/home/arjun/llvm-project/mlir/lib/IR/AffineExpr.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===- AffineExpr.cpp - MLIR Affine Expr Classes --------------------------===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  |  | 
| 9 |  | #include "mlir/IR/AffineExpr.h" | 
| 10 |  | #include "AffineExprDetail.h" | 
| 11 |  | #include "mlir/IR/AffineExprVisitor.h" | 
| 12 |  | #include "mlir/IR/AffineMap.h" | 
| 13 |  | #include "mlir/IR/IntegerSet.h" | 
| 14 |  | #include "mlir/Support/MathExtras.h" | 
| 15 |  | #include "llvm/ADT/STLExtras.h" | 
| 16 |  |  | 
| 17 |  | using namespace mlir; | 
| 18 |  | using namespace mlir::detail; | 
| 19 |  |  | 
| 20 | 0 | MLIRContext *AffineExpr::getContext() const { return expr->context; } | 
| 21 |  |  | 
| 22 | 0 | AffineExprKind AffineExpr::getKind() const { | 
| 23 | 0 |   return static_cast<AffineExprKind>(expr->getKind()); | 
| 24 | 0 | } | 
| 25 |  |  | 
| 26 |  | /// Walk all of the AffineExprs in this subgraph in postorder. | 
| 27 | 0 | void AffineExpr::walk(std::function<void(AffineExpr)> callback) const { | 
| 28 | 0 |   struct AffineExprWalker : public AffineExprVisitor<AffineExprWalker> { | 
| 29 | 0 |     std::function<void(AffineExpr)> callback; | 
| 30 | 0 | 
 | 
| 31 | 0 |     AffineExprWalker(std::function<void(AffineExpr)> callback) | 
| 32 | 0 |         : callback(callback) {} | 
| 33 | 0 | 
 | 
| 34 | 0 |     void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { callback(expr); } | 
| 35 | 0 |     void visitConstantExpr(AffineConstantExpr expr) { callback(expr); } | 
| 36 | 0 |     void visitDimExpr(AffineDimExpr expr) { callback(expr); } | 
| 37 | 0 |     void visitSymbolExpr(AffineSymbolExpr expr) { callback(expr); } | 
| 38 | 0 |   }; | 
| 39 | 0 | 
 | 
| 40 | 0 |   AffineExprWalker(callback).walkPostOrder(*this); | 
| 41 | 0 | } | 
| 42 |  |  | 
| 43 |  | // Dispatch affine expression construction based on kind. | 
| 44 |  | AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs, | 
| 45 | 0 |                                        AffineExpr rhs) { | 
| 46 | 0 |   if (kind == AffineExprKind::Add) | 
| 47 | 0 |     return lhs + rhs; | 
| 48 | 0 |   if (kind == AffineExprKind::Mul) | 
| 49 | 0 |     return lhs * rhs; | 
| 50 | 0 |   if (kind == AffineExprKind::FloorDiv) | 
| 51 | 0 |     return lhs.floorDiv(rhs); | 
| 52 | 0 |   if (kind == AffineExprKind::CeilDiv) | 
| 53 | 0 |     return lhs.ceilDiv(rhs); | 
| 54 | 0 |   if (kind == AffineExprKind::Mod) | 
| 55 | 0 |     return lhs % rhs; | 
| 56 | 0 |  | 
| 57 | 0 |   llvm_unreachable("unknown binary operation on affine expressions"); | 
| 58 | 0 | } | 
| 59 |  |  | 
| 60 |  | /// This method substitutes any uses of dimensions and symbols (e.g. | 
| 61 |  | /// dim#0 with dimReplacements[0]) and returns the modified expression tree. | 
| 62 |  | AffineExpr | 
| 63 |  | AffineExpr::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements, | 
| 64 | 0 |                                   ArrayRef<AffineExpr> symReplacements) const { | 
| 65 | 0 |   switch (getKind()) { | 
| 66 | 0 |   case AffineExprKind::Constant: | 
| 67 | 0 |     return *this; | 
| 68 | 0 |   case AffineExprKind::DimId: { | 
| 69 | 0 |     unsigned dimId = cast<AffineDimExpr>().getPosition(); | 
| 70 | 0 |     if (dimId >= dimReplacements.size()) | 
| 71 | 0 |       return *this; | 
| 72 | 0 |     return dimReplacements[dimId]; | 
| 73 | 0 |   } | 
| 74 | 0 |   case AffineExprKind::SymbolId: { | 
| 75 | 0 |     unsigned symId = cast<AffineSymbolExpr>().getPosition(); | 
| 76 | 0 |     if (symId >= symReplacements.size()) | 
| 77 | 0 |       return *this; | 
| 78 | 0 |     return symReplacements[symId]; | 
| 79 | 0 |   } | 
| 80 | 0 |   case AffineExprKind::Add: | 
| 81 | 0 |   case AffineExprKind::Mul: | 
| 82 | 0 |   case AffineExprKind::FloorDiv: | 
| 83 | 0 |   case AffineExprKind::CeilDiv: | 
| 84 | 0 |   case AffineExprKind::Mod: | 
| 85 | 0 |     auto binOp = cast<AffineBinaryOpExpr>(); | 
| 86 | 0 |     auto lhs = binOp.getLHS(), rhs = binOp.getRHS(); | 
| 87 | 0 |     auto newLHS = lhs.replaceDimsAndSymbols(dimReplacements, symReplacements); | 
| 88 | 0 |     auto newRHS = rhs.replaceDimsAndSymbols(dimReplacements, symReplacements); | 
| 89 | 0 |     if (newLHS == lhs && newRHS == rhs) | 
| 90 | 0 |       return *this; | 
| 91 | 0 |     return getAffineBinaryOpExpr(getKind(), newLHS, newRHS); | 
| 92 | 0 |   } | 
| 93 | 0 |   llvm_unreachable("Unknown AffineExpr"); | 
| 94 | 0 | } | 
| 95 |  |  | 
| 96 |  | /// Returns true if this expression is made out of only symbols and | 
| 97 |  | /// constants (no dimensional identifiers). | 
| 98 | 0 | bool AffineExpr::isSymbolicOrConstant() const { | 
| 99 | 0 |   switch (getKind()) { | 
| 100 | 0 |   case AffineExprKind::Constant: | 
| 101 | 0 |     return true; | 
| 102 | 0 |   case AffineExprKind::DimId: | 
| 103 | 0 |     return false; | 
| 104 | 0 |   case AffineExprKind::SymbolId: | 
| 105 | 0 |     return true; | 
| 106 | 0 | 
 | 
| 107 | 0 |   case AffineExprKind::Add: | 
| 108 | 0 |   case AffineExprKind::Mul: | 
| 109 | 0 |   case AffineExprKind::FloorDiv: | 
| 110 | 0 |   case AffineExprKind::CeilDiv: | 
| 111 | 0 |   case AffineExprKind::Mod: { | 
| 112 | 0 |     auto expr = this->cast<AffineBinaryOpExpr>(); | 
| 113 | 0 |     return expr.getLHS().isSymbolicOrConstant() && | 
| 114 | 0 |            expr.getRHS().isSymbolicOrConstant(); | 
| 115 | 0 |   } | 
| 116 | 0 |   } | 
| 117 | 0 |   llvm_unreachable("Unknown AffineExpr"); | 
| 118 | 0 | } | 
| 119 |  |  | 
| 120 |  | /// Returns true if this is a pure affine expression, i.e., multiplication, | 
| 121 |  | /// floordiv, ceildiv, and mod is only allowed w.r.t constants. | 
| 122 | 0 | bool AffineExpr::isPureAffine() const { | 
| 123 | 0 |   switch (getKind()) { | 
| 124 | 0 |   case AffineExprKind::SymbolId: | 
| 125 | 0 |   case AffineExprKind::DimId: | 
| 126 | 0 |   case AffineExprKind::Constant: | 
| 127 | 0 |     return true; | 
| 128 | 0 |   case AffineExprKind::Add: { | 
| 129 | 0 |     auto op = cast<AffineBinaryOpExpr>(); | 
| 130 | 0 |     return op.getLHS().isPureAffine() && op.getRHS().isPureAffine(); | 
| 131 | 0 |   } | 
| 132 | 0 | 
 | 
| 133 | 0 |   case AffineExprKind::Mul: { | 
| 134 | 0 |     // TODO: Canonicalize the constants in binary operators to the RHS when | 
| 135 | 0 |     // possible, allowing this to merge into the next case. | 
| 136 | 0 |     auto op = cast<AffineBinaryOpExpr>(); | 
| 137 | 0 |     return op.getLHS().isPureAffine() && op.getRHS().isPureAffine() && | 
| 138 | 0 |            (op.getLHS().template isa<AffineConstantExpr>() || | 
| 139 | 0 |             op.getRHS().template isa<AffineConstantExpr>()); | 
| 140 | 0 |   } | 
| 141 | 0 |   case AffineExprKind::FloorDiv: | 
| 142 | 0 |   case AffineExprKind::CeilDiv: | 
| 143 | 0 |   case AffineExprKind::Mod: { | 
| 144 | 0 |     auto op = cast<AffineBinaryOpExpr>(); | 
| 145 | 0 |     return op.getLHS().isPureAffine() && | 
| 146 | 0 |            op.getRHS().template isa<AffineConstantExpr>(); | 
| 147 | 0 |   } | 
| 148 | 0 |   } | 
| 149 | 0 |   llvm_unreachable("Unknown AffineExpr"); | 
| 150 | 0 | } | 
| 151 |  |  | 
| 152 |  | // Returns the greatest known integral divisor of this affine expression. | 
| 153 | 0 | int64_t AffineExpr::getLargestKnownDivisor() const { | 
| 154 | 0 |   AffineBinaryOpExpr binExpr(nullptr); | 
| 155 | 0 |   switch (getKind()) { | 
| 156 | 0 |   case AffineExprKind::SymbolId: | 
| 157 | 0 |     LLVM_FALLTHROUGH; | 
| 158 | 0 |   case AffineExprKind::DimId: | 
| 159 | 0 |     return 1; | 
| 160 | 0 |   case AffineExprKind::Constant: | 
| 161 | 0 |     return std::abs(this->cast<AffineConstantExpr>().getValue()); | 
| 162 | 0 |   case AffineExprKind::Mul: { | 
| 163 | 0 |     binExpr = this->cast<AffineBinaryOpExpr>(); | 
| 164 | 0 |     return binExpr.getLHS().getLargestKnownDivisor() * | 
| 165 | 0 |            binExpr.getRHS().getLargestKnownDivisor(); | 
| 166 | 0 |   } | 
| 167 | 0 |   case AffineExprKind::Add: | 
| 168 | 0 |     LLVM_FALLTHROUGH; | 
| 169 | 0 |   case AffineExprKind::FloorDiv: | 
| 170 | 0 |   case AffineExprKind::CeilDiv: | 
| 171 | 0 |   case AffineExprKind::Mod: { | 
| 172 | 0 |     binExpr = cast<AffineBinaryOpExpr>(); | 
| 173 | 0 |     return llvm::GreatestCommonDivisor64( | 
| 174 | 0 |         binExpr.getLHS().getLargestKnownDivisor(), | 
| 175 | 0 |         binExpr.getRHS().getLargestKnownDivisor()); | 
| 176 | 0 |   } | 
| 177 | 0 |   } | 
| 178 | 0 |   llvm_unreachable("Unknown AffineExpr"); | 
| 179 | 0 | } | 
| 180 |  |  | 
| 181 | 0 | bool AffineExpr::isMultipleOf(int64_t factor) const { | 
| 182 | 0 |   AffineBinaryOpExpr binExpr(nullptr); | 
| 183 | 0 |   uint64_t l, u; | 
| 184 | 0 |   switch (getKind()) { | 
| 185 | 0 |   case AffineExprKind::SymbolId: | 
| 186 | 0 |     LLVM_FALLTHROUGH; | 
| 187 | 0 |   case AffineExprKind::DimId: | 
| 188 | 0 |     return factor * factor == 1; | 
| 189 | 0 |   case AffineExprKind::Constant: | 
| 190 | 0 |     return cast<AffineConstantExpr>().getValue() % factor == 0; | 
| 191 | 0 |   case AffineExprKind::Mul: { | 
| 192 | 0 |     binExpr = cast<AffineBinaryOpExpr>(); | 
| 193 | 0 |     // It's probably not worth optimizing this further (to not traverse the | 
| 194 | 0 |     // whole sub-tree under - it that would require a version of isMultipleOf | 
| 195 | 0 |     // that on a 'false' return also returns the largest known divisor). | 
| 196 | 0 |     return (l = binExpr.getLHS().getLargestKnownDivisor()) % factor == 0 || | 
| 197 | 0 |            (u = binExpr.getRHS().getLargestKnownDivisor()) % factor == 0 || | 
| 198 | 0 |            (l * u) % factor == 0; | 
| 199 | 0 |   } | 
| 200 | 0 |   case AffineExprKind::Add: | 
| 201 | 0 |   case AffineExprKind::FloorDiv: | 
| 202 | 0 |   case AffineExprKind::CeilDiv: | 
| 203 | 0 |   case AffineExprKind::Mod: { | 
| 204 | 0 |     binExpr = cast<AffineBinaryOpExpr>(); | 
| 205 | 0 |     return llvm::GreatestCommonDivisor64( | 
| 206 | 0 |                binExpr.getLHS().getLargestKnownDivisor(), | 
| 207 | 0 |                binExpr.getRHS().getLargestKnownDivisor()) % | 
| 208 | 0 |                factor == | 
| 209 | 0 |            0; | 
| 210 | 0 |   } | 
| 211 | 0 |   } | 
| 212 | 0 |   llvm_unreachable("Unknown AffineExpr"); | 
| 213 | 0 | } | 
| 214 |  |  | 
| 215 | 0 | bool AffineExpr::isFunctionOfDim(unsigned position) const { | 
| 216 | 0 |   if (getKind() == AffineExprKind::DimId) { | 
| 217 | 0 |     return *this == mlir::getAffineDimExpr(position, getContext()); | 
| 218 | 0 |   } | 
| 219 | 0 |   if (auto expr = this->dyn_cast<AffineBinaryOpExpr>()) { | 
| 220 | 0 |     return expr.getLHS().isFunctionOfDim(position) || | 
| 221 | 0 |            expr.getRHS().isFunctionOfDim(position); | 
| 222 | 0 |   } | 
| 223 | 0 |   return false; | 
| 224 | 0 | } | 
| 225 |  |  | 
| 226 |  | AffineBinaryOpExpr::AffineBinaryOpExpr(AffineExpr::ImplType *ptr) | 
| 227 | 0 |     : AffineExpr(ptr) {} | 
| 228 | 0 | AffineExpr AffineBinaryOpExpr::getLHS() const { | 
| 229 | 0 |   return static_cast<ImplType *>(expr)->lhs; | 
| 230 | 0 | } | 
| 231 | 0 | AffineExpr AffineBinaryOpExpr::getRHS() const { | 
| 232 | 0 |   return static_cast<ImplType *>(expr)->rhs; | 
| 233 | 0 | } | 
| 234 |  |  | 
| 235 | 0 | AffineDimExpr::AffineDimExpr(AffineExpr::ImplType *ptr) : AffineExpr(ptr) {} | 
| 236 | 0 | unsigned AffineDimExpr::getPosition() const { | 
| 237 | 0 |   return static_cast<ImplType *>(expr)->position; | 
| 238 | 0 | } | 
| 239 |  |  | 
| 240 |  | static AffineExpr getAffineDimOrSymbol(AffineExprKind kind, unsigned position, | 
| 241 | 0 |                                        MLIRContext *context) { | 
| 242 | 0 |   auto assignCtx = [context](AffineDimExprStorage *storage) { | 
| 243 | 0 |     storage->context = context; | 
| 244 | 0 |   }; | 
| 245 | 0 | 
 | 
| 246 | 0 |   StorageUniquer &uniquer = context->getAffineUniquer(); | 
| 247 | 0 |   return uniquer.get<AffineDimExprStorage>( | 
| 248 | 0 |       assignCtx, static_cast<unsigned>(kind), position); | 
| 249 | 0 | } | 
| 250 |  |  | 
| 251 | 0 | AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) { | 
| 252 | 0 |   return getAffineDimOrSymbol(AffineExprKind::DimId, position, context); | 
| 253 | 0 | } | 
| 254 |  |  | 
| 255 |  | AffineSymbolExpr::AffineSymbolExpr(AffineExpr::ImplType *ptr) | 
| 256 | 0 |     : AffineExpr(ptr) {} | 
| 257 | 0 | unsigned AffineSymbolExpr::getPosition() const { | 
| 258 | 0 |   return static_cast<ImplType *>(expr)->position; | 
| 259 | 0 | } | 
| 260 |  |  | 
| 261 | 0 | AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) { | 
| 262 | 0 |   return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context); | 
| 263 | 0 |   ; | 
| 264 | 0 | } | 
| 265 |  |  | 
| 266 |  | AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr) | 
| 267 | 0 |     : AffineExpr(ptr) {} | 
| 268 | 0 | int64_t AffineConstantExpr::getValue() const { | 
| 269 | 0 |   return static_cast<ImplType *>(expr)->constant; | 
| 270 | 0 | } | 
| 271 |  |  | 
| 272 | 0 | bool AffineExpr::operator==(int64_t v) const { | 
| 273 | 0 |   return *this == getAffineConstantExpr(v, getContext()); | 
| 274 | 0 | } | 
| 275 |  |  | 
| 276 | 0 | AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) { | 
| 277 | 0 |   auto assignCtx = [context](AffineConstantExprStorage *storage) { | 
| 278 | 0 |     storage->context = context; | 
| 279 | 0 |   }; | 
| 280 | 0 | 
 | 
| 281 | 0 |   StorageUniquer &uniquer = context->getAffineUniquer(); | 
| 282 | 0 |   return uniquer.get<AffineConstantExprStorage>( | 
| 283 | 0 |       assignCtx, static_cast<unsigned>(AffineExprKind::Constant), constant); | 
| 284 | 0 | } | 
| 285 |  |  | 
| 286 |  | /// Simplify add expression. Return nullptr if it can't be simplified. | 
| 287 | 0 | static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) { | 
| 288 | 0 |   auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); | 
| 289 | 0 |   auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); | 
| 290 | 0 |   // Fold if both LHS, RHS are a constant. | 
| 291 | 0 |   if (lhsConst && rhsConst) | 
| 292 | 0 |     return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(), | 
| 293 | 0 |                                  lhs.getContext()); | 
| 294 | 0 |  | 
| 295 | 0 |   // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4). | 
| 296 | 0 |   // If only one of them is a symbolic expressions, make it the RHS. | 
| 297 | 0 |   if (lhs.isa<AffineConstantExpr>() || | 
| 298 | 0 |       (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) { | 
| 299 | 0 |     return rhs + lhs; | 
| 300 | 0 |   } | 
| 301 | 0 |  | 
| 302 | 0 |   // At this point, if there was a constant, it would be on the right. | 
| 303 | 0 |  | 
| 304 | 0 |   // Addition with a zero is a noop, return the other input. | 
| 305 | 0 |   if (rhsConst) { | 
| 306 | 0 |     if (rhsConst.getValue() == 0) | 
| 307 | 0 |       return lhs; | 
| 308 | 0 |   } | 
| 309 | 0 |   // Fold successive additions like (d0 + 2) + 3 into d0 + 5. | 
| 310 | 0 |   auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 311 | 0 |   if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) { | 
| 312 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) | 
| 313 | 0 |       return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue()); | 
| 314 | 0 |   } | 
| 315 | 0 |  | 
| 316 | 0 |   // Detect "c1 * expr + c_2 * expr" as "(c1 + c2) * expr". | 
| 317 | 0 |   // c1 is rRhsConst, c2 is rLhsConst; firstExpr, secondExpr are their | 
| 318 | 0 |   // respective multiplicands. | 
| 319 | 0 |   Optional<int64_t> rLhsConst, rRhsConst; | 
| 320 | 0 |   AffineExpr firstExpr, secondExpr; | 
| 321 | 0 |   AffineConstantExpr rLhsConstExpr; | 
| 322 | 0 |   auto lBinOpExpr = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 323 | 0 |   if (lBinOpExpr && lBinOpExpr.getKind() == AffineExprKind::Mul && | 
| 324 | 0 |       (rLhsConstExpr = lBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) { | 
| 325 | 0 |     rLhsConst = rLhsConstExpr.getValue(); | 
| 326 | 0 |     firstExpr = lBinOpExpr.getLHS(); | 
| 327 | 0 |   } else { | 
| 328 | 0 |     rLhsConst = 1; | 
| 329 | 0 |     firstExpr = lhs; | 
| 330 | 0 |   } | 
| 331 | 0 | 
 | 
| 332 | 0 |   auto rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 333 | 0 |   AffineConstantExpr rRhsConstExpr; | 
| 334 | 0 |   if (rBinOpExpr && rBinOpExpr.getKind() == AffineExprKind::Mul && | 
| 335 | 0 |       (rRhsConstExpr = rBinOpExpr.getRHS().dyn_cast<AffineConstantExpr>())) { | 
| 336 | 0 |     rRhsConst = rRhsConstExpr.getValue(); | 
| 337 | 0 |     secondExpr = rBinOpExpr.getLHS(); | 
| 338 | 0 |   } else { | 
| 339 | 0 |     rRhsConst = 1; | 
| 340 | 0 |     secondExpr = rhs; | 
| 341 | 0 |   } | 
| 342 | 0 | 
 | 
| 343 | 0 |   if (rLhsConst && rRhsConst && firstExpr == secondExpr) | 
| 344 | 0 |     return getAffineBinaryOpExpr( | 
| 345 | 0 |         AffineExprKind::Mul, firstExpr, | 
| 346 | 0 |         getAffineConstantExpr(rLhsConst.getValue() + rRhsConst.getValue(), | 
| 347 | 0 |                               lhs.getContext())); | 
| 348 | 0 |  | 
| 349 | 0 |   // When doing successive additions, bring constant to the right: turn (d0 + 2) | 
| 350 | 0 |   // + d1 into (d0 + d1) + 2. | 
| 351 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Add) { | 
| 352 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { | 
| 353 | 0 |       return lBin.getLHS() + rhs + lrhs; | 
| 354 | 0 |     } | 
| 355 | 0 |   } | 
| 356 | 0 |  | 
| 357 | 0 |   // Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This | 
| 358 | 0 |   // leads to a much more efficient form when 'c' is a power of two, and in | 
| 359 | 0 |   // general a more compact and readable form. | 
| 360 | 0 |  | 
| 361 | 0 |   // Process '(expr floordiv c) * (-c)'. | 
| 362 | 0 |   if (!rBinOpExpr) | 
| 363 | 0 |     return nullptr; | 
| 364 | 0 |  | 
| 365 | 0 |   auto lrhs = rBinOpExpr.getLHS(); | 
| 366 | 0 |   auto rrhs = rBinOpExpr.getRHS(); | 
| 367 | 0 | 
 | 
| 368 | 0 |   // Process lrhs, which is 'expr floordiv c'. | 
| 369 | 0 |   AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 370 | 0 |   if (!lrBinOpExpr || lrBinOpExpr.getKind() != AffineExprKind::FloorDiv) | 
| 371 | 0 |     return nullptr; | 
| 372 | 0 |  | 
| 373 | 0 |   auto llrhs = lrBinOpExpr.getLHS(); | 
| 374 | 0 |   auto rlrhs = lrBinOpExpr.getRHS(); | 
| 375 | 0 | 
 | 
| 376 | 0 |   if (lhs == llrhs && rlrhs == -rrhs) { | 
| 377 | 0 |     return lhs % rlrhs; | 
| 378 | 0 |   } | 
| 379 | 0 |   return nullptr; | 
| 380 | 0 | } | 
| 381 |  |  | 
| 382 | 0 | AffineExpr AffineExpr::operator+(int64_t v) const { | 
| 383 | 0 |   return *this + getAffineConstantExpr(v, getContext()); | 
| 384 | 0 | } | 
| 385 | 0 | AffineExpr AffineExpr::operator+(AffineExpr other) const { | 
| 386 | 0 |   if (auto simplified = simplifyAdd(*this, other)) | 
| 387 | 0 |     return simplified; | 
| 388 | 0 |  | 
| 389 | 0 |   StorageUniquer &uniquer = getContext()->getAffineUniquer(); | 
| 390 | 0 |   return uniquer.get<AffineBinaryOpExprStorage>( | 
| 391 | 0 |       /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Add), *this, other); | 
| 392 | 0 | } | 
| 393 |  |  | 
| 394 |  | /// Simplify a multiply expression. Return nullptr if it can't be simplified. | 
| 395 | 0 | static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) { | 
| 396 | 0 |   auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); | 
| 397 | 0 |   auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); | 
| 398 | 0 | 
 | 
| 399 | 0 |   if (lhsConst && rhsConst) | 
| 400 | 0 |     return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(), | 
| 401 | 0 |                                  lhs.getContext()); | 
| 402 | 0 |  | 
| 403 | 0 |   assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant()); | 
| 404 | 0 | 
 | 
| 405 | 0 |   // Canonicalize the mul expression so that the constant/symbolic term is the | 
| 406 | 0 |   // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a | 
| 407 | 0 |   // constant. (Note that a constant is trivially symbolic). | 
| 408 | 0 |   if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) { | 
| 409 | 0 |     // At least one of them has to be symbolic. | 
| 410 | 0 |     return rhs * lhs; | 
| 411 | 0 |   } | 
| 412 | 0 |  | 
| 413 | 0 |   // At this point, if there was a constant, it would be on the right. | 
| 414 | 0 |  | 
| 415 | 0 |   // Multiplication with a one is a noop, return the other input. | 
| 416 | 0 |   if (rhsConst) { | 
| 417 | 0 |     if (rhsConst.getValue() == 1) | 
| 418 | 0 |       return lhs; | 
| 419 | 0 |     // Multiplication with zero. | 
| 420 | 0 |     if (rhsConst.getValue() == 0) | 
| 421 | 0 |       return rhsConst; | 
| 422 | 0 |   } | 
| 423 | 0 |  | 
| 424 | 0 |   // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6. | 
| 425 | 0 |   auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 426 | 0 |   if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) { | 
| 427 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) | 
| 428 | 0 |       return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue()); | 
| 429 | 0 |   } | 
| 430 | 0 |  | 
| 431 | 0 |   // When doing successive multiplication, bring constant to the right: turn (d0 | 
| 432 | 0 |   // * 2) * d1 into (d0 * d1) * 2. | 
| 433 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Mul) { | 
| 434 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { | 
| 435 | 0 |       return (lBin.getLHS() * rhs) * lrhs; | 
| 436 | 0 |     } | 
| 437 | 0 |   } | 
| 438 | 0 |  | 
| 439 | 0 |   return nullptr; | 
| 440 | 0 | } | 
| 441 |  |  | 
| 442 | 0 | AffineExpr AffineExpr::operator*(int64_t v) const { | 
| 443 | 0 |   return *this * getAffineConstantExpr(v, getContext()); | 
| 444 | 0 | } | 
| 445 | 0 | AffineExpr AffineExpr::operator*(AffineExpr other) const { | 
| 446 | 0 |   if (auto simplified = simplifyMul(*this, other)) | 
| 447 | 0 |     return simplified; | 
| 448 | 0 |  | 
| 449 | 0 |   StorageUniquer &uniquer = getContext()->getAffineUniquer(); | 
| 450 | 0 |   return uniquer.get<AffineBinaryOpExprStorage>( | 
| 451 | 0 |       /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mul), *this, other); | 
| 452 | 0 | } | 
| 453 |  |  | 
| 454 |  | // Unary minus, delegate to operator*. | 
| 455 | 0 | AffineExpr AffineExpr::operator-() const { | 
| 456 | 0 |   return *this * getAffineConstantExpr(-1, getContext()); | 
| 457 | 0 | } | 
| 458 |  |  | 
| 459 |  | // Delegate to operator+. | 
| 460 | 0 | AffineExpr AffineExpr::operator-(int64_t v) const { return *this + (-v); } | 
| 461 | 0 | AffineExpr AffineExpr::operator-(AffineExpr other) const { | 
| 462 | 0 |   return *this + (-other); | 
| 463 | 0 | } | 
| 464 |  |  | 
| 465 | 0 | static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) { | 
| 466 | 0 |   auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); | 
| 467 | 0 |   auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); | 
| 468 | 0 | 
 | 
| 469 | 0 |   // mlir floordiv by zero or negative numbers is undefined and preserved as is. | 
| 470 | 0 |   if (!rhsConst || rhsConst.getValue() < 1) | 
| 471 | 0 |     return nullptr; | 
| 472 | 0 |  | 
| 473 | 0 |   if (lhsConst) | 
| 474 | 0 |     return getAffineConstantExpr( | 
| 475 | 0 |         floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); | 
| 476 | 0 |  | 
| 477 | 0 |   // Fold floordiv of a multiply with a constant that is a multiple of the | 
| 478 | 0 |   // divisor. Eg: (i * 128) floordiv 64 = i * 2. | 
| 479 | 0 |   if (rhsConst == 1) | 
| 480 | 0 |     return lhs; | 
| 481 | 0 |  | 
| 482 | 0 |   // Simplify (expr * const) floordiv divConst when expr is known to be a | 
| 483 | 0 |   // multiple of divConst. | 
| 484 | 0 |   auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 485 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Mul) { | 
| 486 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { | 
| 487 | 0 |       // rhsConst is known to be a positive constant. | 
| 488 | 0 |       if (lrhs.getValue() % rhsConst.getValue() == 0) | 
| 489 | 0 |         return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); | 
| 490 | 0 |     } | 
| 491 | 0 |   } | 
| 492 | 0 |  | 
| 493 | 0 |   // Simplify (expr1 + expr2) floordiv divConst when either expr1 or expr2 is | 
| 494 | 0 |   // known to be a multiple of divConst. | 
| 495 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Add) { | 
| 496 | 0 |     int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); | 
| 497 | 0 |     int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); | 
| 498 | 0 |     // rhsConst is known to be a positive constant. | 
| 499 | 0 |     if (llhsDiv % rhsConst.getValue() == 0 || | 
| 500 | 0 |         lrhsDiv % rhsConst.getValue() == 0) | 
| 501 | 0 |       return lBin.getLHS().floorDiv(rhsConst.getValue()) + | 
| 502 | 0 |              lBin.getRHS().floorDiv(rhsConst.getValue()); | 
| 503 | 0 |   } | 
| 504 | 0 |  | 
| 505 | 0 |   return nullptr; | 
| 506 | 0 | } | 
| 507 |  |  | 
| 508 | 0 | AffineExpr AffineExpr::floorDiv(uint64_t v) const { | 
| 509 | 0 |   return floorDiv(getAffineConstantExpr(v, getContext())); | 
| 510 | 0 | } | 
| 511 | 0 | AffineExpr AffineExpr::floorDiv(AffineExpr other) const { | 
| 512 | 0 |   if (auto simplified = simplifyFloorDiv(*this, other)) | 
| 513 | 0 |     return simplified; | 
| 514 | 0 |  | 
| 515 | 0 |   StorageUniquer &uniquer = getContext()->getAffineUniquer(); | 
| 516 | 0 |   return uniquer.get<AffineBinaryOpExprStorage>( | 
| 517 | 0 |       /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::FloorDiv), *this, | 
| 518 | 0 |       other); | 
| 519 | 0 | } | 
| 520 |  |  | 
| 521 | 0 | static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) { | 
| 522 | 0 |   auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); | 
| 523 | 0 |   auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); | 
| 524 | 0 | 
 | 
| 525 | 0 |   if (!rhsConst || rhsConst.getValue() < 1) | 
| 526 | 0 |     return nullptr; | 
| 527 | 0 |  | 
| 528 | 0 |   if (lhsConst) | 
| 529 | 0 |     return getAffineConstantExpr( | 
| 530 | 0 |         ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext()); | 
| 531 | 0 |  | 
| 532 | 0 |   // Fold ceildiv of a multiply with a constant that is a multiple of the | 
| 533 | 0 |   // divisor. Eg: (i * 128) ceildiv 64 = i * 2. | 
| 534 | 0 |   if (rhsConst.getValue() == 1) | 
| 535 | 0 |     return lhs; | 
| 536 | 0 |  | 
| 537 | 0 |   // Simplify (expr * const) ceildiv divConst when const is known to be a | 
| 538 | 0 |   // multiple of divConst. | 
| 539 | 0 |   auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 540 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Mul) { | 
| 541 | 0 |     if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) { | 
| 542 | 0 |       // rhsConst is known to be a positive constant. | 
| 543 | 0 |       if (lrhs.getValue() % rhsConst.getValue() == 0) | 
| 544 | 0 |         return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue()); | 
| 545 | 0 |     } | 
| 546 | 0 |   } | 
| 547 | 0 |  | 
| 548 | 0 |   return nullptr; | 
| 549 | 0 | } | 
| 550 |  |  | 
| 551 | 0 | AffineExpr AffineExpr::ceilDiv(uint64_t v) const { | 
| 552 | 0 |   return ceilDiv(getAffineConstantExpr(v, getContext())); | 
| 553 | 0 | } | 
| 554 | 0 | AffineExpr AffineExpr::ceilDiv(AffineExpr other) const { | 
| 555 | 0 |   if (auto simplified = simplifyCeilDiv(*this, other)) | 
| 556 | 0 |     return simplified; | 
| 557 | 0 |  | 
| 558 | 0 |   StorageUniquer &uniquer = getContext()->getAffineUniquer(); | 
| 559 | 0 |   return uniquer.get<AffineBinaryOpExprStorage>( | 
| 560 | 0 |       /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::CeilDiv), *this, | 
| 561 | 0 |       other); | 
| 562 | 0 | } | 
| 563 |  |  | 
| 564 | 0 | static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) { | 
| 565 | 0 |   auto lhsConst = lhs.dyn_cast<AffineConstantExpr>(); | 
| 566 | 0 |   auto rhsConst = rhs.dyn_cast<AffineConstantExpr>(); | 
| 567 | 0 | 
 | 
| 568 | 0 |   // mod w.r.t zero or negative numbers is undefined and preserved as is. | 
| 569 | 0 |   if (!rhsConst || rhsConst.getValue() < 1) | 
| 570 | 0 |     return nullptr; | 
| 571 | 0 |  | 
| 572 | 0 |   if (lhsConst) | 
| 573 | 0 |     return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()), | 
| 574 | 0 |                                  lhs.getContext()); | 
| 575 | 0 |  | 
| 576 | 0 |   // Fold modulo of an expression that is known to be a multiple of a constant | 
| 577 | 0 |   // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128) | 
| 578 | 0 |   // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0. | 
| 579 | 0 |   if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0) | 
| 580 | 0 |     return getAffineConstantExpr(0, lhs.getContext()); | 
| 581 | 0 |  | 
| 582 | 0 |   // Simplify (expr1 + expr2) mod divConst when either expr1 or expr2 is | 
| 583 | 0 |   // known to be a multiple of divConst. | 
| 584 | 0 |   auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>(); | 
| 585 | 0 |   if (lBin && lBin.getKind() == AffineExprKind::Add) { | 
| 586 | 0 |     int64_t llhsDiv = lBin.getLHS().getLargestKnownDivisor(); | 
| 587 | 0 |     int64_t lrhsDiv = lBin.getRHS().getLargestKnownDivisor(); | 
| 588 | 0 |     // rhsConst is known to be a positive constant. | 
| 589 | 0 |     if (llhsDiv % rhsConst.getValue() == 0) | 
| 590 | 0 |       return lBin.getRHS() % rhsConst.getValue(); | 
| 591 | 0 |     if (lrhsDiv % rhsConst.getValue() == 0) | 
| 592 | 0 |       return lBin.getLHS() % rhsConst.getValue(); | 
| 593 | 0 |   } | 
| 594 | 0 |  | 
| 595 | 0 |   return nullptr; | 
| 596 | 0 | } | 
| 597 |  |  | 
| 598 | 0 | AffineExpr AffineExpr::operator%(uint64_t v) const { | 
| 599 | 0 |   return *this % getAffineConstantExpr(v, getContext()); | 
| 600 | 0 | } | 
| 601 | 0 | AffineExpr AffineExpr::operator%(AffineExpr other) const { | 
| 602 | 0 |   if (auto simplified = simplifyMod(*this, other)) | 
| 603 | 0 |     return simplified; | 
| 604 | 0 |  | 
| 605 | 0 |   StorageUniquer &uniquer = getContext()->getAffineUniquer(); | 
| 606 | 0 |   return uniquer.get<AffineBinaryOpExprStorage>( | 
| 607 | 0 |       /*initFn=*/{}, static_cast<unsigned>(AffineExprKind::Mod), *this, other); | 
| 608 | 0 | } | 
| 609 |  |  | 
| 610 | 0 | AffineExpr AffineExpr::compose(AffineMap map) const { | 
| 611 | 0 |   SmallVector<AffineExpr, 8> dimReplacements(map.getResults().begin(), | 
| 612 | 0 |                                              map.getResults().end()); | 
| 613 | 0 |   return replaceDimsAndSymbols(dimReplacements, {}); | 
| 614 | 0 | } | 
| 615 | 0 | raw_ostream &mlir::operator<<(raw_ostream &os, AffineExpr expr) { | 
| 616 | 0 |   expr.print(os); | 
| 617 | 0 |   return os; | 
| 618 | 0 | } | 
| 619 |  |  | 
| 620 |  | /// Constructs an affine expression from a flat ArrayRef. If there are local | 
| 621 |  | /// identifiers (neither dimensional nor symbolic) that appear in the sum of | 
| 622 |  | /// products expression, `localExprs` is expected to have the AffineExpr | 
| 623 |  | /// for it, and is substituted into. The ArrayRef `flatExprs` is expected to be | 
| 624 |  | /// in the format [dims, symbols, locals, constant term]. | 
| 625 |  | AffineExpr mlir::getAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs, | 
| 626 |  |                                            unsigned numDims, | 
| 627 |  |                                            unsigned numSymbols, | 
| 628 |  |                                            ArrayRef<AffineExpr> localExprs, | 
| 629 | 0 |                                            MLIRContext *context) { | 
| 630 | 0 |   // Assert expected numLocals = flatExprs.size() - numDims - numSymbols - 1. | 
| 631 | 0 |   assert(flatExprs.size() - numDims - numSymbols - 1 == localExprs.size() && | 
| 632 | 0 |          "unexpected number of local expressions"); | 
| 633 | 0 | 
 | 
| 634 | 0 |   auto expr = getAffineConstantExpr(0, context); | 
| 635 | 0 |   // Dimensions and symbols. | 
| 636 | 0 |   for (unsigned j = 0; j < numDims + numSymbols; j++) { | 
| 637 | 0 |     if (flatExprs[j] == 0) | 
| 638 | 0 |       continue; | 
| 639 | 0 |     auto id = j < numDims ? getAffineDimExpr(j, context) | 
| 640 | 0 |                           : getAffineSymbolExpr(j - numDims, context); | 
| 641 | 0 |     expr = expr + id * flatExprs[j]; | 
| 642 | 0 |   } | 
| 643 | 0 | 
 | 
| 644 | 0 |   // Local identifiers. | 
| 645 | 0 |   for (unsigned j = numDims + numSymbols, e = flatExprs.size() - 1; j < e; | 
| 646 | 0 |        j++) { | 
| 647 | 0 |     if (flatExprs[j] == 0) | 
| 648 | 0 |       continue; | 
| 649 | 0 |     auto term = localExprs[j - numDims - numSymbols] * flatExprs[j]; | 
| 650 | 0 |     expr = expr + term; | 
| 651 | 0 |   } | 
| 652 | 0 | 
 | 
| 653 | 0 |   // Constant term. | 
| 654 | 0 |   int64_t constTerm = flatExprs[flatExprs.size() - 1]; | 
| 655 | 0 |   if (constTerm != 0) | 
| 656 | 0 |     expr = expr + constTerm; | 
| 657 | 0 |   return expr; | 
| 658 | 0 | } | 
| 659 |  |  | 
| 660 |  | SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims, | 
| 661 |  |                                                      unsigned numSymbols) | 
| 662 | 0 |     : numDims(numDims), numSymbols(numSymbols), numLocals(0) { | 
| 663 | 0 |   operandExprStack.reserve(8); | 
| 664 | 0 | } | 
| 665 |  |  | 
| 666 | 0 | void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) { | 
| 667 | 0 |   assert(operandExprStack.size() >= 2); | 
| 668 | 0 |   // This is a pure affine expr; the RHS will be a constant. | 
| 669 | 0 |   assert(expr.getRHS().isa<AffineConstantExpr>()); | 
| 670 | 0 |   // Get the RHS constant. | 
| 671 | 0 |   auto rhsConst = operandExprStack.back()[getConstantIndex()]; | 
| 672 | 0 |   operandExprStack.pop_back(); | 
| 673 | 0 |   // Update the LHS in place instead of pop and push. | 
| 674 | 0 |   auto &lhs = operandExprStack.back(); | 
| 675 | 0 |   for (unsigned i = 0, e = lhs.size(); i < e; i++) { | 
| 676 | 0 |     lhs[i] *= rhsConst; | 
| 677 | 0 |   } | 
| 678 | 0 | } | 
| 679 |  |  | 
| 680 | 0 | void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) { | 
| 681 | 0 |   assert(operandExprStack.size() >= 2); | 
| 682 | 0 |   const auto &rhs = operandExprStack.back(); | 
| 683 | 0 |   auto &lhs = operandExprStack[operandExprStack.size() - 2]; | 
| 684 | 0 |   assert(lhs.size() == rhs.size()); | 
| 685 | 0 |   // Update the LHS in place. | 
| 686 | 0 |   for (unsigned i = 0, e = rhs.size(); i < e; i++) { | 
| 687 | 0 |     lhs[i] += rhs[i]; | 
| 688 | 0 |   } | 
| 689 | 0 |   // Pop off the RHS. | 
| 690 | 0 |   operandExprStack.pop_back(); | 
| 691 | 0 | } | 
| 692 |  |  | 
| 693 |  | // | 
| 694 |  | // t = expr mod c   <=>  t = expr - c*q and c*q <= expr <= c*q + c - 1 | 
| 695 |  | // | 
| 696 |  | // A mod expression "expr mod c" is thus flattened by introducing a new local | 
| 697 |  | // variable q (= expr floordiv c), such that expr mod c is replaced with | 
| 698 |  | // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst. | 
| 699 | 0 | void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) { | 
| 700 | 0 |   assert(operandExprStack.size() >= 2); | 
| 701 | 0 |   // This is a pure affine expr; the RHS will be a constant. | 
| 702 | 0 |   assert(expr.getRHS().isa<AffineConstantExpr>()); | 
| 703 | 0 |   auto rhsConst = operandExprStack.back()[getConstantIndex()]; | 
| 704 | 0 |   operandExprStack.pop_back(); | 
| 705 | 0 |   auto &lhs = operandExprStack.back(); | 
| 706 | 0 |   // TODO(bondhugula): handle modulo by zero case when this issue is fixed | 
| 707 | 0 |   // at the other places in the IR. | 
| 708 | 0 |   assert(rhsConst > 0 && "RHS constant has to be positive"); | 
| 709 | 0 | 
 | 
| 710 | 0 |   // Check if the LHS expression is a multiple of modulo factor. | 
| 711 | 0 |   unsigned i, e; | 
| 712 | 0 |   for (i = 0, e = lhs.size(); i < e; i++) | 
| 713 | 0 |     if (lhs[i] % rhsConst != 0) | 
| 714 | 0 |       break; | 
| 715 | 0 |   // If yes, modulo expression here simplifies to zero. | 
| 716 | 0 |   if (i == lhs.size()) { | 
| 717 | 0 |     std::fill(lhs.begin(), lhs.end(), 0); | 
| 718 | 0 |     return; | 
| 719 | 0 |   } | 
| 720 | 0 |  | 
| 721 | 0 |   // Add a local variable for the quotient, i.e., expr % c is replaced by | 
| 722 | 0 |   // (expr - q * c) where q = expr floordiv c. Do this while canceling out | 
| 723 | 0 |   // the GCD of expr and c. | 
| 724 | 0 |   SmallVector<int64_t, 8> floorDividend(lhs); | 
| 725 | 0 |   uint64_t gcd = rhsConst; | 
| 726 | 0 |   for (unsigned i = 0, e = lhs.size(); i < e; i++) | 
| 727 | 0 |     gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); | 
| 728 | 0 |   // Simplify the numerator and the denominator. | 
| 729 | 0 |   if (gcd != 1) { | 
| 730 | 0 |     for (unsigned i = 0, e = floorDividend.size(); i < e; i++) | 
| 731 | 0 |       floorDividend[i] = floorDividend[i] / static_cast<int64_t>(gcd); | 
| 732 | 0 |   } | 
| 733 | 0 |   int64_t floorDivisor = rhsConst / static_cast<int64_t>(gcd); | 
| 734 | 0 | 
 | 
| 735 | 0 |   // Construct the AffineExpr form of the floordiv to store in localExprs. | 
| 736 | 0 |   MLIRContext *context = expr.getContext(); | 
| 737 | 0 |   auto dividendExpr = getAffineExprFromFlatForm( | 
| 738 | 0 |       floorDividend, numDims, numSymbols, localExprs, context); | 
| 739 | 0 |   auto divisorExpr = getAffineConstantExpr(floorDivisor, context); | 
| 740 | 0 |   auto floorDivExpr = dividendExpr.floorDiv(divisorExpr); | 
| 741 | 0 |   int loc; | 
| 742 | 0 |   if ((loc = findLocalId(floorDivExpr)) == -1) { | 
| 743 | 0 |     addLocalFloorDivId(floorDividend, floorDivisor, floorDivExpr); | 
| 744 | 0 |     // Set result at top of stack to "lhs - rhsConst * q". | 
| 745 | 0 |     lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst; | 
| 746 | 0 |   } else { | 
| 747 | 0 |     // Reuse the existing local id. | 
| 748 | 0 |     lhs[getLocalVarStartIndex() + loc] = -rhsConst; | 
| 749 | 0 |   } | 
| 750 | 0 | } | 
| 751 |  |  | 
| 752 | 0 | void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) { | 
| 753 | 0 |   visitDivExpr(expr, /*isCeil=*/true); | 
| 754 | 0 | } | 
| 755 | 0 | void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) { | 
| 756 | 0 |   visitDivExpr(expr, /*isCeil=*/false); | 
| 757 | 0 | } | 
| 758 |  |  | 
| 759 | 0 | void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) { | 
| 760 | 0 |   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); | 
| 761 | 0 |   auto &eq = operandExprStack.back(); | 
| 762 | 0 |   assert(expr.getPosition() < numDims && "Inconsistent number of dims"); | 
| 763 | 0 |   eq[getDimStartIndex() + expr.getPosition()] = 1; | 
| 764 | 0 | } | 
| 765 |  |  | 
| 766 | 0 | void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) { | 
| 767 | 0 |   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); | 
| 768 | 0 |   auto &eq = operandExprStack.back(); | 
| 769 | 0 |   assert(expr.getPosition() < numSymbols && "inconsistent number of symbols"); | 
| 770 | 0 |   eq[getSymbolStartIndex() + expr.getPosition()] = 1; | 
| 771 | 0 | } | 
| 772 |  |  | 
| 773 | 0 | void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) { | 
| 774 | 0 |   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0)); | 
| 775 | 0 |   auto &eq = operandExprStack.back(); | 
| 776 | 0 |   eq[getConstantIndex()] = expr.getValue(); | 
| 777 | 0 | } | 
| 778 |  |  | 
| 779 |  | // t = expr floordiv c   <=> t = q, c * q <= expr <= c * q + c - 1 | 
| 780 |  | // A floordiv is thus flattened by introducing a new local variable q, and | 
| 781 |  | // replacing that expression with 'q' while adding the constraints | 
| 782 |  | // c * q <= expr <= c * q + c - 1 to localVarCst (done by | 
| 783 |  | // FlatAffineConstraints::addLocalFloorDiv). | 
| 784 |  | // | 
| 785 |  | // A ceildiv is similarly flattened: | 
| 786 |  | // t = expr ceildiv c   <=> t =  (expr + c - 1) floordiv c | 
| 787 |  | void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr, | 
| 788 | 0 |                                              bool isCeil) { | 
| 789 | 0 |   assert(operandExprStack.size() >= 2); | 
| 790 | 0 |   assert(expr.getRHS().isa<AffineConstantExpr>()); | 
| 791 | 0 | 
 | 
| 792 | 0 |   // This is a pure affine expr; the RHS is a positive constant. | 
| 793 | 0 |   int64_t rhsConst = operandExprStack.back()[getConstantIndex()]; | 
| 794 | 0 |   // TODO(bondhugula): handle division by zero at the same time the issue is | 
| 795 | 0 |   // fixed at other places. | 
| 796 | 0 |   assert(rhsConst > 0 && "RHS constant has to be positive"); | 
| 797 | 0 |   operandExprStack.pop_back(); | 
| 798 | 0 |   auto &lhs = operandExprStack.back(); | 
| 799 | 0 | 
 | 
| 800 | 0 |   // Simplify the floordiv, ceildiv if possible by canceling out the greatest | 
| 801 | 0 |   // common divisors of the numerator and denominator. | 
| 802 | 0 |   uint64_t gcd = std::abs(rhsConst); | 
| 803 | 0 |   for (unsigned i = 0, e = lhs.size(); i < e; i++) | 
| 804 | 0 |     gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i])); | 
| 805 | 0 |   // Simplify the numerator and the denominator. | 
| 806 | 0 |   if (gcd != 1) { | 
| 807 | 0 |     for (unsigned i = 0, e = lhs.size(); i < e; i++) | 
| 808 | 0 |       lhs[i] = lhs[i] / static_cast<int64_t>(gcd); | 
| 809 | 0 |   } | 
| 810 | 0 |   int64_t divisor = rhsConst / static_cast<int64_t>(gcd); | 
| 811 | 0 |   // If the divisor becomes 1, the updated LHS is the result. (The | 
| 812 | 0 |   // divisor can't be negative since rhsConst is positive). | 
| 813 | 0 |   if (divisor == 1) | 
| 814 | 0 |     return; | 
| 815 | 0 |  | 
| 816 | 0 |   // If the divisor cannot be simplified to one, we will have to retain | 
| 817 | 0 |   // the ceil/floor expr (simplified up until here). Add an existential | 
| 818 | 0 |   // quantifier to express its result, i.e., expr1 div expr2 is replaced | 
| 819 | 0 |   // by a new identifier, q. | 
| 820 | 0 |   MLIRContext *context = expr.getContext(); | 
| 821 | 0 |   auto a = | 
| 822 | 0 |       getAffineExprFromFlatForm(lhs, numDims, numSymbols, localExprs, context); | 
| 823 | 0 |   auto b = getAffineConstantExpr(divisor, context); | 
| 824 | 0 | 
 | 
| 825 | 0 |   int loc; | 
| 826 | 0 |   auto divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b); | 
| 827 | 0 |   if ((loc = findLocalId(divExpr)) == -1) { | 
| 828 | 0 |     if (!isCeil) { | 
| 829 | 0 |       SmallVector<int64_t, 8> dividend(lhs); | 
| 830 | 0 |       addLocalFloorDivId(dividend, divisor, divExpr); | 
| 831 | 0 |     } else { | 
| 832 | 0 |       // lhs ceildiv c <=>  (lhs + c - 1) floordiv c | 
| 833 | 0 |       SmallVector<int64_t, 8> dividend(lhs); | 
| 834 | 0 |       dividend.back() += divisor - 1; | 
| 835 | 0 |       addLocalFloorDivId(dividend, divisor, divExpr); | 
| 836 | 0 |     } | 
| 837 | 0 |   } | 
| 838 | 0 |   // Set the expression on stack to the local var introduced to capture the | 
| 839 | 0 |   // result of the division (floor or ceil). | 
| 840 | 0 |   std::fill(lhs.begin(), lhs.end(), 0); | 
| 841 | 0 |   if (loc == -1) | 
| 842 | 0 |     lhs[getLocalVarStartIndex() + numLocals - 1] = 1; | 
| 843 | 0 |   else | 
| 844 | 0 |     lhs[getLocalVarStartIndex() + loc] = 1; | 
| 845 | 0 | } | 
| 846 |  |  | 
| 847 |  | // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). | 
| 848 |  | // The local identifier added is always a floordiv of a pure add/mul affine | 
| 849 |  | // function of other identifiers, coefficients of which are specified in | 
| 850 |  | // dividend and with respect to a positive constant divisor. localExpr is the | 
| 851 |  | // simplified tree expression (AffineExpr) corresponding to the quantifier. | 
| 852 |  | void SimpleAffineExprFlattener::addLocalFloorDivId(ArrayRef<int64_t> dividend, | 
| 853 |  |                                                    int64_t divisor, | 
| 854 |  |                                                    AffineExpr localExpr) { | 
| 855 |  |   assert(divisor > 0 && "positive constant divisor expected"); | 
| 856 |  |   for (auto &subExpr : operandExprStack) | 
| 857 |  |     subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0); | 
| 858 |  |   localExprs.push_back(localExpr); | 
| 859 |  |   numLocals++; | 
| 860 |  |   // dividend and divisor are not used here; an override of this method uses it. | 
| 861 |  | } | 
| 862 |  |  | 
| 863 | 0 | int SimpleAffineExprFlattener::findLocalId(AffineExpr localExpr) { | 
| 864 | 0 |   SmallVectorImpl<AffineExpr>::iterator it; | 
| 865 | 0 |   if ((it = llvm::find(localExprs, localExpr)) == localExprs.end()) | 
| 866 | 0 |     return -1; | 
| 867 | 0 |   return it - localExprs.begin(); | 
| 868 | 0 | } | 
| 869 |  |  | 
| 870 |  | /// Simplify the affine expression by flattening it and reconstructing it. | 
| 871 |  | AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims, | 
| 872 | 0 |                                     unsigned numSymbols) { | 
| 873 | 0 |   // TODO(bondhugula): only pure affine for now. The simplification here can | 
| 874 | 0 |   // be extended to semi-affine maps in the future. | 
| 875 | 0 |   if (!expr.isPureAffine()) | 
| 876 | 0 |     return expr; | 
| 877 | 0 |  | 
| 878 | 0 |   SimpleAffineExprFlattener flattener(numDims, numSymbols); | 
| 879 | 0 |   flattener.walkPostOrder(expr); | 
| 880 | 0 |   ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back(); | 
| 881 | 0 |   auto simplifiedExpr = | 
| 882 | 0 |       getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols, | 
| 883 | 0 |                                 flattener.localExprs, expr.getContext()); | 
| 884 | 0 |   flattener.operandExprStack.pop_back(); | 
| 885 | 0 |   assert(flattener.operandExprStack.empty()); | 
| 886 | 0 | 
 | 
| 887 | 0 |   return simplifiedExpr; | 
| 888 | 0 | } |