APInt values to a buffer.
1050
template <typename APRangeT>
1051
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
1052
0
                                APRangeT &&values) {
1053
0
  data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
1054
0
  size_t offset = 0;
1055
0
  for (auto it = values.begin(), e = values.end(); it != e;
1056
0
       ++it, offset += storageWidth) {
1057
0
    assert((*it).getBitWidth() <= storageWidth);
1058
0
    writeBits(data.data(), offset, *it);
1059
0
  }
1060
0
}
Unexecuted instantiation: Attributes.cpp:_ZL19writeAPIntsToBufferIN4llvm14iterator_rangeINS0_15mapped_iteratorIPKNS0_7APFloatEZN4mlir24DenseIntOrFPElementsAttr6getRawENS6_10ShapedTypeEmNS0_8ArrayRefIS3_EEbE3$_6NS0_5APIntEEEEEEvmRSt6vectorIcSaIcEEOT_
Unexecuted instantiation: Attributes.cpp:_ZL19writeAPIntsToBufferIRN4llvm8ArrayRefINS0_5APIntEEEEvmRSt6vectorIcSaIcEEOT_
1061
1062
/// Constructs a dense elements attribute from an array of raw APFloat values.
1063
/// Each APFloat value is expected to have the same bitwidth as the element
1064
/// type of 'type'. 'type' must be a vector or tensor with static shape.
1065
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1066
                                                   size_t storageWidth,
1067
                                                   ArrayRef<APFloat> values,
1068
0
                                                   bool isSplat) {
1069
0
  std::vector<char> data;
1070
0
  auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
1071
0
  writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
1072
0
  return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
1073
0
}
1074
1075
/// Constructs a dense elements attribute from an array of raw APInt values.
1076
/// Each APInt value is expected to have the same bitwidth as the element type
1077
/// of 'type'.
1078
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1079
                                                   size_t storageWidth,
1080
                                                   ArrayRef<APInt> values,
1081
0
                                                   bool isSplat) {
1082
0
  std::vector<char> data;
1083
0
  writeAPIntsToBuffer(storageWidth, data, values);
1084
0
  return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
1085
0
}
1086
1087
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
1088
                                                   ArrayRef<char> data,
1089
0
                                                   bool isSplat) {
1090
0
  assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
1091
0
         "type must be ranked tensor or vector");
1092
0
  assert(type.hasStaticShape() && "type must have static shape");
1093
0
  return Base::get(type.getContext(), StandardAttributes::DenseIntOrFPElements,
1094
0
                   type, data, isSplat);
1095
0
}
1096
1097
/// Overload of the raw 'get' method that asserts that the given type is of
1098
/// complex type. This method is used to verify type invariants that the
1099
/// templatized 'get' method cannot.
1100
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
1101
                                                          ArrayRef<char> data,
1102
                                                          int64_t dataEltSize,
1103
                                                          bool isInt,
1104
0
                                                          bool isSigned) {
1105
0
  assert(::isValidIntOrFloat(
1106
0
      type.getElementType().cast<ComplexType>().getElementType(),
1107
0
      dataEltSize / 2, isInt, isSigned));
1108
0
1109
0
  int64_t numElements = data.size() / dataEltSize;
1110
0
  assert(numElements == 1 || numElements == type.getNumElements());
1111
0
  return getRaw(type, data, /*isSplat=*/numElements == 1);
1112
0
}
1113
1114
/// Overload of the 'getRaw' method that asserts that the given type is of
1115
/// integer type. This method is used to verify type invariants that the
1116
/// templatized 'get' method cannot.
1117
DenseElementsAttr
1118
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
1119
                                           int64_t dataEltSize, bool isInt,
1120
0
                                           bool isSigned) {
1121
0
  assert(
1122
0
      ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
1123
0
1124
0
  int64_t numElements = data.size() / dataEltSize;
1125
0
  assert(numElements == 1 || numElements == type.getNumElements());
1126
0
  return getRaw(type, data, /*isSplat=*/numElements == 1);
1127
0
}
1128
1129
//===----------------------------------------------------------------------===//
1130
// DenseFPElementsAttr
1131
//===----------------------------------------------------------------------===//
1132
1133
template <typename Fn, typename Attr>
1134
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
1135
                                Type newElementType,
1136
0
                                llvm::SmallVectorImpl<char> &data) {
1137
0
  size_t bitWidth = getDenseElementBitWidth(newElementType);
1138
0
  size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
1139
0
1140
0
  ShapedType newArrayType;
1141
0
  if (inType.isa<RankedTensorType>())
1142
0
    newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
1143
0
  else if (inType.isa<UnrankedTensorType>())
1144
0
    newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
1145
0
  else if (inType.isa<VectorType>())
1146
0
    newArrayType = VectorType::get(inType.getShape(), newElementType);
1147
0
  else
1148
0
    assert(newArrayType && "Unhandled tensor type");
1149
0
1150
0
  size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
1151
0
  data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
1152
0
1153
0
  // Functor used to process a single element value of the attribute.
1154
0
  auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
1155
0
    auto newInt = mapping(value);
1156
0
    assert(newInt.getBitWidth() == bitWidth);
1157
0
    writeBits(data.data(), index * storageBitWidth, newInt);
1158
0
  };
Unexecuted instantiation: Attributes.cpp:_ZZL13mappingHelperIN4llvm12function_refIFNS0_5APIntERKNS0_7APFloatEEEEKN4mlir19DenseFPElementsAttrEENS8_10ShapedTypeET_RT0_SB_NS8_4TypeERNS0_15SmallVectorImplIcEEENKUlS3_mE_clES3_m
Unexecuted instantiation: Attributes.cpp:_ZZL13mappingHelperIN4llvm12function_refIFNS0_5APIntERKS2_EEEKN4mlir20DenseIntElementsAttrEENS7_10ShapedTypeET_RT0_SA_NS7_4TypeERNS0_15SmallVectorImplIcEEENKUlS2_mE_clES2_m
1159
0
1160
0
  // Check for the splat case.
1161
0
  if (attr.isSplat()) {
1162
0
    processElt(*attr.begin(), /*index=*/0);
1163
0
    return newArrayType;
1164
0
  }
1165
0
1166
0
  // Otherwise, process all of the element values.
1167
0
  uint64_t elementIdx = 0;
1168
0
  for (auto value : attr)
1169
0
    processElt(value, elementIdx++);
1170
0
  return newArrayType;
1171
0
}
Unexecuted instantiation: Attributes.cpp:_ZL13mappingHelperIN4llvm12function_refIFNS0_5APIntERKNS0_7APFloatEEEEKN4mlir19DenseFPElementsAttrEENS8_10ShapedTypeET_RT0_SB_NS8_4TypeERNS0_15SmallVectorImplIcEE
Unexecuted instantiation: Attributes.cpp:_ZL13mappingHelperIN4llvm12function_refIFNS0_5APIntERKS2_EEEKN4mlir20DenseIntElementsAttrEENS7_10ShapedTypeET_RT0_SA_NS7_4TypeERNS0_15SmallVectorImplIcEE
1172
1173
DenseElementsAttr DenseFPElementsAttr::mapValues(
1174
0
    Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
1175
0
  llvm::SmallVector<char, 8> elementData;
1176
0
  auto newArrayType =
1177
0
      mappingHelper(mapping, *this, getType(), newElementType, elementData);
1178
0
1179
0
  return getRaw(newArrayType, elementData, isSplat());
1180
0
}
1181
1182
/// Method for supporting type inquiry through isa, cast and dyn_cast.
1183
0
bool DenseFPElementsAttr::classof(Attribute attr) {
1184
0
  return attr.isa<DenseElementsAttr>() &&
1185
0
         attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
1186
0
}
1187
1188
//===----------------------------------------------------------------------===//
1189
// DenseIntElementsAttr
1190
//===----------------------------------------------------------------------===//
1191
1192
DenseElementsAttr DenseIntElementsAttr::mapValues(
1193
0
    Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
1194
0
  llvm::SmallVector<char, 8> elementData;
1195
0
  auto newArrayType =
1196
0
      mappingHelper(mapping, *this, getType(), newElementType, elementData);
1197
0
1198
0
  return getRaw(newArrayType, elementData, isSplat());
1199
0
}
1200
1201
/// Method for supporting type inquiry through isa, cast and dyn_cast.
1202
0
bool DenseIntElementsAttr::classof(Attribute attr) {
1203
0
  return attr.isa<DenseElementsAttr>() &&
1204
0
         attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
1205
0
}
1206
1207
//===----------------------------------------------------------------------===//
1208
// OpaqueElementsAttr
1209
//===----------------------------------------------------------------------===//
1210
1211
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type,
1212
0
                                           StringRef bytes) {
1213
0
  assert(TensorType::isValidElementType(type.getElementType()) &&
1214
0
         "Input element type should be a valid tensor element type");
1215
0
  return Base::get(type.getContext(), StandardAttributes::OpaqueElements, type,
1216
0
                   dialect, bytes);
1217
0
}
1218
1219
0
StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; }
1220
1221
/// Return the value at the given index. If index does not refer to a valid
1222
/// element, then a null attribute is returned.
1223
0
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
1224
0
  assert(isValidIndex(index) && "expected valid multi-dimensional index");
1225
0
  if (Dialect *dialect = getDialect())
1226
0
    return dialect->extractElementHook(*this, index);
1227
0
  return Attribute();
1228
0
}
1229
1230
0
Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; }
1231
1232
0
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
1233
0
  if (auto *d = getDialect())
1234
0
    return d->decodeHook(*this, result);
1235
0
  return true;
1236
0
}
1237
1238
//===----------------------------------------------------------------------===//
1239
// SparseElementsAttr
1240
//===----------------------------------------------------------------------===//
1241
1242
SparseElementsAttr SparseElementsAttr::get(ShapedType type,
1243
                                           DenseElementsAttr indices,
1244
0
                                           DenseElementsAttr values) {
1245
0
  assert(indices.getType().getElementType().isInteger(64) &&
1246
0
         "expected sparse indices to be 64-bit integer values");
1247
0
  assert((type.isa<RankedTensorType>() || type.isa<VectorType>()) &&
1248
0
         "type must be ranked tensor or vector");
1249
0
  assert(type.hasStaticShape() && "type must have static shape");
1250
0
  return Base::get(type.getContext(), StandardAttributes::SparseElements, type,
1251
0
                   indices.cast<DenseIntElementsAttr>(), values);
1252
0
}
1253
1254
0
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
1255
0
  return getImpl()->indices;
1256
0
}
1257
1258
0
DenseElementsAttr SparseElementsAttr::getValues() const {
1259
0
  return getImpl()->values;
1260
0
}
1261
1262
/// Return the value of the element at the given index.
1263
0
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
1264
0
  assert(isValidIndex(index) && "expected valid multi-dimensional index");
1265
0
  auto type = getType();
1266
0
1267
0
  // The sparse indices are 64-bit integers, so we can reinterpret the raw data
1268
0
  // as a 1-D index array.
1269
0
  auto sparseIndices = getIndices();
1270
0
  auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
1271
0
1272
0
  // Check to see if the indices are a splat.
1273
0
  if (sparseIndices.isSplat()) {
1274
0
    // If the index is also not a splat of the index value, we know that the
1275
0
    // value is zero.
1276
0
    auto splatIndex = *sparseIndexValues.begin();
1277
0
    if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
1278
0
      return getZeroAttr();
1279
0
1280
0
    // If the indices are a splat, we also expect the values to be a splat.
1281
0
    assert(getValues().isSplat() && "expected splat values");
1282
0
    return getValues().getSplatValue();
1283
0
  }
1284
0
1285
0
  // Build a mapping between known indices and the offset of the stored element.
1286
0
  llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
1287
0
  auto numSparseIndices = sparseIndices.getType().getDimSize(0);
1288
0
  size_t rank = type.getRank();
1289
0
  for (size_t i = 0, e = numSparseIndices; i != e; ++i)
1290
0
    mappedIndices.try_emplace(
1291
0
        {&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
1292
0
1293
0
  // Look for the provided index key within the mapped indices. If the provided
1294
0
  // index is not found, then return a zero attribute.
1295
0
  auto it = mappedIndices.find(index);
1296
0
  if (it == mappedIndices.end())
1297
0
    return getZeroAttr();
1298
0
1299
0
  // Otherwise, return the held sparse value element.
1300
0
  return getValues().getValue(it->second);
1301
0
}
1302
1303
/// Get a zero APFloat for the given sparse attribute.
1304
0
APFloat SparseElementsAttr::getZeroAPFloat() const {
1305
0
  auto eltType = getType().getElementType().cast<FloatType>();
1306
0
  return APFloat(eltType.getFloatSemantics());
1307
0
}
1308
1309
/// Get a zero APInt for the given sparse attribute.
1310
0
APInt SparseElementsAttr::getZeroAPInt() const {
1311
0
  auto eltType = getType().getElementType().cast<IntegerType>();
1312
0
  return APInt::getNullValue(eltType.getWidth());
1313
0
}
1314
1315
/// Get a zero attribute for the given attribute type.
1316
0
Attribute SparseElementsAttr::getZeroAttr() const {
1317
0
  auto eltType = getType().getElementType();
1318
0
1319
0
  // Handle floating point elements.
1320
0
  if (eltType.isa<FloatType>())
1321
0
    return FloatAttr::get(eltType, 0);
1322
0
1323
0
  // Otherwise, this is an integer.
1324
0
  auto intEltTy = eltType.cast<IntegerType>();
1325
0
  if (intEltTy.getWidth() == 1)
1326
0
    return BoolAttr::get(false, eltType.getContext());
1327
0
  return IntegerAttr::get(eltType, 0);
1328
0
}
1329
1330
/// Flatten, and return, all of the sparse indices in this attribute in
1331
/// row-major order.
1332
0
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
1333
0
  std::vector<ptrdiff_t> flatSparseIndices;
1334
0
1335
0
  // The sparse indices are 64-bit integers, so we can reinterpret the raw data
1336
0
  // as a 1-D index array.
1337
0
  auto sparseIndices = getIndices();
1338
0
  auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
1339
0
  if (sparseIndices.isSplat()) {
1340
0
    SmallVector<uint64_t, 8> indices(getType().getRank(),
1341
0
                                     *sparseIndexValues.begin());
1342
0
    flatSparseIndices.push_back(getFlattenedIndex(indices));
1343
0
    return flatSparseIndices;
1344
0
  }
1345
0
1346
0
  // Otherwise, reinterpret each index as an ArrayRef when flattening.
1347
0
  auto numSparseIndices = sparseIndices.getType().getDimSize(0);
1348
0
  size_t rank = getType().getRank();
1349
0
  for (size_t i = 0, e = numSparseIndices; i != e; ++i)
1350
0
    flatSparseIndices.push_back(getFlattenedIndex(
1351
0
        {&*std::next(sparseIndexValues.begin(), i * rank), rank}));
1352
0
  return flatSparseIndices;
1353
0
}
1354
1355
//===----------------------------------------------------------------------===//
1356
// MutableDictionaryAttr
1357
//===----------------------------------------------------------------------===//
1358
1359
MutableDictionaryAttr::MutableDictionaryAttr(
1360
0
    ArrayRef<NamedAttribute> attributes) {
1361
0
  setAttrs(attributes);
1362
0
}
1363
1364
/// Return the underlying dictionary attribute.
1365
DictionaryAttr
1366
0
MutableDictionaryAttr::getDictionary(MLIRContext *context) const {
1367
0
  // Construct empty DictionaryAttr if needed.
1368
0
  if (!attrs)
1369
0
    return DictionaryAttr::get({}, context);
1370
0
  return attrs;
1371
0
}
1372
1373
0
ArrayRef<NamedAttribute> MutableDictionaryAttr::getAttrs() const {
1374
0
  return attrs ? attrs.getValue() : llvm::None;
1375
0
}
1376
1377
/// Replace the held attributes with ones provided in 'newAttrs'.
1378
0
void MutableDictionaryAttr::setAttrs(ArrayRef<NamedAttribute> attributes) {
1379
0
  // Don't create an attribute list if there are no attributes.
1380
0
  if (attributes.empty())
1381
0
    attrs = nullptr;
1382
0
  else
1383
0
    attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext());
1384
0
}
1385
1386
/// Return the specified attribute if present, null otherwise.
1387
0
Attribute MutableDictionaryAttr::get(StringRef name) const {
1388
0
  return attrs ? attrs.get(name) : nullptr;
1389
0
}
1390
1391
/// Return the specified attribute if present, null otherwise.
1392
0
Attribute MutableDictionaryAttr::get(Identifier name) const {
1393
0
  return attrs ? attrs.get(name) : nullptr;
1394
0
}
1395
1396
/// Return the specified named attribute if present, None otherwise.
1397
0
Optional<NamedAttribute> MutableDictionaryAttr::getNamed(StringRef name) const {
1398
0
  return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
1399
0
}
1400
Optional<NamedAttribute>
1401
0
MutableDictionaryAttr::getNamed(Identifier name) const {
1402
0
  return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
1403
0
}
1404
1405
/// If the an attribute exists with the specified name, change it to the new
1406
/// value.  Otherwise, add a new attribute with the specified name/value.
1407
0
void MutableDictionaryAttr::set(Identifier name, Attribute value) {
1408
0
  assert(value && "attributes may never be null");
1409
0
1410
0
  // Look for an existing value for the given name, and set it in-place.
1411
0
  ArrayRef<NamedAttribute> values = getAttrs();
1412
0
  const auto *it = llvm::find_if(
1413
0
      values, [name](NamedAttribute attr) { return attr.first == name; });
1414
0
  if (it != values.end()) {
1415
0
    // Bail out early if the value is the same as what we already have.
1416
0
    if (it->second == value)
1417
0
      return;
1418
0
1419
0
    SmallVector<NamedAttribute, 8> newAttrs(values.begin(), values.end());
1420
0
    newAttrs[it - values.begin()].second = value;
1421
0
    attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
1422
0
    return;
1423
0
  }
1424
0
1425
0
  // Otherwise, insert the new attribute into its sorted position.
1426
0
  it = llvm::lower_bound(values, name);
1427
0
  SmallVector<NamedAttribute, 8> newAttrs;
1428
0
  newAttrs.reserve(values.size() + 1);
1429
0
  newAttrs.append(values.begin(), it);
1430
0
  newAttrs.push_back({name, value});
1431
0
  newAttrs.append(it, values.end());
1432
0
  attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
1433
0
}
1434
1435
/// Remove the attribute with the specified name if it exists.  The return
1436
/// value indicates whether the attribute was present or not.
1437
0
auto MutableDictionaryAttr::remove(Identifier name) -> RemoveResult {
1438
0
  auto origAttrs = getAttrs();
1439
0
  for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) {
1440
0
    if (origAttrs[i].first == name) {
1441
0
      // Handle the simple case of removing the only attribute in the list.
1442
0
      if (e == 1) {
1443
0
        attrs = nullptr;
1444
0
        return RemoveResult::Removed;
1445
0
      }
1446
0
1447
0
      SmallVector<NamedAttribute, 8> newAttrs;
1448
0
      newAttrs.reserve(origAttrs.size() - 1);
1449
0
      newAttrs.append(origAttrs.begin(), origAttrs.begin() + i);
1450
0
      newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end());
1451
0
      attrs = DictionaryAttr::getWithSorted(newAttrs,
1452
0
                                            newAttrs[0].second.getContext());
1453
0
      return RemoveResult::Removed;
1454
0
    }
1455
0
  }
1456
0
  return RemoveResult::NotFound;
1457
0
}
1458
1459
0
bool mlir::operator<(const NamedAttribute &lhs, const NamedAttribute &rhs) {
1460
0
  return strcmp(lhs.first.data(), rhs.first.data()) < 0;
1461
0
}
1462
0
bool mlir::operator<(const NamedAttribute &lhs, StringRef rhs) {
1463
0
  // This is correct even when attr.first.data()[name.size()] is not a zero
1464
0
  // string terminator, because we only care about a less than comparison.
1465
0
  // This can't use memcmp, because it doesn't guarantee that it will stop
1466
0
  // reading both buffers if one is shorter than the other, even if there is
1467
0
  // a difference.
1468
0
  return strncmp(lhs.first.data(), rhs.data(), rhs.size()) < 0;
1469
0
}