/home/arjun/llvm-project/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===- AffineOps.cpp - MLIR Affine Operations -----------------------------===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  |  | 
| 9 |  | #include "mlir/Dialect/Affine/IR/AffineOps.h" | 
| 10 |  | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" | 
| 11 |  | #include "mlir/Dialect/StandardOps/IR/Ops.h" | 
| 12 |  | #include "mlir/IR/Function.h" | 
| 13 |  | #include "mlir/IR/IntegerSet.h" | 
| 14 |  | #include "mlir/IR/Matchers.h" | 
| 15 |  | #include "mlir/IR/OpImplementation.h" | 
| 16 |  | #include "mlir/IR/PatternMatch.h" | 
| 17 |  | #include "mlir/Transforms/InliningUtils.h" | 
| 18 |  | #include "llvm/ADT/SetVector.h" | 
| 19 |  | #include "llvm/ADT/SmallBitVector.h" | 
| 20 |  | #include "llvm/Support/Debug.h" | 
| 21 |  |  | 
| 22 |  | using namespace mlir; | 
| 23 |  | using llvm::dbgs; | 
| 24 |  |  | 
| 25 |  | #define DEBUG_TYPE "affine-analysis" | 
| 26 |  |  | 
| 27 |  | //===----------------------------------------------------------------------===// | 
| 28 |  | // AffineDialect Interfaces | 
| 29 |  | //===----------------------------------------------------------------------===// | 
| 30 |  |  | 
| 31 |  | namespace { | 
| 32 |  | /// This class defines the interface for handling inlining with affine | 
| 33 |  | /// operations. | 
| 34 |  | struct AffineInlinerInterface : public DialectInlinerInterface { | 
| 35 |  |   using DialectInlinerInterface::DialectInlinerInterface; | 
| 36 |  |  | 
| 37 |  |   //===--------------------------------------------------------------------===// | 
| 38 |  |   // Analysis Hooks | 
| 39 |  |   //===--------------------------------------------------------------------===// | 
| 40 |  |  | 
| 41 |  |   /// Returns true if the given region 'src' can be inlined into the region | 
| 42 |  |   /// 'dest' that is attached to an operation registered to the current dialect. | 
| 43 |  |   bool isLegalToInline(Region *dest, Region *src, | 
| 44 | 0 |                        BlockAndValueMapping &valueMapping) const final { | 
| 45 | 0 |     // Conservatively don't allow inlining into affine structures. | 
| 46 | 0 |     return false; | 
| 47 | 0 |   } | 
| 48 |  |  | 
| 49 |  |   /// Returns true if the given operation 'op', that is registered to this | 
| 50 |  |   /// dialect, can be inlined into the given region, false otherwise. | 
| 51 |  |   bool isLegalToInline(Operation *op, Region *region, | 
| 52 | 0 |                        BlockAndValueMapping &valueMapping) const final { | 
| 53 | 0 |     // Always allow inlining affine operations into the top-level region of a | 
| 54 | 0 |     // function. There are some edge cases when inlining *into* affine | 
| 55 | 0 |     // structures, but that is handled in the other 'isLegalToInline' hook | 
| 56 | 0 |     // above. | 
| 57 | 0 |     // TODO: We should be able to inline into other regions than functions. | 
| 58 | 0 |     return isa<FuncOp>(region->getParentOp()); | 
| 59 | 0 |   } | 
| 60 |  |  | 
| 61 |  |   /// Affine regions should be analyzed recursively. | 
| 62 | 0 |   bool shouldAnalyzeRecursively(Operation *op) const final { return true; } | 
| 63 |  | }; | 
| 64 |  | } // end anonymous namespace | 
| 65 |  |  | 
| 66 |  | //===----------------------------------------------------------------------===// | 
| 67 |  | // AffineDialect | 
| 68 |  | //===----------------------------------------------------------------------===// | 
| 69 |  |  | 
| 70 |  | AffineDialect::AffineDialect(MLIRContext *context) | 
| 71 | 0 |     : Dialect(getDialectNamespace(), context) { | 
| 72 | 0 |   addOperations<AffineDmaStartOp, AffineDmaWaitOp, | 
| 73 | 0 | #define GET_OP_LIST | 
| 74 | 0 | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" | 
| 75 | 0 |                 >(); | 
| 76 | 0 |   addInterfaces<AffineInlinerInterface>(); | 
| 77 | 0 | } | 
| 78 |  |  | 
| 79 |  | /// Materialize a single constant operation from a given attribute value with | 
| 80 |  | /// the desired resultant type. | 
| 81 |  | Operation *AffineDialect::materializeConstant(OpBuilder &builder, | 
| 82 |  |                                               Attribute value, Type type, | 
| 83 | 0 |                                               Location loc) { | 
| 84 | 0 |   return builder.create<ConstantOp>(loc, type, value); | 
| 85 | 0 | } | 
| 86 |  |  | 
| 87 |  | /// A utility function to check if a value is defined at the top level of an | 
| 88 |  | /// op with trait `AffineScope`. If the value is defined in an unlinked region, | 
| 89 |  | /// conservatively assume it is not top-level. A value of index type defined at | 
| 90 |  | /// the top level is always a valid symbol. | 
| 91 | 0 | bool mlir::isTopLevelValue(Value value) { | 
| 92 | 0 |   if (auto arg = value.dyn_cast<BlockArgument>()) { | 
| 93 | 0 |     // The block owning the argument may be unlinked, e.g. when the surrounding | 
| 94 | 0 |     // region has not yet been attached to an Op, at which point the parent Op | 
| 95 | 0 |     // is null. | 
| 96 | 0 |     Operation *parentOp = arg.getOwner()->getParentOp(); | 
| 97 | 0 |     return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); | 
| 98 | 0 |   } | 
| 99 | 0 |   // The defining Op may live in an unlinked block so its parent Op may be null. | 
| 100 | 0 |   Operation *parentOp = value.getDefiningOp()->getParentOp(); | 
| 101 | 0 |   return parentOp && parentOp->hasTrait<OpTrait::AffineScope>(); | 
| 102 | 0 | } | 
| 103 |  |  | 
| 104 |  | /// A utility function to check if a value is defined at the top level of | 
| 105 |  | /// `region` or is an argument of `region`. A value of index type defined at the | 
| 106 |  | /// top level of a `AffineScope` region is always a valid symbol for all | 
| 107 |  | /// uses in that region. | 
| 108 | 0 | static bool isTopLevelValue(Value value, Region *region) { | 
| 109 | 0 |   if (auto arg = value.dyn_cast<BlockArgument>()) | 
| 110 | 0 |     return arg.getParentRegion() == region; | 
| 111 | 0 |   return value.getDefiningOp()->getParentRegion() == region; | 
| 112 | 0 | } | 
| 113 |  |  | 
| 114 |  | /// Returns the closest region enclosing `op` that is held by an operation with | 
| 115 |  | /// trait `AffineScope`. | 
| 116 |  | //  TODO: getAffineScope should be publicly exposed for affine passes/utilities. | 
| 117 | 0 | static Region *getAffineScope(Operation *op) { | 
| 118 | 0 |   auto *curOp = op; | 
| 119 | 0 |   while (auto *parentOp = curOp->getParentOp()) { | 
| 120 | 0 |     if (parentOp->hasTrait<OpTrait::AffineScope>()) | 
| 121 | 0 |       return curOp->getParentRegion(); | 
| 122 | 0 |     curOp = parentOp; | 
| 123 | 0 |   } | 
| 124 | 0 |   llvm_unreachable("op doesn't have an enclosing polyhedral scope"); | 
| 125 | 0 | } | 
| 126 |  |  | 
| 127 |  | // A Value can be used as a dimension id iff it meets one of the following | 
| 128 |  | // conditions: | 
| 129 |  | // *) It is valid as a symbol. | 
| 130 |  | // *) It is an induction variable. | 
| 131 |  | // *) It is the result of affine apply operation with dimension id arguments. | 
| 132 | 0 | bool mlir::isValidDim(Value value) { | 
| 133 | 0 |   // The value must be an index type. | 
| 134 | 0 |   if (!value.getType().isIndex()) | 
| 135 | 0 |     return false; | 
| 136 | 0 |  | 
| 137 | 0 |   if (auto *defOp = value.getDefiningOp()) | 
| 138 | 0 |     return isValidDim(value, getAffineScope(defOp)); | 
| 139 | 0 |  | 
| 140 | 0 |   // This value has to be a block argument for an op that has the | 
| 141 | 0 |   // `AffineScope` trait or for an affine.for or affine.parallel. | 
| 142 | 0 |   auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp(); | 
| 143 | 0 |   return parentOp && | 
| 144 | 0 |          (parentOp->hasTrait<OpTrait::AffineScope>() || | 
| 145 | 0 |           isa<AffineForOp>(parentOp) || isa<AffineParallelOp>(parentOp)); | 
| 146 | 0 | } | 
| 147 |  |  | 
| 148 |  | // Value can be used as a dimension id iff it meets one of the following | 
| 149 |  | // conditions: | 
| 150 |  | // *) It is valid as a symbol. | 
| 151 |  | // *) It is an induction variable. | 
| 152 |  | // *) It is the result of an affine apply operation with dimension id operands. | 
| 153 | 0 | bool mlir::isValidDim(Value value, Region *region) { | 
| 154 | 0 |   // The value must be an index type. | 
| 155 | 0 |   if (!value.getType().isIndex()) | 
| 156 | 0 |     return false; | 
| 157 | 0 |  | 
| 158 | 0 |   // All valid symbols are okay. | 
| 159 | 0 |   if (isValidSymbol(value, region)) | 
| 160 | 0 |     return true; | 
| 161 | 0 |  | 
| 162 | 0 |   auto *op = value.getDefiningOp(); | 
| 163 | 0 |   if (!op) { | 
| 164 | 0 |     // This value has to be a block argument for an affine.for or an | 
| 165 | 0 |     // affine.parallel. | 
| 166 | 0 |     auto *parentOp = value.cast<BlockArgument>().getOwner()->getParentOp(); | 
| 167 | 0 |     return isa<AffineForOp>(parentOp) || isa<AffineParallelOp>(parentOp); | 
| 168 | 0 |   } | 
| 169 | 0 | 
 | 
| 170 | 0 |   // Affine apply operation is ok if all of its operands are ok. | 
| 171 | 0 |   if (auto applyOp = dyn_cast<AffineApplyOp>(op)) | 
| 172 | 0 |     return applyOp.isValidDim(region); | 
| 173 | 0 |   // The dim op is okay if its operand memref/tensor is defined at the top | 
| 174 | 0 |   // level. | 
| 175 | 0 |   if (auto dimOp = dyn_cast<DimOp>(op)) | 
| 176 | 0 |     return isTopLevelValue(dimOp.getOperand()); | 
| 177 | 0 |   return false; | 
| 178 | 0 | } | 
| 179 |  |  | 
| 180 |  | /// Returns true if the 'index' dimension of the `memref` defined by | 
| 181 |  | /// `memrefDefOp` is a statically  shaped one or defined using a valid symbol | 
| 182 |  | /// for `region`. | 
| 183 |  | template <typename AnyMemRefDefOp> | 
| 184 |  | static bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index, | 
| 185 | 0 |                                     Region *region) { | 
| 186 | 0 |   auto memRefType = memrefDefOp.getType(); | 
| 187 | 0 |   // Statically shaped. | 
| 188 | 0 |   if (!memRefType.isDynamicDim(index)) | 
| 189 | 0 |     return true; | 
| 190 | 0 |   // Get the position of the dimension among dynamic dimensions; | 
| 191 | 0 |   unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index); | 
| 192 | 0 |   return isValidSymbol(*(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos), | 
| 193 | 0 |                        region); | 
| 194 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL23isMemRefSizeValidSymbolIN4mlir6ViewOpEEbT_jPNS0_6RegionEUnexecuted instantiation: AffineOps.cpp:_ZL23isMemRefSizeValidSymbolIN4mlir9SubViewOpEEbT_jPNS0_6RegionEUnexecuted instantiation: AffineOps.cpp:_ZL23isMemRefSizeValidSymbolIN4mlir7AllocOpEEbT_jPNS0_6RegionE | 
| 195 |  |  | 
| 196 |  | /// Returns true if the result of the dim op is a valid symbol for `region`. | 
| 197 | 0 | static bool isDimOpValidSymbol(DimOp dimOp, Region *region) { | 
| 198 | 0 |   // The dim op is okay if its operand memref/tensor is defined at the top | 
| 199 | 0 |   // level. | 
| 200 | 0 |   if (isTopLevelValue(dimOp.getOperand())) | 
| 201 | 0 |     return true; | 
| 202 | 0 |  | 
| 203 | 0 |   // The dim op is also okay if its operand memref/tensor is a view/subview | 
| 204 | 0 |   // whose corresponding size is a valid symbol. | 
| 205 | 0 |   unsigned index = dimOp.getIndex(); | 
| 206 | 0 |   if (auto viewOp = dyn_cast<ViewOp>(dimOp.getOperand().getDefiningOp())) | 
| 207 | 0 |     return isMemRefSizeValidSymbol<ViewOp>(viewOp, index, region); | 
| 208 | 0 |   if (auto subViewOp = dyn_cast<SubViewOp>(dimOp.getOperand().getDefiningOp())) | 
| 209 | 0 |     return isMemRefSizeValidSymbol<SubViewOp>(subViewOp, index, region); | 
| 210 | 0 |   if (auto allocOp = dyn_cast<AllocOp>(dimOp.getOperand().getDefiningOp())) | 
| 211 | 0 |     return isMemRefSizeValidSymbol<AllocOp>(allocOp, index, region); | 
| 212 | 0 |   return false; | 
| 213 | 0 | } | 
| 214 |  |  | 
| 215 |  | // A value can be used as a symbol (at all its use sites) iff it meets one of | 
| 216 |  | // the following conditions: | 
| 217 |  | // *) It is a constant. | 
| 218 |  | // *) Its defining op or block arg appearance is immediately enclosed by an op | 
| 219 |  | //    with `AffineScope` trait. | 
| 220 |  | // *) It is the result of an affine.apply operation with symbol operands. | 
| 221 |  | // *) It is a result of the dim op on a memref whose corresponding size is a | 
| 222 |  | //    valid symbol. | 
| 223 | 0 | bool mlir::isValidSymbol(Value value) { | 
| 224 | 0 |   // The value must be an index type. | 
| 225 | 0 |   if (!value.getType().isIndex()) | 
| 226 | 0 |     return false; | 
| 227 | 0 |  | 
| 228 | 0 |   // Check that the value is a top level value. | 
| 229 | 0 |   if (isTopLevelValue(value)) | 
| 230 | 0 |     return true; | 
| 231 | 0 |  | 
| 232 | 0 |   if (auto *defOp = value.getDefiningOp()) | 
| 233 | 0 |     return isValidSymbol(value, getAffineScope(defOp)); | 
| 234 | 0 |  | 
| 235 | 0 |   return false; | 
| 236 | 0 | } | 
| 237 |  |  | 
| 238 |  | // A value can be used as a symbol for `region` iff it meets onf of the the | 
| 239 |  | // following conditions: | 
| 240 |  | // *) It is a constant. | 
| 241 |  | // *) It is defined at the top level of 'region' or is its argument. | 
| 242 |  | // *) It dominates `region`'s parent op. | 
| 243 |  | // *) It is the result of an affine apply operation with symbol arguments. | 
| 244 |  | // *) It is a result of the dim op on a memref whose corresponding size is | 
| 245 |  | //    a valid symbol. | 
| 246 | 0 | bool mlir::isValidSymbol(Value value, Region *region) { | 
| 247 | 0 |   // The value must be an index type. | 
| 248 | 0 |   if (!value.getType().isIndex()) | 
| 249 | 0 |     return false; | 
| 250 | 0 |  | 
| 251 | 0 |   // A top-level value is a valid symbol. | 
| 252 | 0 |   if (::isTopLevelValue(value, region)) | 
| 253 | 0 |     return true; | 
| 254 | 0 |  | 
| 255 | 0 |   auto *defOp = value.getDefiningOp(); | 
| 256 | 0 |   if (!defOp) { | 
| 257 | 0 |     // A block argument that is not a top-level value is a valid symbol if it | 
| 258 | 0 |     // dominates region's parent op. | 
| 259 | 0 |     if (!region->getParentOp()->isKnownIsolatedFromAbove()) | 
| 260 | 0 |       if (auto *parentOpRegion = region->getParentOp()->getParentRegion()) | 
| 261 | 0 |         return isValidSymbol(value, parentOpRegion); | 
| 262 | 0 |     return false; | 
| 263 | 0 |   } | 
| 264 | 0 |  | 
| 265 | 0 |   // Constant operation is ok. | 
| 266 | 0 |   Attribute operandCst; | 
| 267 | 0 |   if (matchPattern(defOp, m_Constant(&operandCst))) | 
| 268 | 0 |     return true; | 
| 269 | 0 |  | 
| 270 | 0 |   // Affine apply operation is ok if all of its operands are ok. | 
| 271 | 0 |   if (auto applyOp = dyn_cast<AffineApplyOp>(defOp)) | 
| 272 | 0 |     return applyOp.isValidSymbol(region); | 
| 273 | 0 |  | 
| 274 | 0 |   // Dim op results could be valid symbols at any level. | 
| 275 | 0 |   if (auto dimOp = dyn_cast<DimOp>(defOp)) | 
| 276 | 0 |     return isDimOpValidSymbol(dimOp, region); | 
| 277 | 0 |  | 
| 278 | 0 |   // Check for values dominating `region`'s parent op. | 
| 279 | 0 |   if (!region->getParentOp()->isKnownIsolatedFromAbove()) | 
| 280 | 0 |     if (auto *parentRegion = region->getParentOp()->getParentRegion()) | 
| 281 | 0 |       return isValidSymbol(value, parentRegion); | 
| 282 | 0 |  | 
| 283 | 0 |   return false; | 
| 284 | 0 | } | 
| 285 |  |  | 
| 286 |  | // Returns true if 'value' is a valid index to an affine operation (e.g. | 
| 287 |  | // affine.load, affine.store, affine.dma_start, affine.dma_wait) where | 
| 288 |  | // `region` provides the polyhedral symbol scope. Returns false otherwise. | 
| 289 | 0 | static bool isValidAffineIndexOperand(Value value, Region *region) { | 
| 290 | 0 |   return isValidDim(value, region) || isValidSymbol(value, region); | 
| 291 | 0 | } | 
| 292 |  |  | 
| 293 |  | /// Utility function to verify that a set of operands are valid dimension and | 
| 294 |  | /// symbol identifiers. The operands should be laid out such that the dimension | 
| 295 |  | /// operands are before the symbol operands. This function returns failure if | 
| 296 |  | /// there was an invalid operand. An operation is provided to emit any necessary | 
| 297 |  | /// errors. | 
| 298 |  | template <typename OpTy> | 
| 299 |  | static LogicalResult | 
| 300 |  | verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands, | 
| 301 | 0 |                               unsigned numDims) { | 
| 302 | 0 |   unsigned opIt = 0; | 
| 303 | 0 |   for (auto operand : operands) { | 
| 304 | 0 |     if (opIt++ < numDims) { | 
| 305 | 0 |       if (!isValidDim(operand, getAffineScope(op))) | 
| 306 | 0 |         return op.emitOpError("operand cannot be used as a dimension id"); | 
| 307 | 0 |     } else if (!isValidSymbol(operand, getAffineScope(op))) { | 
| 308 | 0 |       return op.emitOpError("operand cannot be used as a symbol"); | 
| 309 | 0 |     } | 
| 310 | 0 |   } | 
| 311 | 0 |   return success(); | 
| 312 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL29verifyDimAndSymbolIdentifiersIN4mlir11AffineForOpEENS0_13LogicalResultERT_NS0_12OperandRangeEjUnexecuted instantiation: AffineOps.cpp:_ZL29verifyDimAndSymbolIdentifiersIN4mlir10AffineIfOpEENS0_13LogicalResultERT_NS0_12OperandRangeEjUnexecuted instantiation: AffineOps.cpp:_ZL29verifyDimAndSymbolIdentifiersIN4mlir16AffineParallelOpEENS0_13LogicalResultERT_NS0_12OperandRangeEj | 
| 313 |  |  | 
| 314 |  | //===----------------------------------------------------------------------===// | 
| 315 |  | // AffineApplyOp | 
| 316 |  | //===----------------------------------------------------------------------===// | 
| 317 |  |  | 
| 318 | 0 | AffineValueMap AffineApplyOp::getAffineValueMap() { | 
| 319 | 0 |   return AffineValueMap(getAffineMap(), getOperands(), getResult()); | 
| 320 | 0 | } | 
| 321 |  |  | 
| 322 |  | static ParseResult parseAffineApplyOp(OpAsmParser &parser, | 
| 323 | 0 |                                       OperationState &result) { | 
| 324 | 0 |   auto &builder = parser.getBuilder(); | 
| 325 | 0 |   auto indexTy = builder.getIndexType(); | 
| 326 | 0 | 
 | 
| 327 | 0 |   AffineMapAttr mapAttr; | 
| 328 | 0 |   unsigned numDims; | 
| 329 | 0 |   if (parser.parseAttribute(mapAttr, "map", result.attributes) || | 
| 330 | 0 |       parseDimAndSymbolList(parser, result.operands, numDims) || | 
| 331 | 0 |       parser.parseOptionalAttrDict(result.attributes)) | 
| 332 | 0 |     return failure(); | 
| 333 | 0 |   auto map = mapAttr.getValue(); | 
| 334 | 0 | 
 | 
| 335 | 0 |   if (map.getNumDims() != numDims || | 
| 336 | 0 |       numDims + map.getNumSymbols() != result.operands.size()) { | 
| 337 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 338 | 0 |                             "dimension or symbol index mismatch"); | 
| 339 | 0 |   } | 
| 340 | 0 |  | 
| 341 | 0 |   result.types.append(map.getNumResults(), indexTy); | 
| 342 | 0 |   return success(); | 
| 343 | 0 | } | 
| 344 |  |  | 
| 345 | 0 | static void print(OpAsmPrinter &p, AffineApplyOp op) { | 
| 346 | 0 |   p << AffineApplyOp::getOperationName() << " " << op.mapAttr(); | 
| 347 | 0 |   printDimAndSymbolList(op.operand_begin(), op.operand_end(), | 
| 348 | 0 |                         op.getAffineMap().getNumDims(), p); | 
| 349 | 0 |   p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"}); | 
| 350 | 0 | } | 
| 351 |  |  | 
| 352 | 0 | static LogicalResult verify(AffineApplyOp op) { | 
| 353 | 0 |   // Check input and output dimensions match. | 
| 354 | 0 |   auto map = op.map(); | 
| 355 | 0 | 
 | 
| 356 | 0 |   // Verify that operand count matches affine map dimension and symbol count. | 
| 357 | 0 |   if (op.getNumOperands() != map.getNumDims() + map.getNumSymbols()) | 
| 358 | 0 |     return op.emitOpError( | 
| 359 | 0 |         "operand count and affine map dimension and symbol count must match"); | 
| 360 | 0 |  | 
| 361 | 0 |   // Verify that the map only produces one result. | 
| 362 | 0 |   if (map.getNumResults() != 1) | 
| 363 | 0 |     return op.emitOpError("mapping must produce one value"); | 
| 364 | 0 |  | 
| 365 | 0 |   return success(); | 
| 366 | 0 | } | 
| 367 |  |  | 
| 368 |  | // The result of the affine apply operation can be used as a dimension id if all | 
| 369 |  | // its operands are valid dimension ids. | 
| 370 | 0 | bool AffineApplyOp::isValidDim() { | 
| 371 | 0 |   return llvm::all_of(getOperands(), | 
| 372 | 0 |                       [](Value op) { return mlir::isValidDim(op); }); | 
| 373 | 0 | } | 
| 374 |  |  | 
| 375 |  | // The result of the affine apply operation can be used as a dimension id if all | 
| 376 |  | // its operands are valid dimension ids with the parent operation of `region` | 
| 377 |  | // defining the polyhedral scope for symbols. | 
| 378 | 0 | bool AffineApplyOp::isValidDim(Region *region) { | 
| 379 | 0 |   return llvm::all_of(getOperands(), | 
| 380 | 0 |                       [&](Value op) { return ::isValidDim(op, region); }); | 
| 381 | 0 | } | 
| 382 |  |  | 
| 383 |  | // The result of the affine apply operation can be used as a symbol if all its | 
| 384 |  | // operands are symbols. | 
| 385 | 0 | bool AffineApplyOp::isValidSymbol() { | 
| 386 | 0 |   return llvm::all_of(getOperands(), | 
| 387 | 0 |                       [](Value op) { return mlir::isValidSymbol(op); }); | 
| 388 | 0 | } | 
| 389 |  |  | 
| 390 |  | // The result of the affine apply operation can be used as a symbol in `region` | 
| 391 |  | // if all its operands are symbols in `region`. | 
| 392 | 0 | bool AffineApplyOp::isValidSymbol(Region *region) { | 
| 393 | 0 |   return llvm::all_of(getOperands(), [&](Value operand) { | 
| 394 | 0 |     return mlir::isValidSymbol(operand, region); | 
| 395 | 0 |   }); | 
| 396 | 0 | } | 
| 397 |  |  | 
| 398 | 0 | OpFoldResult AffineApplyOp::fold(ArrayRef<Attribute> operands) { | 
| 399 | 0 |   auto map = getAffineMap(); | 
| 400 | 0 | 
 | 
| 401 | 0 |   // Fold dims and symbols to existing values. | 
| 402 | 0 |   auto expr = map.getResult(0); | 
| 403 | 0 |   if (auto dim = expr.dyn_cast<AffineDimExpr>()) | 
| 404 | 0 |     return getOperand(dim.getPosition()); | 
| 405 | 0 |   if (auto sym = expr.dyn_cast<AffineSymbolExpr>()) | 
| 406 | 0 |     return getOperand(map.getNumDims() + sym.getPosition()); | 
| 407 | 0 |  | 
| 408 | 0 |   // Otherwise, default to folding the map. | 
| 409 | 0 |   SmallVector<Attribute, 1> result; | 
| 410 | 0 |   if (failed(map.constantFold(operands, result))) | 
| 411 | 0 |     return {}; | 
| 412 | 0 |   return result[0]; | 
| 413 | 0 | } | 
| 414 |  |  | 
| 415 | 0 | AffineDimExpr AffineApplyNormalizer::renumberOneDim(Value v) { | 
| 416 | 0 |   DenseMap<Value, unsigned>::iterator iterPos; | 
| 417 | 0 |   bool inserted = false; | 
| 418 | 0 |   std::tie(iterPos, inserted) = | 
| 419 | 0 |       dimValueToPosition.insert(std::make_pair(v, dimValueToPosition.size())); | 
| 420 | 0 |   if (inserted) { | 
| 421 | 0 |     reorderedDims.push_back(v); | 
| 422 | 0 |   } | 
| 423 | 0 |   return getAffineDimExpr(iterPos->second, v.getContext()) | 
| 424 | 0 |       .cast<AffineDimExpr>(); | 
| 425 | 0 | } | 
| 426 |  |  | 
| 427 | 0 | AffineMap AffineApplyNormalizer::renumber(const AffineApplyNormalizer &other) { | 
| 428 | 0 |   SmallVector<AffineExpr, 8> dimRemapping; | 
| 429 | 0 |   for (auto v : other.reorderedDims) { | 
| 430 | 0 |     auto kvp = other.dimValueToPosition.find(v); | 
| 431 | 0 |     if (dimRemapping.size() <= kvp->second) | 
| 432 | 0 |       dimRemapping.resize(kvp->second + 1); | 
| 433 | 0 |     dimRemapping[kvp->second] = renumberOneDim(kvp->first); | 
| 434 | 0 |   } | 
| 435 | 0 |   unsigned numSymbols = concatenatedSymbols.size(); | 
| 436 | 0 |   unsigned numOtherSymbols = other.concatenatedSymbols.size(); | 
| 437 | 0 |   SmallVector<AffineExpr, 8> symRemapping(numOtherSymbols); | 
| 438 | 0 |   for (unsigned idx = 0; idx < numOtherSymbols; ++idx) { | 
| 439 | 0 |     symRemapping[idx] = | 
| 440 | 0 |         getAffineSymbolExpr(idx + numSymbols, other.affineMap.getContext()); | 
| 441 | 0 |   } | 
| 442 | 0 |   concatenatedSymbols.insert(concatenatedSymbols.end(), | 
| 443 | 0 |                              other.concatenatedSymbols.begin(), | 
| 444 | 0 |                              other.concatenatedSymbols.end()); | 
| 445 | 0 |   auto map = other.affineMap; | 
| 446 | 0 |   return map.replaceDimsAndSymbols(dimRemapping, symRemapping, | 
| 447 | 0 |                                    reorderedDims.size(), | 
| 448 | 0 |                                    concatenatedSymbols.size()); | 
| 449 | 0 | } | 
| 450 |  |  | 
| 451 |  | // Gather the positions of the operands that are produced by an AffineApplyOp. | 
| 452 |  | static llvm::SetVector<unsigned> | 
| 453 | 0 | indicesFromAffineApplyOp(ArrayRef<Value> operands) { | 
| 454 | 0 |   llvm::SetVector<unsigned> res; | 
| 455 | 0 |   for (auto en : llvm::enumerate(operands)) | 
| 456 | 0 |     if (isa_and_nonnull<AffineApplyOp>(en.value().getDefiningOp())) | 
| 457 | 0 |       res.insert(en.index()); | 
| 458 | 0 |   return res; | 
| 459 | 0 | } | 
| 460 |  |  | 
| 461 |  | // Support the special case of a symbol coming from an AffineApplyOp that needs | 
| 462 |  | // to be composed into the current AffineApplyOp. | 
| 463 |  | // This case is handled by rewriting all such symbols into dims for the purpose | 
| 464 |  | // of allowing mathematical AffineMap composition. | 
| 465 |  | // Returns an AffineMap where symbols that come from an AffineApplyOp have been | 
| 466 |  | // rewritten as dims and are ordered after the original dims. | 
| 467 |  | // TODO(andydavis,ntv): This promotion makes AffineMap lose track of which | 
| 468 |  | // symbols are represented as dims. This loss is static but can still be | 
| 469 |  | // recovered dynamically (with `isValidSymbol`). Still this is annoying for the | 
| 470 |  | // semi-affine map case. A dynamic canonicalization of all dims that are valid | 
| 471 |  | // symbols (a.k.a `canonicalizePromotedSymbols`) into symbols helps and even | 
| 472 |  | // results in better simplifications and foldings. But we should evaluate | 
| 473 |  | // whether this behavior is what we really want after using more. | 
| 474 |  | static AffineMap promoteComposedSymbolsAsDims(AffineMap map, | 
| 475 | 0 |                                               ArrayRef<Value> symbols) { | 
| 476 | 0 |   if (symbols.empty()) { | 
| 477 | 0 |     return map; | 
| 478 | 0 |   } | 
| 479 | 0 |  | 
| 480 | 0 |   // Sanity check on symbols. | 
| 481 | 0 |   for (auto sym : symbols) { | 
| 482 | 0 |     assert(isValidSymbol(sym) && "Expected only valid symbols"); | 
| 483 | 0 |     (void)sym; | 
| 484 | 0 |   } | 
| 485 | 0 | 
 | 
| 486 | 0 |   // Extract the symbol positions that come from an AffineApplyOp and | 
| 487 | 0 |   // needs to be rewritten as dims. | 
| 488 | 0 |   auto symPositions = indicesFromAffineApplyOp(symbols); | 
| 489 | 0 |   if (symPositions.empty()) { | 
| 490 | 0 |     return map; | 
| 491 | 0 |   } | 
| 492 | 0 |  | 
| 493 | 0 |   // Create the new map by replacing each symbol at pos by the next new dim. | 
| 494 | 0 |   unsigned numDims = map.getNumDims(); | 
| 495 | 0 |   unsigned numSymbols = map.getNumSymbols(); | 
| 496 | 0 |   unsigned numNewDims = 0; | 
| 497 | 0 |   unsigned numNewSymbols = 0; | 
| 498 | 0 |   SmallVector<AffineExpr, 8> symReplacements(numSymbols); | 
| 499 | 0 |   for (unsigned i = 0; i < numSymbols; ++i) { | 
| 500 | 0 |     symReplacements[i] = | 
| 501 | 0 |         symPositions.count(i) > 0 | 
| 502 | 0 |             ? getAffineDimExpr(numDims + numNewDims++, map.getContext()) | 
| 503 | 0 |             : getAffineSymbolExpr(numNewSymbols++, map.getContext()); | 
| 504 | 0 |   } | 
| 505 | 0 |   assert(numSymbols >= numNewDims); | 
| 506 | 0 |   AffineMap newMap = map.replaceDimsAndSymbols( | 
| 507 | 0 |       {}, symReplacements, numDims + numNewDims, numNewSymbols); | 
| 508 | 0 | 
 | 
| 509 | 0 |   return newMap; | 
| 510 | 0 | } | 
| 511 |  |  | 
| 512 |  | /// The AffineNormalizer composes AffineApplyOp recursively. Its purpose is to | 
| 513 |  | /// keep a correspondence between the mathematical `map` and the `operands` of | 
| 514 |  | /// a given AffineApplyOp. This correspondence is maintained by iterating over | 
| 515 |  | /// the operands and forming an `auxiliaryMap` that can be composed | 
| 516 |  | /// mathematically with `map`. To keep this correspondence in cases where | 
| 517 |  | /// symbols are produced by affine.apply operations, we perform a local rewrite | 
| 518 |  | /// of symbols as dims. | 
| 519 |  | /// | 
| 520 |  | /// Rationale for locally rewriting symbols as dims: | 
| 521 |  | /// ================================================ | 
| 522 |  | /// The mathematical composition of AffineMap must always concatenate symbols | 
| 523 |  | /// because it does not have enough information to do otherwise. For example, | 
| 524 |  | /// composing `(d0)[s0] -> (d0 + s0)` with itself must produce | 
| 525 |  | /// `(d0)[s0, s1] -> (d0 + s0 + s1)`. | 
| 526 |  | /// | 
| 527 |  | /// The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when | 
| 528 |  | /// applied to the same mlir::Value for both s0 and s1. | 
| 529 |  | /// As a consequence mathematical composition of AffineMap always concatenates | 
| 530 |  | /// symbols. | 
| 531 |  | /// | 
| 532 |  | /// When AffineMaps are used in AffineApplyOp however, they may specify | 
| 533 |  | /// composition via symbols, which is ambiguous mathematically. This corner case | 
| 534 |  | /// is handled by locally rewriting such symbols that come from AffineApplyOp | 
| 535 |  | /// into dims and composing through dims. | 
| 536 |  | /// TODO(andydavis, ntv): Composition via symbols comes at a significant code | 
| 537 |  | /// complexity. Alternatively we should investigate whether we want to | 
| 538 |  | /// explicitly disallow symbols coming from affine.apply and instead force the | 
| 539 |  | /// user to compose symbols beforehand. The annoyances may be small (i.e. 1 or 2 | 
| 540 |  | /// extra API calls for such uses, which haven't popped up until now) and the | 
| 541 |  | /// benefit potentially big: simpler and more maintainable code for a | 
| 542 |  | /// non-trivial, recursive, procedure. | 
| 543 |  | AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map, | 
| 544 |  |                                              ArrayRef<Value> operands) | 
| 545 | 0 |     : AffineApplyNormalizer() { | 
| 546 | 0 |   static_assert(kMaxAffineApplyDepth > 0, "kMaxAffineApplyDepth must be > 0"); | 
| 547 | 0 |   assert(map.getNumInputs() == operands.size() && | 
| 548 | 0 |          "number of operands does not match the number of map inputs"); | 
| 549 | 0 | 
 | 
| 550 | 0 |   LLVM_DEBUG(map.print(dbgs() << "\nInput map: ")); | 
| 551 | 0 | 
 | 
| 552 | 0 |   // Promote symbols that come from an AffineApplyOp to dims by rewriting the | 
| 553 | 0 |   // map to always refer to: | 
| 554 | 0 |   //   (dims, symbols coming from AffineApplyOp, other symbols). | 
| 555 | 0 |   // The order of operands can remain unchanged. | 
| 556 | 0 |   // This is a simplification that relies on 2 ordering properties: | 
| 557 | 0 |   //   1. rewritten symbols always appear after the original dims in the map; | 
| 558 | 0 |   //   2. operands are traversed in order and either dispatched to: | 
| 559 | 0 |   //      a. auxiliaryExprs (dims and symbols rewritten as dims); | 
| 560 | 0 |   //      b. concatenatedSymbols (all other symbols) | 
| 561 | 0 |   // This allows operand order to remain unchanged. | 
| 562 | 0 |   unsigned numDimsBeforeRewrite = map.getNumDims(); | 
| 563 | 0 |   map = promoteComposedSymbolsAsDims(map, | 
| 564 | 0 |                                      operands.take_back(map.getNumSymbols())); | 
| 565 | 0 | 
 | 
| 566 | 0 |   LLVM_DEBUG(map.print(dbgs() << "\nRewritten map: ")); | 
| 567 | 0 | 
 | 
| 568 | 0 |   SmallVector<AffineExpr, 8> auxiliaryExprs; | 
| 569 | 0 |   bool furtherCompose = (affineApplyDepth() <= kMaxAffineApplyDepth); | 
| 570 | 0 |   // We fully spell out the 2 cases below. In this particular instance a little | 
| 571 | 0 |   // code duplication greatly improves readability. | 
| 572 | 0 |   // Note that the first branch would disappear if we only supported full | 
| 573 | 0 |   // composition (i.e. infinite kMaxAffineApplyDepth). | 
| 574 | 0 |   if (!furtherCompose) { | 
| 575 | 0 |     // 1. Only dispatch dims or symbols. | 
| 576 | 0 |     for (auto en : llvm::enumerate(operands)) { | 
| 577 | 0 |       auto t = en.value(); | 
| 578 | 0 |       assert(t.getType().isIndex()); | 
| 579 | 0 |       bool isDim = (en.index() < map.getNumDims()); | 
| 580 | 0 |       if (isDim) { | 
| 581 | 0 |         // a. The mathematical composition of AffineMap composes dims. | 
| 582 | 0 |         auxiliaryExprs.push_back(renumberOneDim(t)); | 
| 583 | 0 |       } else { | 
| 584 | 0 |         // b. The mathematical composition of AffineMap concatenates symbols. | 
| 585 | 0 |         //    We do the same for symbol operands. | 
| 586 | 0 |         concatenatedSymbols.push_back(t); | 
| 587 | 0 |       } | 
| 588 | 0 |     } | 
| 589 | 0 |   } else { | 
| 590 | 0 |     assert(numDimsBeforeRewrite <= operands.size()); | 
| 591 | 0 |     // 2. Compose AffineApplyOps and dispatch dims or symbols. | 
| 592 | 0 |     for (unsigned i = 0, e = operands.size(); i < e; ++i) { | 
| 593 | 0 |       auto t = operands[i]; | 
| 594 | 0 |       auto affineApply = t.getDefiningOp<AffineApplyOp>(); | 
| 595 | 0 |       if (affineApply) { | 
| 596 | 0 |         // a. Compose affine.apply operations. | 
| 597 | 0 |         LLVM_DEBUG(affineApply.getOperation()->print( | 
| 598 | 0 |             dbgs() << "\nCompose AffineApplyOp recursively: ")); | 
| 599 | 0 |         AffineMap affineApplyMap = affineApply.getAffineMap(); | 
| 600 | 0 |         SmallVector<Value, 8> affineApplyOperands( | 
| 601 | 0 |             affineApply.getOperands().begin(), affineApply.getOperands().end()); | 
| 602 | 0 |         AffineApplyNormalizer normalizer(affineApplyMap, affineApplyOperands); | 
| 603 | 0 | 
 | 
| 604 | 0 |         LLVM_DEBUG(normalizer.affineMap.print( | 
| 605 | 0 |             dbgs() << "\nRenumber into current normalizer: ")); | 
| 606 | 0 | 
 | 
| 607 | 0 |         auto renumberedMap = renumber(normalizer); | 
| 608 | 0 | 
 | 
| 609 | 0 |         LLVM_DEBUG( | 
| 610 | 0 |             renumberedMap.print(dbgs() << "\nRecursive composition yields: ")); | 
| 611 | 0 | 
 | 
| 612 | 0 |         auxiliaryExprs.push_back(renumberedMap.getResult(0)); | 
| 613 | 0 |       } else { | 
| 614 | 0 |         if (i < numDimsBeforeRewrite) { | 
| 615 | 0 |           // b. The mathematical composition of AffineMap composes dims. | 
| 616 | 0 |           auxiliaryExprs.push_back(renumberOneDim(t)); | 
| 617 | 0 |         } else { | 
| 618 | 0 |           // c. The mathematical composition of AffineMap concatenates symbols. | 
| 619 | 0 |           //    Note that the map composition will put symbols already present | 
| 620 | 0 |           //    in the map before any symbols coming from the auxiliary map, so | 
| 621 | 0 |           //    we insert them before any symbols that are due to renumbering, | 
| 622 | 0 |           //    and after the proper symbols we have seen already. | 
| 623 | 0 |           concatenatedSymbols.insert( | 
| 624 | 0 |               std::next(concatenatedSymbols.begin(), numProperSymbols++), t); | 
| 625 | 0 |         } | 
| 626 | 0 |       } | 
| 627 | 0 |     } | 
| 628 | 0 |   } | 
| 629 | 0 | 
 | 
| 630 | 0 |   // Early exit if `map` is already composed. | 
| 631 | 0 |   if (auxiliaryExprs.empty()) { | 
| 632 | 0 |     affineMap = map; | 
| 633 | 0 |     return; | 
| 634 | 0 |   } | 
| 635 | 0 |  | 
| 636 | 0 |   assert(concatenatedSymbols.size() >= map.getNumSymbols() && | 
| 637 | 0 |          "Unexpected number of concatenated symbols"); | 
| 638 | 0 |   auto numDims = dimValueToPosition.size(); | 
| 639 | 0 |   auto numSymbols = concatenatedSymbols.size() - map.getNumSymbols(); | 
| 640 | 0 |   auto auxiliaryMap = | 
| 641 | 0 |       AffineMap::get(numDims, numSymbols, auxiliaryExprs, map.getContext()); | 
| 642 | 0 | 
 | 
| 643 | 0 |   LLVM_DEBUG(map.print(dbgs() << "\nCompose map: ")); | 
| 644 | 0 |   LLVM_DEBUG(auxiliaryMap.print(dbgs() << "\nWith map: ")); | 
| 645 | 0 |   LLVM_DEBUG(map.compose(auxiliaryMap).print(dbgs() << "\nResult: ")); | 
| 646 | 0 | 
 | 
| 647 | 0 |   // TODO(andydavis,ntv): Disabling simplification results in major speed gains. | 
| 648 | 0 |   // Another option is to cache the results as it is expected a lot of redundant | 
| 649 | 0 |   // work is performed in practice. | 
| 650 | 0 |   affineMap = simplifyAffineMap(map.compose(auxiliaryMap)); | 
| 651 | 0 | 
 | 
| 652 | 0 |   LLVM_DEBUG(affineMap.print(dbgs() << "\nSimplified result: ")); | 
| 653 | 0 |   LLVM_DEBUG(dbgs() << "\n"); | 
| 654 | 0 | } | 
| 655 |  |  | 
| 656 |  | void AffineApplyNormalizer::normalize(AffineMap *otherMap, | 
| 657 | 0 |                                       SmallVectorImpl<Value> *otherOperands) { | 
| 658 | 0 |   AffineApplyNormalizer other(*otherMap, *otherOperands); | 
| 659 | 0 |   *otherMap = renumber(other); | 
| 660 | 0 | 
 | 
| 661 | 0 |   otherOperands->reserve(reorderedDims.size() + concatenatedSymbols.size()); | 
| 662 | 0 |   otherOperands->assign(reorderedDims.begin(), reorderedDims.end()); | 
| 663 | 0 |   otherOperands->append(concatenatedSymbols.begin(), concatenatedSymbols.end()); | 
| 664 | 0 | } | 
| 665 |  |  | 
| 666 |  | /// Implements `map` and `operands` composition and simplification to support | 
| 667 |  | /// `makeComposedAffineApply`. This can be called to achieve the same effects | 
| 668 |  | /// on `map` and `operands` without creating an AffineApplyOp that needs to be | 
| 669 |  | /// immediately deleted. | 
| 670 |  | static void composeAffineMapAndOperands(AffineMap *map, | 
| 671 | 0 |                                         SmallVectorImpl<Value> *operands) { | 
| 672 | 0 |   AffineApplyNormalizer normalizer(*map, *operands); | 
| 673 | 0 |   auto normalizedMap = normalizer.getAffineMap(); | 
| 674 | 0 |   auto normalizedOperands = normalizer.getOperands(); | 
| 675 | 0 |   canonicalizeMapAndOperands(&normalizedMap, &normalizedOperands); | 
| 676 | 0 |   *map = normalizedMap; | 
| 677 | 0 |   *operands = normalizedOperands; | 
| 678 | 0 |   assert(*map); | 
| 679 | 0 | } | 
| 680 |  |  | 
| 681 |  | void mlir::fullyComposeAffineMapAndOperands(AffineMap *map, | 
| 682 | 0 |                                             SmallVectorImpl<Value> *operands) { | 
| 683 | 0 |   while (llvm::any_of(*operands, [](Value v) { | 
| 684 | 0 |     return isa_and_nonnull<AffineApplyOp>(v.getDefiningOp()); | 
| 685 | 0 |   })) { | 
| 686 | 0 |     composeAffineMapAndOperands(map, operands); | 
| 687 | 0 |   } | 
| 688 | 0 | } | 
| 689 |  |  | 
| 690 |  | AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc, | 
| 691 |  |                                             AffineMap map, | 
| 692 | 0 |                                             ArrayRef<Value> operands) { | 
| 693 | 0 |   AffineMap normalizedMap = map; | 
| 694 | 0 |   SmallVector<Value, 8> normalizedOperands(operands.begin(), operands.end()); | 
| 695 | 0 |   composeAffineMapAndOperands(&normalizedMap, &normalizedOperands); | 
| 696 | 0 |   assert(normalizedMap); | 
| 697 | 0 |   return b.create<AffineApplyOp>(loc, normalizedMap, normalizedOperands); | 
| 698 | 0 | } | 
| 699 |  |  | 
| 700 |  | // A symbol may appear as a dim in affine.apply operations. This function | 
| 701 |  | // canonicalizes dims that are valid symbols into actual symbols. | 
| 702 |  | template <class MapOrSet> | 
| 703 |  | static void canonicalizePromotedSymbols(MapOrSet *mapOrSet, | 
| 704 | 0 |                                         SmallVectorImpl<Value> *operands) { | 
| 705 | 0 |   if (!mapOrSet || operands->empty()) | 
| 706 | 0 |     return; | 
| 707 | 0 |  | 
| 708 | 0 |   assert(mapOrSet->getNumInputs() == operands->size() && | 
| 709 | 0 |          "map/set inputs must match number of operands"); | 
| 710 | 0 | 
 | 
| 711 | 0 |   auto *context = mapOrSet->getContext(); | 
| 712 | 0 |   SmallVector<Value, 8> resultOperands; | 
| 713 | 0 |   resultOperands.reserve(operands->size()); | 
| 714 | 0 |   SmallVector<Value, 8> remappedSymbols; | 
| 715 | 0 |   remappedSymbols.reserve(operands->size()); | 
| 716 | 0 |   unsigned nextDim = 0; | 
| 717 | 0 |   unsigned nextSym = 0; | 
| 718 | 0 |   unsigned oldNumSyms = mapOrSet->getNumSymbols(); | 
| 719 | 0 |   SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); | 
| 720 | 0 |   for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) { | 
| 721 | 0 |     if (i < mapOrSet->getNumDims()) { | 
| 722 | 0 |       if (isValidSymbol((*operands)[i])) { | 
| 723 | 0 |         // This is a valid symbol that appears as a dim, canonicalize it. | 
| 724 | 0 |         dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context); | 
| 725 | 0 |         remappedSymbols.push_back((*operands)[i]); | 
| 726 | 0 |       } else { | 
| 727 | 0 |         dimRemapping[i] = getAffineDimExpr(nextDim++, context); | 
| 728 | 0 |         resultOperands.push_back((*operands)[i]); | 
| 729 | 0 |       } | 
| 730 | 0 |     } else { | 
| 731 | 0 |       resultOperands.push_back((*operands)[i]); | 
| 732 | 0 |     } | 
| 733 | 0 |   } | 
| 734 | 0 | 
 | 
| 735 | 0 |   resultOperands.append(remappedSymbols.begin(), remappedSymbols.end()); | 
| 736 | 0 |   *operands = resultOperands; | 
| 737 | 0 |   *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, {}, nextDim, | 
| 738 | 0 |                                               oldNumSyms + nextSym); | 
| 739 | 0 | 
 | 
| 740 | 0 |   assert(mapOrSet->getNumInputs() == operands->size() && | 
| 741 | 0 |          "map/set inputs must match number of operands"); | 
| 742 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL27canonicalizePromotedSymbolsIN4mlir9AffineMapEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEEUnexecuted instantiation: AffineOps.cpp:_ZL27canonicalizePromotedSymbolsIN4mlir10IntegerSetEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEE | 
| 743 |  |  | 
| 744 |  | // Works for either an affine map or an integer set. | 
| 745 |  | template <class MapOrSet> | 
| 746 |  | static void canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet, | 
| 747 | 0 |                                             SmallVectorImpl<Value> *operands) { | 
| 748 | 0 |   static_assert(llvm::is_one_of<MapOrSet, AffineMap, IntegerSet>::value, | 
| 749 | 0 |                 "Argument must be either of AffineMap or IntegerSet type"); | 
| 750 | 0 | 
 | 
| 751 | 0 |   if (!mapOrSet || operands->empty()) | 
| 752 | 0 |     return; | 
| 753 | 0 |  | 
| 754 | 0 |   assert(mapOrSet->getNumInputs() == operands->size() && | 
| 755 | 0 |          "map/set inputs must match number of operands"); | 
| 756 | 0 | 
 | 
| 757 | 0 |   canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands); | 
| 758 | 0 | 
 | 
| 759 | 0 |   // Check to see what dims are used. | 
| 760 | 0 |   llvm::SmallBitVector usedDims(mapOrSet->getNumDims()); | 
| 761 | 0 |   llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols()); | 
| 762 | 0 |   mapOrSet->walkExprs([&](AffineExpr expr) { | 
| 763 | 0 |     if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) | 
| 764 | 0 |       usedDims[dimExpr.getPosition()] = true; | 
| 765 | 0 |     else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) | 
| 766 | 0 |       usedSyms[symExpr.getPosition()] = true; | 
| 767 | 0 |   }); Unexecuted instantiation: AffineOps.cpp:_ZZL31canonicalizeMapOrSetAndOperandsIN4mlir9AffineMapEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEEENKUlNS0_10AffineExprEE_clES9_Unexecuted instantiation: AffineOps.cpp:_ZZL31canonicalizeMapOrSetAndOperandsIN4mlir10IntegerSetEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEEENKUlNS0_10AffineExprEE_clES9_ | 
| 768 | 0 | 
 | 
| 769 | 0 |   auto *context = mapOrSet->getContext(); | 
| 770 | 0 | 
 | 
| 771 | 0 |   SmallVector<Value, 8> resultOperands; | 
| 772 | 0 |   resultOperands.reserve(operands->size()); | 
| 773 | 0 | 
 | 
| 774 | 0 |   llvm::SmallDenseMap<Value, AffineExpr, 8> seenDims; | 
| 775 | 0 |   SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims()); | 
| 776 | 0 |   unsigned nextDim = 0; | 
| 777 | 0 |   for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) { | 
| 778 | 0 |     if (usedDims[i]) { | 
| 779 | 0 |       // Remap dim positions for duplicate operands. | 
| 780 | 0 |       auto it = seenDims.find((*operands)[i]); | 
| 781 | 0 |       if (it == seenDims.end()) { | 
| 782 | 0 |         dimRemapping[i] = getAffineDimExpr(nextDim++, context); | 
| 783 | 0 |         resultOperands.push_back((*operands)[i]); | 
| 784 | 0 |         seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i])); | 
| 785 | 0 |       } else { | 
| 786 | 0 |         dimRemapping[i] = it->second; | 
| 787 | 0 |       } | 
| 788 | 0 |     } | 
| 789 | 0 |   } | 
| 790 | 0 |   llvm::SmallDenseMap<Value, AffineExpr, 8> seenSymbols; | 
| 791 | 0 |   SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols()); | 
| 792 | 0 |   unsigned nextSym = 0; | 
| 793 | 0 |   for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) { | 
| 794 | 0 |     if (!usedSyms[i]) | 
| 795 | 0 |       continue; | 
| 796 | 0 |     // Handle constant operands (only needed for symbolic operands since | 
| 797 | 0 |     // constant operands in dimensional positions would have already been | 
| 798 | 0 |     // promoted to symbolic positions above). | 
| 799 | 0 |     IntegerAttr operandCst; | 
| 800 | 0 |     if (matchPattern((*operands)[i + mapOrSet->getNumDims()], | 
| 801 | 0 |                      m_Constant(&operandCst))) { | 
| 802 | 0 |       symRemapping[i] = | 
| 803 | 0 |           getAffineConstantExpr(operandCst.getValue().getSExtValue(), context); | 
| 804 | 0 |       continue; | 
| 805 | 0 |     } | 
| 806 | 0 |     // Remap symbol positions for duplicate operands. | 
| 807 | 0 |     auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]); | 
| 808 | 0 |     if (it == seenSymbols.end()) { | 
| 809 | 0 |       symRemapping[i] = getAffineSymbolExpr(nextSym++, context); | 
| 810 | 0 |       resultOperands.push_back((*operands)[i + mapOrSet->getNumDims()]); | 
| 811 | 0 |       seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()], | 
| 812 | 0 |                                         symRemapping[i])); | 
| 813 | 0 |     } else { | 
| 814 | 0 |       symRemapping[i] = it->second; | 
| 815 | 0 |     } | 
| 816 | 0 |   } | 
| 817 | 0 |   *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping, | 
| 818 | 0 |                                               nextDim, nextSym); | 
| 819 | 0 |   *operands = resultOperands; | 
| 820 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL31canonicalizeMapOrSetAndOperandsIN4mlir9AffineMapEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEEUnexecuted instantiation: AffineOps.cpp:_ZL31canonicalizeMapOrSetAndOperandsIN4mlir10IntegerSetEEvPT_PN4llvm15SmallVectorImplINS0_5ValueEEE | 
| 821 |  |  | 
| 822 |  | void mlir::canonicalizeMapAndOperands(AffineMap *map, | 
| 823 | 0 |                                       SmallVectorImpl<Value> *operands) { | 
| 824 | 0 |   canonicalizeMapOrSetAndOperands<AffineMap>(map, operands); | 
| 825 | 0 | } | 
| 826 |  |  | 
| 827 |  | void mlir::canonicalizeSetAndOperands(IntegerSet *set, | 
| 828 | 0 |                                       SmallVectorImpl<Value> *operands) { | 
| 829 | 0 |   canonicalizeMapOrSetAndOperands<IntegerSet>(set, operands); | 
| 830 | 0 | } | 
| 831 |  |  | 
| 832 |  | namespace { | 
| 833 |  | /// Simplify AffineApply, AffineLoad, and AffineStore operations by composing | 
| 834 |  | /// maps that supply results into them. | 
| 835 |  | /// | 
| 836 |  | template <typename AffineOpTy> | 
| 837 |  | struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> { | 
| 838 |  |   using OpRewritePattern<AffineOpTy>::OpRewritePattern; | 
| 839 |  |  | 
| 840 |  |   /// Replace the affine op with another instance of it with the supplied | 
| 841 |  |   /// map and mapOperands. | 
| 842 |  |   void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp, | 
| 843 |  |                        AffineMap map, ArrayRef<Value> mapOperands) const; | 
| 844 |  |  | 
| 845 |  |   LogicalResult matchAndRewrite(AffineOpTy affineOp, | 
| 846 | 0 |                                 PatternRewriter &rewriter) const override { | 
| 847 | 0 |     static_assert(llvm::is_one_of<AffineOpTy, AffineLoadOp, AffinePrefetchOp, | 
| 848 | 0 |                                   AffineStoreOp, AffineApplyOp, AffineMinOp, | 
| 849 | 0 |                                   AffineMaxOp>::value, | 
| 850 | 0 |                   "affine load/store/apply/prefetch/min/max op expected"); | 
| 851 | 0 |     auto map = affineOp.getAffineMap(); | 
| 852 | 0 |     AffineMap oldMap = map; | 
| 853 | 0 |     auto oldOperands = affineOp.getMapOperands(); | 
| 854 | 0 |     SmallVector<Value, 8> resultOperands(oldOperands); | 
| 855 | 0 |     composeAffineMapAndOperands(&map, &resultOperands); | 
| 856 | 0 |     if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(), | 
| 857 | 0 |                                     resultOperands.begin())) | 
| 858 | 0 |       return failure(); | 
| 859 | 0 |  | 
| 860 | 0 |     replaceAffineOp(rewriter, affineOp, map, resultOperands); | 
| 861 | 0 |     return success(); | 
| 862 | 0 |   } Unexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir13AffineApplyOpEE15matchAndRewriteES2_RNS1_15PatternRewriterEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir12AffineLoadOpEE15matchAndRewriteES2_RNS1_15PatternRewriterEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir13AffineStoreOpEE15matchAndRewriteES2_RNS1_15PatternRewriterEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir11AffineMinOpEE15matchAndRewriteES2_RNS1_15PatternRewriterEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir11AffineMaxOpEE15matchAndRewriteES2_RNS1_15PatternRewriterEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir16AffinePrefetchOpEE15matchAndRewriteES2_RNS1_15PatternRewriterE | 
| 863 |  | }; | 
| 864 |  |  | 
| 865 |  | // Specialize the template to account for the different build signatures for | 
| 866 |  | // affine load, store, and apply ops. | 
| 867 |  | template <> | 
| 868 |  | void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp( | 
| 869 |  |     PatternRewriter &rewriter, AffineLoadOp load, AffineMap map, | 
| 870 | 0 |     ArrayRef<Value> mapOperands) const { | 
| 871 | 0 |   rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map, | 
| 872 | 0 |                                             mapOperands); | 
| 873 | 0 | } | 
| 874 |  | template <> | 
| 875 |  | void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp( | 
| 876 |  |     PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map, | 
| 877 | 0 |     ArrayRef<Value> mapOperands) const { | 
| 878 | 0 |   rewriter.replaceOpWithNewOp<AffinePrefetchOp>( | 
| 879 | 0 |       prefetch, prefetch.memref(), map, mapOperands, | 
| 880 | 0 |       prefetch.localityHint().getZExtValue(), prefetch.isWrite(), | 
| 881 | 0 |       prefetch.isDataCache()); | 
| 882 | 0 | } | 
| 883 |  | template <> | 
| 884 |  | void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp( | 
| 885 |  |     PatternRewriter &rewriter, AffineStoreOp store, AffineMap map, | 
| 886 | 0 |     ArrayRef<Value> mapOperands) const { | 
| 887 | 0 |   rewriter.replaceOpWithNewOp<AffineStoreOp>( | 
| 888 | 0 |       store, store.getValueToStore(), store.getMemRef(), map, mapOperands); | 
| 889 | 0 | } | 
| 890 |  |  | 
| 891 |  | // Generic version for ops that don't have extra operands. | 
| 892 |  | template <typename AffineOpTy> | 
| 893 |  | void SimplifyAffineOp<AffineOpTy>::replaceAffineOp( | 
| 894 |  |     PatternRewriter &rewriter, AffineOpTy op, AffineMap map, | 
| 895 | 0 |     ArrayRef<Value> mapOperands) const { | 
| 896 | 0 |   rewriter.replaceOpWithNewOp<AffineOpTy>(op, map, mapOperands); | 
| 897 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir13AffineApplyOpEE15replaceAffineOpERNS1_15PatternRewriterES2_NS1_9AffineMapEN4llvm8ArrayRefINS1_5ValueEEEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir11AffineMinOpEE15replaceAffineOpERNS1_15PatternRewriterES2_NS1_9AffineMapEN4llvm8ArrayRefINS1_5ValueEEEUnexecuted instantiation: AffineOps.cpp:_ZNK12_GLOBAL__N_116SimplifyAffineOpIN4mlir11AffineMaxOpEE15replaceAffineOpERNS1_15PatternRewriterES2_NS1_9AffineMapEN4llvm8ArrayRefINS1_5ValueEEE | 
| 898 |  | } // end anonymous namespace. | 
| 899 |  |  | 
| 900 |  | void AffineApplyOp::getCanonicalizationPatterns( | 
| 901 | 0 |     OwningRewritePatternList &results, MLIRContext *context) { | 
| 902 | 0 |   results.insert<SimplifyAffineOp<AffineApplyOp>>(context); | 
| 903 | 0 | } | 
| 904 |  |  | 
| 905 |  | //===----------------------------------------------------------------------===// | 
| 906 |  | // Common canonicalization pattern support logic | 
| 907 |  | //===----------------------------------------------------------------------===// | 
| 908 |  |  | 
| 909 |  | /// This is a common class used for patterns of the form | 
| 910 |  | /// "someop(memrefcast) -> someop".  It folds the source of any memref_cast | 
| 911 |  | /// into the root operation directly. | 
| 912 | 0 | static LogicalResult foldMemRefCast(Operation *op) { | 
| 913 | 0 |   bool folded = false; | 
| 914 | 0 |   for (OpOperand &operand : op->getOpOperands()) { | 
| 915 | 0 |     auto cast = operand.get().getDefiningOp<MemRefCastOp>(); | 
| 916 | 0 |     if (cast && !cast.getOperand().getType().isa<UnrankedMemRefType>()) { | 
| 917 | 0 |       operand.set(cast.getOperand()); | 
| 918 | 0 |       folded = true; | 
| 919 | 0 |     } | 
| 920 | 0 |   } | 
| 921 | 0 |   return success(folded); | 
| 922 | 0 | } | 
| 923 |  |  | 
| 924 |  | //===----------------------------------------------------------------------===// | 
| 925 |  | // AffineDmaStartOp | 
| 926 |  | //===----------------------------------------------------------------------===// | 
| 927 |  |  | 
| 928 |  | // TODO(b/133776335) Check that map operands are loop IVs or symbols. | 
| 929 |  | void AffineDmaStartOp::build(OpBuilder &builder, OperationState &result, | 
| 930 |  |                              Value srcMemRef, AffineMap srcMap, | 
| 931 |  |                              ValueRange srcIndices, Value destMemRef, | 
| 932 |  |                              AffineMap dstMap, ValueRange destIndices, | 
| 933 |  |                              Value tagMemRef, AffineMap tagMap, | 
| 934 |  |                              ValueRange tagIndices, Value numElements, | 
| 935 | 0 |                              Value stride, Value elementsPerStride) { | 
| 936 | 0 |   result.addOperands(srcMemRef); | 
| 937 | 0 |   result.addAttribute(getSrcMapAttrName(), AffineMapAttr::get(srcMap)); | 
| 938 | 0 |   result.addOperands(srcIndices); | 
| 939 | 0 |   result.addOperands(destMemRef); | 
| 940 | 0 |   result.addAttribute(getDstMapAttrName(), AffineMapAttr::get(dstMap)); | 
| 941 | 0 |   result.addOperands(destIndices); | 
| 942 | 0 |   result.addOperands(tagMemRef); | 
| 943 | 0 |   result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap)); | 
| 944 | 0 |   result.addOperands(tagIndices); | 
| 945 | 0 |   result.addOperands(numElements); | 
| 946 | 0 |   if (stride) { | 
| 947 | 0 |     result.addOperands({stride, elementsPerStride}); | 
| 948 | 0 |   } | 
| 949 | 0 | } | 
| 950 |  |  | 
| 951 | 0 | void AffineDmaStartOp::print(OpAsmPrinter &p) { | 
| 952 | 0 |   p << "affine.dma_start " << getSrcMemRef() << '['; | 
| 953 | 0 |   p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices()); | 
| 954 | 0 |   p << "], " << getDstMemRef() << '['; | 
| 955 | 0 |   p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices()); | 
| 956 | 0 |   p << "], " << getTagMemRef() << '['; | 
| 957 | 0 |   p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices()); | 
| 958 | 0 |   p << "], " << getNumElements(); | 
| 959 | 0 |   if (isStrided()) { | 
| 960 | 0 |     p << ", " << getStride(); | 
| 961 | 0 |     p << ", " << getNumElementsPerStride(); | 
| 962 | 0 |   } | 
| 963 | 0 |   p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", " | 
| 964 | 0 |     << getTagMemRefType(); | 
| 965 | 0 | } | 
| 966 |  |  | 
| 967 |  | // Parse AffineDmaStartOp. | 
| 968 |  | // Ex: | 
| 969 |  | //   affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size, | 
| 970 |  | //     %stride, %num_elt_per_stride | 
| 971 |  | //       : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32> | 
| 972 |  | // | 
| 973 |  | ParseResult AffineDmaStartOp::parse(OpAsmParser &parser, | 
| 974 | 0 |                                     OperationState &result) { | 
| 975 | 0 |   OpAsmParser::OperandType srcMemRefInfo; | 
| 976 | 0 |   AffineMapAttr srcMapAttr; | 
| 977 | 0 |   SmallVector<OpAsmParser::OperandType, 4> srcMapOperands; | 
| 978 | 0 |   OpAsmParser::OperandType dstMemRefInfo; | 
| 979 | 0 |   AffineMapAttr dstMapAttr; | 
| 980 | 0 |   SmallVector<OpAsmParser::OperandType, 4> dstMapOperands; | 
| 981 | 0 |   OpAsmParser::OperandType tagMemRefInfo; | 
| 982 | 0 |   AffineMapAttr tagMapAttr; | 
| 983 | 0 |   SmallVector<OpAsmParser::OperandType, 4> tagMapOperands; | 
| 984 | 0 |   OpAsmParser::OperandType numElementsInfo; | 
| 985 | 0 |   SmallVector<OpAsmParser::OperandType, 2> strideInfo; | 
| 986 | 0 | 
 | 
| 987 | 0 |   SmallVector<Type, 3> types; | 
| 988 | 0 |   auto indexType = parser.getBuilder().getIndexType(); | 
| 989 | 0 | 
 | 
| 990 | 0 |   // Parse and resolve the following list of operands: | 
| 991 | 0 |   // *) dst memref followed by its affine maps operands (in square brackets). | 
| 992 | 0 |   // *) src memref followed by its affine map operands (in square brackets). | 
| 993 | 0 |   // *) tag memref followed by its affine map operands (in square brackets). | 
| 994 | 0 |   // *) number of elements transferred by DMA operation. | 
| 995 | 0 |   if (parser.parseOperand(srcMemRefInfo) || | 
| 996 | 0 |       parser.parseAffineMapOfSSAIds(srcMapOperands, srcMapAttr, | 
| 997 | 0 |                                     getSrcMapAttrName(), result.attributes) || | 
| 998 | 0 |       parser.parseComma() || parser.parseOperand(dstMemRefInfo) || | 
| 999 | 0 |       parser.parseAffineMapOfSSAIds(dstMapOperands, dstMapAttr, | 
| 1000 | 0 |                                     getDstMapAttrName(), result.attributes) || | 
| 1001 | 0 |       parser.parseComma() || parser.parseOperand(tagMemRefInfo) || | 
| 1002 | 0 |       parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr, | 
| 1003 | 0 |                                     getTagMapAttrName(), result.attributes) || | 
| 1004 | 0 |       parser.parseComma() || parser.parseOperand(numElementsInfo)) | 
| 1005 | 0 |     return failure(); | 
| 1006 | 0 |  | 
| 1007 | 0 |   // Parse optional stride and elements per stride. | 
| 1008 | 0 |   if (parser.parseTrailingOperandList(strideInfo)) { | 
| 1009 | 0 |     return failure(); | 
| 1010 | 0 |   } | 
| 1011 | 0 |   if (!strideInfo.empty() && strideInfo.size() != 2) { | 
| 1012 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 1013 | 0 |                             "expected two stride related operands"); | 
| 1014 | 0 |   } | 
| 1015 | 0 |   bool isStrided = strideInfo.size() == 2; | 
| 1016 | 0 | 
 | 
| 1017 | 0 |   if (parser.parseColonTypeList(types)) | 
| 1018 | 0 |     return failure(); | 
| 1019 | 0 |  | 
| 1020 | 0 |   if (types.size() != 3) | 
| 1021 | 0 |     return parser.emitError(parser.getNameLoc(), "expected three types"); | 
| 1022 | 0 |  | 
| 1023 | 0 |   if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) || | 
| 1024 | 0 |       parser.resolveOperands(srcMapOperands, indexType, result.operands) || | 
| 1025 | 0 |       parser.resolveOperand(dstMemRefInfo, types[1], result.operands) || | 
| 1026 | 0 |       parser.resolveOperands(dstMapOperands, indexType, result.operands) || | 
| 1027 | 0 |       parser.resolveOperand(tagMemRefInfo, types[2], result.operands) || | 
| 1028 | 0 |       parser.resolveOperands(tagMapOperands, indexType, result.operands) || | 
| 1029 | 0 |       parser.resolveOperand(numElementsInfo, indexType, result.operands)) | 
| 1030 | 0 |     return failure(); | 
| 1031 | 0 |  | 
| 1032 | 0 |   if (isStrided) { | 
| 1033 | 0 |     if (parser.resolveOperands(strideInfo, indexType, result.operands)) | 
| 1034 | 0 |       return failure(); | 
| 1035 | 0 |   } | 
| 1036 | 0 |  | 
| 1037 | 0 |   // Check that src/dst/tag operand counts match their map.numInputs. | 
| 1038 | 0 |   if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() || | 
| 1039 | 0 |       dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() || | 
| 1040 | 0 |       tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) | 
| 1041 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 1042 | 0 |                             "memref operand count not equal to map.numInputs"); | 
| 1043 | 0 |   return success(); | 
| 1044 | 0 | } | 
| 1045 |  |  | 
| 1046 | 0 | LogicalResult AffineDmaStartOp::verify() { | 
| 1047 | 0 |   if (!getOperand(getSrcMemRefOperandIndex()).getType().isa<MemRefType>()) | 
| 1048 | 0 |     return emitOpError("expected DMA source to be of memref type"); | 
| 1049 | 0 |   if (!getOperand(getDstMemRefOperandIndex()).getType().isa<MemRefType>()) | 
| 1050 | 0 |     return emitOpError("expected DMA destination to be of memref type"); | 
| 1051 | 0 |   if (!getOperand(getTagMemRefOperandIndex()).getType().isa<MemRefType>()) | 
| 1052 | 0 |     return emitOpError("expected DMA tag to be of memref type"); | 
| 1053 | 0 |  | 
| 1054 | 0 |   // DMAs from different memory spaces supported. | 
| 1055 | 0 |   if (getSrcMemorySpace() == getDstMemorySpace()) { | 
| 1056 | 0 |     return emitOpError("DMA should be between different memory spaces"); | 
| 1057 | 0 |   } | 
| 1058 | 0 |   unsigned numInputsAllMaps = getSrcMap().getNumInputs() + | 
| 1059 | 0 |                               getDstMap().getNumInputs() + | 
| 1060 | 0 |                               getTagMap().getNumInputs(); | 
| 1061 | 0 |   if (getNumOperands() != numInputsAllMaps + 3 + 1 && | 
| 1062 | 0 |       getNumOperands() != numInputsAllMaps + 3 + 1 + 2) { | 
| 1063 | 0 |     return emitOpError("incorrect number of operands"); | 
| 1064 | 0 |   } | 
| 1065 | 0 |  | 
| 1066 | 0 |   Region *scope = getAffineScope(*this); | 
| 1067 | 0 |   for (auto idx : getSrcIndices()) { | 
| 1068 | 0 |     if (!idx.getType().isIndex()) | 
| 1069 | 0 |       return emitOpError("src index to dma_start must have 'index' type"); | 
| 1070 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 1071 | 0 |       return emitOpError("src index must be a dimension or symbol identifier"); | 
| 1072 | 0 |   } | 
| 1073 | 0 |   for (auto idx : getDstIndices()) { | 
| 1074 | 0 |     if (!idx.getType().isIndex()) | 
| 1075 | 0 |       return emitOpError("dst index to dma_start must have 'index' type"); | 
| 1076 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 1077 | 0 |       return emitOpError("dst index must be a dimension or symbol identifier"); | 
| 1078 | 0 |   } | 
| 1079 | 0 |   for (auto idx : getTagIndices()) { | 
| 1080 | 0 |     if (!idx.getType().isIndex()) | 
| 1081 | 0 |       return emitOpError("tag index to dma_start must have 'index' type"); | 
| 1082 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 1083 | 0 |       return emitOpError("tag index must be a dimension or symbol identifier"); | 
| 1084 | 0 |   } | 
| 1085 | 0 |   return success(); | 
| 1086 | 0 | } | 
| 1087 |  |  | 
| 1088 |  | LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands, | 
| 1089 | 0 |                                      SmallVectorImpl<OpFoldResult> &results) { | 
| 1090 | 0 |   /// dma_start(memrefcast) -> dma_start | 
| 1091 | 0 |   return foldMemRefCast(*this); | 
| 1092 | 0 | } | 
| 1093 |  |  | 
| 1094 |  | //===----------------------------------------------------------------------===// | 
| 1095 |  | // AffineDmaWaitOp | 
| 1096 |  | //===----------------------------------------------------------------------===// | 
| 1097 |  |  | 
| 1098 |  | // TODO(b/133776335) Check that map operands are loop IVs or symbols. | 
| 1099 |  | void AffineDmaWaitOp::build(OpBuilder &builder, OperationState &result, | 
| 1100 |  |                             Value tagMemRef, AffineMap tagMap, | 
| 1101 | 0 |                             ValueRange tagIndices, Value numElements) { | 
| 1102 | 0 |   result.addOperands(tagMemRef); | 
| 1103 | 0 |   result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap)); | 
| 1104 | 0 |   result.addOperands(tagIndices); | 
| 1105 | 0 |   result.addOperands(numElements); | 
| 1106 | 0 | } | 
| 1107 |  |  | 
| 1108 | 0 | void AffineDmaWaitOp::print(OpAsmPrinter &p) { | 
| 1109 | 0 |   p << "affine.dma_wait " << getTagMemRef() << '['; | 
| 1110 | 0 |   SmallVector<Value, 2> operands(getTagIndices()); | 
| 1111 | 0 |   p.printAffineMapOfSSAIds(getTagMapAttr(), operands); | 
| 1112 | 0 |   p << "], "; | 
| 1113 | 0 |   p.printOperand(getNumElements()); | 
| 1114 | 0 |   p << " : " << getTagMemRef().getType(); | 
| 1115 | 0 | } | 
| 1116 |  |  | 
| 1117 |  | // Parse AffineDmaWaitOp. | 
| 1118 |  | // Eg: | 
| 1119 |  | //   affine.dma_wait %tag[%index], %num_elements | 
| 1120 |  | //     : memref<1 x i32, (d0) -> (d0), 4> | 
| 1121 |  | // | 
| 1122 |  | ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser, | 
| 1123 | 0 |                                    OperationState &result) { | 
| 1124 | 0 |   OpAsmParser::OperandType tagMemRefInfo; | 
| 1125 | 0 |   AffineMapAttr tagMapAttr; | 
| 1126 | 0 |   SmallVector<OpAsmParser::OperandType, 2> tagMapOperands; | 
| 1127 | 0 |   Type type; | 
| 1128 | 0 |   auto indexType = parser.getBuilder().getIndexType(); | 
| 1129 | 0 |   OpAsmParser::OperandType numElementsInfo; | 
| 1130 | 0 | 
 | 
| 1131 | 0 |   // Parse tag memref, its map operands, and dma size. | 
| 1132 | 0 |   if (parser.parseOperand(tagMemRefInfo) || | 
| 1133 | 0 |       parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr, | 
| 1134 | 0 |                                     getTagMapAttrName(), result.attributes) || | 
| 1135 | 0 |       parser.parseComma() || parser.parseOperand(numElementsInfo) || | 
| 1136 | 0 |       parser.parseColonType(type) || | 
| 1137 | 0 |       parser.resolveOperand(tagMemRefInfo, type, result.operands) || | 
| 1138 | 0 |       parser.resolveOperands(tagMapOperands, indexType, result.operands) || | 
| 1139 | 0 |       parser.resolveOperand(numElementsInfo, indexType, result.operands)) | 
| 1140 | 0 |     return failure(); | 
| 1141 | 0 |  | 
| 1142 | 0 |   if (!type.isa<MemRefType>()) | 
| 1143 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 1144 | 0 |                             "expected tag to be of memref type"); | 
| 1145 | 0 |  | 
| 1146 | 0 |   if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs()) | 
| 1147 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 1148 | 0 |                             "tag memref operand count != to map.numInputs"); | 
| 1149 | 0 |   return success(); | 
| 1150 | 0 | } | 
| 1151 |  |  | 
| 1152 | 0 | LogicalResult AffineDmaWaitOp::verify() { | 
| 1153 | 0 |   if (!getOperand(0).getType().isa<MemRefType>()) | 
| 1154 | 0 |     return emitOpError("expected DMA tag to be of memref type"); | 
| 1155 | 0 |   Region *scope = getAffineScope(*this); | 
| 1156 | 0 |   for (auto idx : getTagIndices()) { | 
| 1157 | 0 |     if (!idx.getType().isIndex()) | 
| 1158 | 0 |       return emitOpError("index to dma_wait must have 'index' type"); | 
| 1159 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 1160 | 0 |       return emitOpError("index must be a dimension or symbol identifier"); | 
| 1161 | 0 |   } | 
| 1162 | 0 |   return success(); | 
| 1163 | 0 | } | 
| 1164 |  |  | 
| 1165 |  | LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands, | 
| 1166 | 0 |                                     SmallVectorImpl<OpFoldResult> &results) { | 
| 1167 | 0 |   /// dma_wait(memrefcast) -> dma_wait | 
| 1168 | 0 |   return foldMemRefCast(*this); | 
| 1169 | 0 | } | 
| 1170 |  |  | 
| 1171 |  | //===----------------------------------------------------------------------===// | 
| 1172 |  | // AffineForOp | 
| 1173 |  | //===----------------------------------------------------------------------===// | 
| 1174 |  |  | 
| 1175 |  | void AffineForOp::build(OpBuilder &builder, OperationState &result, | 
| 1176 |  |                         ValueRange lbOperands, AffineMap lbMap, | 
| 1177 | 0 |                         ValueRange ubOperands, AffineMap ubMap, int64_t step) { | 
| 1178 | 0 |   assert(((!lbMap && lbOperands.empty()) || | 
| 1179 | 0 |           lbOperands.size() == lbMap.getNumInputs()) && | 
| 1180 | 0 |          "lower bound operand count does not match the affine map"); | 
| 1181 | 0 |   assert(((!ubMap && ubOperands.empty()) || | 
| 1182 | 0 |           ubOperands.size() == ubMap.getNumInputs()) && | 
| 1183 | 0 |          "upper bound operand count does not match the affine map"); | 
| 1184 | 0 |   assert(step > 0 && "step has to be a positive integer constant"); | 
| 1185 | 0 | 
 | 
| 1186 | 0 |   // Add an attribute for the step. | 
| 1187 | 0 |   result.addAttribute(getStepAttrName(), | 
| 1188 | 0 |                       builder.getIntegerAttr(builder.getIndexType(), step)); | 
| 1189 | 0 | 
 | 
| 1190 | 0 |   // Add the lower bound. | 
| 1191 | 0 |   result.addAttribute(getLowerBoundAttrName(), AffineMapAttr::get(lbMap)); | 
| 1192 | 0 |   result.addOperands(lbOperands); | 
| 1193 | 0 | 
 | 
| 1194 | 0 |   // Add the upper bound. | 
| 1195 | 0 |   result.addAttribute(getUpperBoundAttrName(), AffineMapAttr::get(ubMap)); | 
| 1196 | 0 |   result.addOperands(ubOperands); | 
| 1197 | 0 | 
 | 
| 1198 | 0 |   // Create a region and a block for the body.  The argument of the region is | 
| 1199 | 0 |   // the loop induction variable. | 
| 1200 | 0 |   Region *bodyRegion = result.addRegion(); | 
| 1201 | 0 |   Block *body = new Block(); | 
| 1202 | 0 |   body->addArgument(IndexType::get(builder.getContext())); | 
| 1203 | 0 |   bodyRegion->push_back(body); | 
| 1204 | 0 |   ensureTerminator(*bodyRegion, builder, result.location); | 
| 1205 | 0 | } | 
| 1206 |  |  | 
| 1207 |  | void AffineForOp::build(OpBuilder &builder, OperationState &result, int64_t lb, | 
| 1208 | 0 |                         int64_t ub, int64_t step) { | 
| 1209 | 0 |   auto lbMap = AffineMap::getConstantMap(lb, builder.getContext()); | 
| 1210 | 0 |   auto ubMap = AffineMap::getConstantMap(ub, builder.getContext()); | 
| 1211 | 0 |   return build(builder, result, {}, lbMap, {}, ubMap, step); | 
| 1212 | 0 | } | 
| 1213 |  |  | 
| 1214 | 0 | static LogicalResult verify(AffineForOp op) { | 
| 1215 | 0 |   // Check that the body defines as single block argument for the induction | 
| 1216 | 0 |   // variable. | 
| 1217 | 0 |   auto *body = op.getBody(); | 
| 1218 | 0 |   if (body->getNumArguments() != 1 || !body->getArgument(0).getType().isIndex()) | 
| 1219 | 0 |     return op.emitOpError( | 
| 1220 | 0 |         "expected body to have a single index argument for the " | 
| 1221 | 0 |         "induction variable"); | 
| 1222 | 0 |  | 
| 1223 | 0 |   // Verify that there are enough operands for the bounds. | 
| 1224 | 0 |   AffineMap lowerBoundMap = op.getLowerBoundMap(), | 
| 1225 | 0 |             upperBoundMap = op.getUpperBoundMap(); | 
| 1226 | 0 |   if (op.getNumOperands() != | 
| 1227 | 0 |       (lowerBoundMap.getNumInputs() + upperBoundMap.getNumInputs())) | 
| 1228 | 0 |     return op.emitOpError( | 
| 1229 | 0 |         "operand count must match with affine map dimension and symbol count"); | 
| 1230 | 0 |  | 
| 1231 | 0 |   // Verify that the bound operands are valid dimension/symbols. | 
| 1232 | 0 |   /// Lower bound. | 
| 1233 | 0 |   if (failed(verifyDimAndSymbolIdentifiers(op, op.getLowerBoundOperands(), | 
| 1234 | 0 |                                            op.getLowerBoundMap().getNumDims()))) | 
| 1235 | 0 |     return failure(); | 
| 1236 | 0 |   /// Upper bound. | 
| 1237 | 0 |   if (failed(verifyDimAndSymbolIdentifiers(op, op.getUpperBoundOperands(), | 
| 1238 | 0 |                                            op.getUpperBoundMap().getNumDims()))) | 
| 1239 | 0 |     return failure(); | 
| 1240 | 0 |   return success(); | 
| 1241 | 0 | } | 
| 1242 |  |  | 
| 1243 |  | /// Parse a for operation loop bounds. | 
| 1244 |  | static ParseResult parseBound(bool isLower, OperationState &result, | 
| 1245 | 0 |                               OpAsmParser &p) { | 
| 1246 | 0 |   // 'min' / 'max' prefixes are generally syntactic sugar, but are required if | 
| 1247 | 0 |   // the map has multiple results. | 
| 1248 | 0 |   bool failedToParsedMinMax = | 
| 1249 | 0 |       failed(p.parseOptionalKeyword(isLower ? "max" : "min")); | 
| 1250 | 0 | 
 | 
| 1251 | 0 |   auto &builder = p.getBuilder(); | 
| 1252 | 0 |   auto boundAttrName = isLower ? AffineForOp::getLowerBoundAttrName() | 
| 1253 | 0 |                                : AffineForOp::getUpperBoundAttrName(); | 
| 1254 | 0 | 
 | 
| 1255 | 0 |   // Parse ssa-id as identity map. | 
| 1256 | 0 |   SmallVector<OpAsmParser::OperandType, 1> boundOpInfos; | 
| 1257 | 0 |   if (p.parseOperandList(boundOpInfos)) | 
| 1258 | 0 |     return failure(); | 
| 1259 | 0 |  | 
| 1260 | 0 |   if (!boundOpInfos.empty()) { | 
| 1261 | 0 |     // Check that only one operand was parsed. | 
| 1262 | 0 |     if (boundOpInfos.size() > 1) | 
| 1263 | 0 |       return p.emitError(p.getNameLoc(), | 
| 1264 | 0 |                          "expected only one loop bound operand"); | 
| 1265 | 0 |  | 
| 1266 | 0 |     // TODO: improve error message when SSA value is not of index type. | 
| 1267 | 0 |     // Currently it is 'use of value ... expects different type than prior uses' | 
| 1268 | 0 |     if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(), | 
| 1269 | 0 |                          result.operands)) | 
| 1270 | 0 |       return failure(); | 
| 1271 | 0 |  | 
| 1272 | 0 |     // Create an identity map using symbol id. This representation is optimized | 
| 1273 | 0 |     // for storage. Analysis passes may expand it into a multi-dimensional map | 
| 1274 | 0 |     // if desired. | 
| 1275 | 0 |     AffineMap map = builder.getSymbolIdentityMap(); | 
| 1276 | 0 |     result.addAttribute(boundAttrName, AffineMapAttr::get(map)); | 
| 1277 | 0 |     return success(); | 
| 1278 | 0 |   } | 
| 1279 | 0 |  | 
| 1280 | 0 |   // Get the attribute location. | 
| 1281 | 0 |   llvm::SMLoc attrLoc = p.getCurrentLocation(); | 
| 1282 | 0 | 
 | 
| 1283 | 0 |   Attribute boundAttr; | 
| 1284 | 0 |   if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrName, | 
| 1285 | 0 |                        result.attributes)) | 
| 1286 | 0 |     return failure(); | 
| 1287 | 0 |  | 
| 1288 | 0 |   // Parse full form - affine map followed by dim and symbol list. | 
| 1289 | 0 |   if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) { | 
| 1290 | 0 |     unsigned currentNumOperands = result.operands.size(); | 
| 1291 | 0 |     unsigned numDims; | 
| 1292 | 0 |     if (parseDimAndSymbolList(p, result.operands, numDims)) | 
| 1293 | 0 |       return failure(); | 
| 1294 | 0 |  | 
| 1295 | 0 |     auto map = affineMapAttr.getValue(); | 
| 1296 | 0 |     if (map.getNumDims() != numDims) | 
| 1297 | 0 |       return p.emitError( | 
| 1298 | 0 |           p.getNameLoc(), | 
| 1299 | 0 |           "dim operand count and affine map dim count must match"); | 
| 1300 | 0 |  | 
| 1301 | 0 |     unsigned numDimAndSymbolOperands = | 
| 1302 | 0 |         result.operands.size() - currentNumOperands; | 
| 1303 | 0 |     if (numDims + map.getNumSymbols() != numDimAndSymbolOperands) | 
| 1304 | 0 |       return p.emitError( | 
| 1305 | 0 |           p.getNameLoc(), | 
| 1306 | 0 |           "symbol operand count and affine map symbol count must match"); | 
| 1307 | 0 |  | 
| 1308 | 0 |     // If the map has multiple results, make sure that we parsed the min/max | 
| 1309 | 0 |     // prefix. | 
| 1310 | 0 |     if (map.getNumResults() > 1 && failedToParsedMinMax) { | 
| 1311 | 0 |       if (isLower) { | 
| 1312 | 0 |         return p.emitError(attrLoc, "lower loop bound affine map with " | 
| 1313 | 0 |                                     "multiple results requires 'max' prefix"); | 
| 1314 | 0 |       } | 
| 1315 | 0 |       return p.emitError(attrLoc, "upper loop bound affine map with multiple " | 
| 1316 | 0 |                                   "results requires 'min' prefix"); | 
| 1317 | 0 |     } | 
| 1318 | 0 |     return success(); | 
| 1319 | 0 |   } | 
| 1320 | 0 |  | 
| 1321 | 0 |   // Parse custom assembly form. | 
| 1322 | 0 |   if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) { | 
| 1323 | 0 |     result.attributes.pop_back(); | 
| 1324 | 0 |     result.addAttribute( | 
| 1325 | 0 |         boundAttrName, | 
| 1326 | 0 |         AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt()))); | 
| 1327 | 0 |     return success(); | 
| 1328 | 0 |   } | 
| 1329 | 0 |  | 
| 1330 | 0 |   return p.emitError( | 
| 1331 | 0 |       p.getNameLoc(), | 
| 1332 | 0 |       "expected valid affine map representation for loop bounds"); | 
| 1333 | 0 | } | 
| 1334 |  |  | 
| 1335 |  | static ParseResult parseAffineForOp(OpAsmParser &parser, | 
| 1336 | 0 |                                     OperationState &result) { | 
| 1337 | 0 |   auto &builder = parser.getBuilder(); | 
| 1338 | 0 |   OpAsmParser::OperandType inductionVariable; | 
| 1339 | 0 |   // Parse the induction variable followed by '='. | 
| 1340 | 0 |   if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) | 
| 1341 | 0 |     return failure(); | 
| 1342 | 0 |  | 
| 1343 | 0 |   // Parse loop bounds. | 
| 1344 | 0 |   if (parseBound(/*isLower=*/true, result, parser) || | 
| 1345 | 0 |       parser.parseKeyword("to", " between bounds") || | 
| 1346 | 0 |       parseBound(/*isLower=*/false, result, parser)) | 
| 1347 | 0 |     return failure(); | 
| 1348 | 0 |  | 
| 1349 | 0 |   // Parse the optional loop step, we default to 1 if one is not present. | 
| 1350 | 0 |   if (parser.parseOptionalKeyword("step")) { | 
| 1351 | 0 |     result.addAttribute( | 
| 1352 | 0 |         AffineForOp::getStepAttrName(), | 
| 1353 | 0 |         builder.getIntegerAttr(builder.getIndexType(), /*value=*/1)); | 
| 1354 | 0 |   } else { | 
| 1355 | 0 |     llvm::SMLoc stepLoc = parser.getCurrentLocation(); | 
| 1356 | 0 |     IntegerAttr stepAttr; | 
| 1357 | 0 |     if (parser.parseAttribute(stepAttr, builder.getIndexType(), | 
| 1358 | 0 |                               AffineForOp::getStepAttrName().data(), | 
| 1359 | 0 |                               result.attributes)) | 
| 1360 | 0 |       return failure(); | 
| 1361 | 0 |  | 
| 1362 | 0 |     if (stepAttr.getValue().getSExtValue() < 0) | 
| 1363 | 0 |       return parser.emitError( | 
| 1364 | 0 |           stepLoc, | 
| 1365 | 0 |           "expected step to be representable as a positive signed integer"); | 
| 1366 | 0 |   } | 
| 1367 | 0 |  | 
| 1368 | 0 |   // Parse the body region. | 
| 1369 | 0 |   Region *body = result.addRegion(); | 
| 1370 | 0 |   if (parser.parseRegion(*body, inductionVariable, builder.getIndexType())) | 
| 1371 | 0 |     return failure(); | 
| 1372 | 0 |  | 
| 1373 | 0 |   AffineForOp::ensureTerminator(*body, builder, result.location); | 
| 1374 | 0 | 
 | 
| 1375 | 0 |   // Parse the optional attribute list. | 
| 1376 | 0 |   return parser.parseOptionalAttrDict(result.attributes); | 
| 1377 | 0 | } | 
| 1378 |  |  | 
| 1379 |  | static void printBound(AffineMapAttr boundMap, | 
| 1380 |  |                        Operation::operand_range boundOperands, | 
| 1381 | 0 |                        const char *prefix, OpAsmPrinter &p) { | 
| 1382 | 0 |   AffineMap map = boundMap.getValue(); | 
| 1383 | 0 | 
 | 
| 1384 | 0 |   // Check if this bound should be printed using custom assembly form. | 
| 1385 | 0 |   // The decision to restrict printing custom assembly form to trivial cases | 
| 1386 | 0 |   // comes from the will to roundtrip MLIR binary -> text -> binary in a | 
| 1387 | 0 |   // lossless way. | 
| 1388 | 0 |   // Therefore, custom assembly form parsing and printing is only supported for | 
| 1389 | 0 |   // zero-operand constant maps and single symbol operand identity maps. | 
| 1390 | 0 |   if (map.getNumResults() == 1) { | 
| 1391 | 0 |     AffineExpr expr = map.getResult(0); | 
| 1392 | 0 | 
 | 
| 1393 | 0 |     // Print constant bound. | 
| 1394 | 0 |     if (map.getNumDims() == 0 && map.getNumSymbols() == 0) { | 
| 1395 | 0 |       if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) { | 
| 1396 | 0 |         p << constExpr.getValue(); | 
| 1397 | 0 |         return; | 
| 1398 | 0 |       } | 
| 1399 | 0 |     } | 
| 1400 | 0 |  | 
| 1401 | 0 |     // Print bound that consists of a single SSA symbol if the map is over a | 
| 1402 | 0 |     // single symbol. | 
| 1403 | 0 |     if (map.getNumDims() == 0 && map.getNumSymbols() == 1) { | 
| 1404 | 0 |       if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) { | 
| 1405 | 0 |         p.printOperand(*boundOperands.begin()); | 
| 1406 | 0 |         return; | 
| 1407 | 0 |       } | 
| 1408 | 0 |     } | 
| 1409 | 0 |   } else { | 
| 1410 | 0 |     // Map has multiple results. Print 'min' or 'max' prefix. | 
| 1411 | 0 |     p << prefix << ' '; | 
| 1412 | 0 |   } | 
| 1413 | 0 | 
 | 
| 1414 | 0 |   // Print the map and its operands. | 
| 1415 | 0 |   p << boundMap; | 
| 1416 | 0 |   printDimAndSymbolList(boundOperands.begin(), boundOperands.end(), | 
| 1417 | 0 |                         map.getNumDims(), p); | 
| 1418 | 0 | } | 
| 1419 |  |  | 
| 1420 | 0 | static void print(OpAsmPrinter &p, AffineForOp op) { | 
| 1421 | 0 |   p << op.getOperationName() << ' '; | 
| 1422 | 0 |   p.printOperand(op.getBody()->getArgument(0)); | 
| 1423 | 0 |   p << " = "; | 
| 1424 | 0 |   printBound(op.getLowerBoundMapAttr(), op.getLowerBoundOperands(), "max", p); | 
| 1425 | 0 |   p << " to "; | 
| 1426 | 0 |   printBound(op.getUpperBoundMapAttr(), op.getUpperBoundOperands(), "min", p); | 
| 1427 | 0 | 
 | 
| 1428 | 0 |   if (op.getStep() != 1) | 
| 1429 | 0 |     p << " step " << op.getStep(); | 
| 1430 | 0 |   p.printRegion(op.region(), | 
| 1431 | 0 |                 /*printEntryBlockArgs=*/false, | 
| 1432 | 0 |                 /*printBlockTerminators=*/false); | 
| 1433 | 0 |   p.printOptionalAttrDict(op.getAttrs(), | 
| 1434 | 0 |                           /*elidedAttrs=*/{op.getLowerBoundAttrName(), | 
| 1435 | 0 |                                            op.getUpperBoundAttrName(), | 
| 1436 | 0 |                                            op.getStepAttrName()}); | 
| 1437 | 0 | } | 
| 1438 |  |  | 
| 1439 |  | /// Fold the constant bounds of a loop. | 
| 1440 | 0 | static LogicalResult foldLoopBounds(AffineForOp forOp) { | 
| 1441 | 0 |   auto foldLowerOrUpperBound = [&forOp](bool lower) { | 
| 1442 | 0 |     // Check to see if each of the operands is the result of a constant.  If | 
| 1443 | 0 |     // so, get the value.  If not, ignore it. | 
| 1444 | 0 |     SmallVector<Attribute, 8> operandConstants; | 
| 1445 | 0 |     auto boundOperands = | 
| 1446 | 0 |         lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands(); | 
| 1447 | 0 |     for (auto operand : boundOperands) { | 
| 1448 | 0 |       Attribute operandCst; | 
| 1449 | 0 |       matchPattern(operand, m_Constant(&operandCst)); | 
| 1450 | 0 |       operandConstants.push_back(operandCst); | 
| 1451 | 0 |     } | 
| 1452 | 0 | 
 | 
| 1453 | 0 |     AffineMap boundMap = | 
| 1454 | 0 |         lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap(); | 
| 1455 | 0 |     assert(boundMap.getNumResults() >= 1 && | 
| 1456 | 0 |            "bound maps should have at least one result"); | 
| 1457 | 0 |     SmallVector<Attribute, 4> foldedResults; | 
| 1458 | 0 |     if (failed(boundMap.constantFold(operandConstants, foldedResults))) | 
| 1459 | 0 |       return failure(); | 
| 1460 | 0 |  | 
| 1461 | 0 |     // Compute the max or min as applicable over the results. | 
| 1462 | 0 |     assert(!foldedResults.empty() && "bounds should have at least one result"); | 
| 1463 | 0 |     auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue(); | 
| 1464 | 0 |     for (unsigned i = 1, e = foldedResults.size(); i < e; i++) { | 
| 1465 | 0 |       auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue(); | 
| 1466 | 0 |       maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult) | 
| 1467 | 0 |                        : llvm::APIntOps::smin(maxOrMin, foldedResult); | 
| 1468 | 0 |     } | 
| 1469 | 0 |     lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue()) | 
| 1470 | 0 |           : forOp.setConstantUpperBound(maxOrMin.getSExtValue()); | 
| 1471 | 0 |     return success(); | 
| 1472 | 0 |   }; | 
| 1473 | 0 | 
 | 
| 1474 | 0 |   // Try to fold the lower bound. | 
| 1475 | 0 |   bool folded = false; | 
| 1476 | 0 |   if (!forOp.hasConstantLowerBound()) | 
| 1477 | 0 |     folded |= succeeded(foldLowerOrUpperBound(/*lower=*/true)); | 
| 1478 | 0 | 
 | 
| 1479 | 0 |   // Try to fold the upper bound. | 
| 1480 | 0 |   if (!forOp.hasConstantUpperBound()) | 
| 1481 | 0 |     folded |= succeeded(foldLowerOrUpperBound(/*lower=*/false)); | 
| 1482 | 0 |   return success(folded); | 
| 1483 | 0 | } | 
| 1484 |  |  | 
| 1485 |  | /// Canonicalize the bounds of the given loop. | 
| 1486 | 0 | static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) { | 
| 1487 | 0 |   SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands()); | 
| 1488 | 0 |   SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands()); | 
| 1489 | 0 | 
 | 
| 1490 | 0 |   auto lbMap = forOp.getLowerBoundMap(); | 
| 1491 | 0 |   auto ubMap = forOp.getUpperBoundMap(); | 
| 1492 | 0 |   auto prevLbMap = lbMap; | 
| 1493 | 0 |   auto prevUbMap = ubMap; | 
| 1494 | 0 | 
 | 
| 1495 | 0 |   canonicalizeMapAndOperands(&lbMap, &lbOperands); | 
| 1496 | 0 |   lbMap = removeDuplicateExprs(lbMap); | 
| 1497 | 0 | 
 | 
| 1498 | 0 |   canonicalizeMapAndOperands(&ubMap, &ubOperands); | 
| 1499 | 0 |   ubMap = removeDuplicateExprs(ubMap); | 
| 1500 | 0 | 
 | 
| 1501 | 0 |   // Any canonicalization change always leads to updated map(s). | 
| 1502 | 0 |   if (lbMap == prevLbMap && ubMap == prevUbMap) | 
| 1503 | 0 |     return failure(); | 
| 1504 | 0 |  | 
| 1505 | 0 |   if (lbMap != prevLbMap) | 
| 1506 | 0 |     forOp.setLowerBound(lbOperands, lbMap); | 
| 1507 | 0 |   if (ubMap != prevUbMap) | 
| 1508 | 0 |     forOp.setUpperBound(ubOperands, ubMap); | 
| 1509 | 0 |   return success(); | 
| 1510 | 0 | } | 
| 1511 |  |  | 
| 1512 |  | namespace { | 
| 1513 |  | /// This is a pattern to fold trivially empty loops. | 
| 1514 |  | struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> { | 
| 1515 |  |   using OpRewritePattern<AffineForOp>::OpRewritePattern; | 
| 1516 |  |  | 
| 1517 |  |   LogicalResult matchAndRewrite(AffineForOp forOp, | 
| 1518 | 0 |                                 PatternRewriter &rewriter) const override { | 
| 1519 | 0 |     // Check that the body only contains a terminator. | 
| 1520 | 0 |     if (!llvm::hasSingleElement(*forOp.getBody())) | 
| 1521 | 0 |       return failure(); | 
| 1522 | 0 |     rewriter.eraseOp(forOp); | 
| 1523 | 0 |     return success(); | 
| 1524 | 0 |   } | 
| 1525 |  | }; | 
| 1526 |  | } // end anonymous namespace | 
| 1527 |  |  | 
| 1528 |  | void AffineForOp::getCanonicalizationPatterns(OwningRewritePatternList &results, | 
| 1529 | 0 |                                               MLIRContext *context) { | 
| 1530 | 0 |   results.insert<AffineForEmptyLoopFolder>(context); | 
| 1531 | 0 | } | 
| 1532 |  |  | 
| 1533 |  | LogicalResult AffineForOp::fold(ArrayRef<Attribute> operands, | 
| 1534 | 0 |                                 SmallVectorImpl<OpFoldResult> &results) { | 
| 1535 | 0 |   bool folded = succeeded(foldLoopBounds(*this)); | 
| 1536 | 0 |   folded |= succeeded(canonicalizeLoopBounds(*this)); | 
| 1537 | 0 |   return success(folded); | 
| 1538 | 0 | } | 
| 1539 |  |  | 
| 1540 | 0 | AffineBound AffineForOp::getLowerBound() { | 
| 1541 | 0 |   auto lbMap = getLowerBoundMap(); | 
| 1542 | 0 |   return AffineBound(AffineForOp(*this), 0, lbMap.getNumInputs(), lbMap); | 
| 1543 | 0 | } | 
| 1544 |  |  | 
| 1545 | 0 | AffineBound AffineForOp::getUpperBound() { | 
| 1546 | 0 |   auto lbMap = getLowerBoundMap(); | 
| 1547 | 0 |   auto ubMap = getUpperBoundMap(); | 
| 1548 | 0 |   return AffineBound(AffineForOp(*this), lbMap.getNumInputs(), getNumOperands(), | 
| 1549 | 0 |                      ubMap); | 
| 1550 | 0 | } | 
| 1551 |  |  | 
| 1552 | 0 | void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) { | 
| 1553 | 0 |   assert(lbOperands.size() == map.getNumInputs()); | 
| 1554 | 0 |   assert(map.getNumResults() >= 1 && "bound map has at least one result"); | 
| 1555 | 0 | 
 | 
| 1556 | 0 |   SmallVector<Value, 4> newOperands(lbOperands.begin(), lbOperands.end()); | 
| 1557 | 0 | 
 | 
| 1558 | 0 |   auto ubOperands = getUpperBoundOperands(); | 
| 1559 | 0 |   newOperands.append(ubOperands.begin(), ubOperands.end()); | 
| 1560 | 0 |   getOperation()->setOperands(newOperands); | 
| 1561 | 0 | 
 | 
| 1562 | 0 |   setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map)); | 
| 1563 | 0 | } | 
| 1564 |  |  | 
| 1565 | 0 | void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) { | 
| 1566 | 0 |   assert(ubOperands.size() == map.getNumInputs()); | 
| 1567 | 0 |   assert(map.getNumResults() >= 1 && "bound map has at least one result"); | 
| 1568 | 0 | 
 | 
| 1569 | 0 |   SmallVector<Value, 4> newOperands(getLowerBoundOperands()); | 
| 1570 | 0 |   newOperands.append(ubOperands.begin(), ubOperands.end()); | 
| 1571 | 0 |   getOperation()->setOperands(newOperands); | 
| 1572 | 0 | 
 | 
| 1573 | 0 |   setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map)); | 
| 1574 | 0 | } | 
| 1575 |  |  | 
| 1576 | 0 | void AffineForOp::setLowerBoundMap(AffineMap map) { | 
| 1577 | 0 |   auto lbMap = getLowerBoundMap(); | 
| 1578 | 0 |   assert(lbMap.getNumDims() == map.getNumDims() && | 
| 1579 | 0 |          lbMap.getNumSymbols() == map.getNumSymbols()); | 
| 1580 | 0 |   assert(map.getNumResults() >= 1 && "bound map has at least one result"); | 
| 1581 | 0 |   (void)lbMap; | 
| 1582 | 0 |   setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map)); | 
| 1583 | 0 | } | 
| 1584 |  |  | 
| 1585 | 0 | void AffineForOp::setUpperBoundMap(AffineMap map) { | 
| 1586 | 0 |   auto ubMap = getUpperBoundMap(); | 
| 1587 | 0 |   assert(ubMap.getNumDims() == map.getNumDims() && | 
| 1588 | 0 |          ubMap.getNumSymbols() == map.getNumSymbols()); | 
| 1589 | 0 |   assert(map.getNumResults() >= 1 && "bound map has at least one result"); | 
| 1590 | 0 |   (void)ubMap; | 
| 1591 | 0 |   setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map)); | 
| 1592 | 0 | } | 
| 1593 |  |  | 
| 1594 | 0 | bool AffineForOp::hasConstantLowerBound() { | 
| 1595 | 0 |   return getLowerBoundMap().isSingleConstant(); | 
| 1596 | 0 | } | 
| 1597 |  |  | 
| 1598 | 0 | bool AffineForOp::hasConstantUpperBound() { | 
| 1599 | 0 |   return getUpperBoundMap().isSingleConstant(); | 
| 1600 | 0 | } | 
| 1601 |  |  | 
| 1602 | 0 | int64_t AffineForOp::getConstantLowerBound() { | 
| 1603 | 0 |   return getLowerBoundMap().getSingleConstantResult(); | 
| 1604 | 0 | } | 
| 1605 |  |  | 
| 1606 | 0 | int64_t AffineForOp::getConstantUpperBound() { | 
| 1607 | 0 |   return getUpperBoundMap().getSingleConstantResult(); | 
| 1608 | 0 | } | 
| 1609 |  |  | 
| 1610 | 0 | void AffineForOp::setConstantLowerBound(int64_t value) { | 
| 1611 | 0 |   setLowerBound({}, AffineMap::getConstantMap(value, getContext())); | 
| 1612 | 0 | } | 
| 1613 |  |  | 
| 1614 | 0 | void AffineForOp::setConstantUpperBound(int64_t value) { | 
| 1615 | 0 |   setUpperBound({}, AffineMap::getConstantMap(value, getContext())); | 
| 1616 | 0 | } | 
| 1617 |  |  | 
| 1618 | 0 | AffineForOp::operand_range AffineForOp::getLowerBoundOperands() { | 
| 1619 | 0 |   return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()}; | 
| 1620 | 0 | } | 
| 1621 |  |  | 
| 1622 | 0 | AffineForOp::operand_range AffineForOp::getUpperBoundOperands() { | 
| 1623 | 0 |   return {operand_begin() + getLowerBoundMap().getNumInputs(), operand_end()}; | 
| 1624 | 0 | } | 
| 1625 |  |  | 
| 1626 | 0 | bool AffineForOp::matchingBoundOperandList() { | 
| 1627 | 0 |   auto lbMap = getLowerBoundMap(); | 
| 1628 | 0 |   auto ubMap = getUpperBoundMap(); | 
| 1629 | 0 |   if (lbMap.getNumDims() != ubMap.getNumDims() || | 
| 1630 | 0 |       lbMap.getNumSymbols() != ubMap.getNumSymbols()) | 
| 1631 | 0 |     return false; | 
| 1632 | 0 |  | 
| 1633 | 0 |   unsigned numOperands = lbMap.getNumInputs(); | 
| 1634 | 0 |   for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) { | 
| 1635 | 0 |     // Compare Value 's. | 
| 1636 | 0 |     if (getOperand(i) != getOperand(numOperands + i)) | 
| 1637 | 0 |       return false; | 
| 1638 | 0 |   } | 
| 1639 | 0 |   return true; | 
| 1640 | 0 | } | 
| 1641 |  |  | 
| 1642 | 0 | Region &AffineForOp::getLoopBody() { return region(); } | 
| 1643 |  |  | 
| 1644 | 0 | bool AffineForOp::isDefinedOutsideOfLoop(Value value) { | 
| 1645 | 0 |   return !region().isAncestor(value.getParentRegion()); | 
| 1646 | 0 | } | 
| 1647 |  |  | 
| 1648 | 0 | LogicalResult AffineForOp::moveOutOfLoop(ArrayRef<Operation *> ops) { | 
| 1649 | 0 |   for (auto *op : ops) | 
| 1650 | 0 |     op->moveBefore(*this); | 
| 1651 | 0 |   return success(); | 
| 1652 | 0 | } | 
| 1653 |  |  | 
| 1654 |  | /// Returns if the provided value is the induction variable of a AffineForOp. | 
| 1655 | 0 | bool mlir::isForInductionVar(Value val) { | 
| 1656 | 0 |   return getForInductionVarOwner(val) != AffineForOp(); | 
| 1657 | 0 | } | 
| 1658 |  |  | 
| 1659 |  | /// Returns the loop parent of an induction variable. If the provided value is | 
| 1660 |  | /// not an induction variable, then return nullptr. | 
| 1661 | 0 | AffineForOp mlir::getForInductionVarOwner(Value val) { | 
| 1662 | 0 |   auto ivArg = val.dyn_cast<BlockArgument>(); | 
| 1663 | 0 |   if (!ivArg || !ivArg.getOwner()) | 
| 1664 | 0 |     return AffineForOp(); | 
| 1665 | 0 |   auto *containingInst = ivArg.getOwner()->getParent()->getParentOp(); | 
| 1666 | 0 |   return dyn_cast<AffineForOp>(containingInst); | 
| 1667 | 0 | } | 
| 1668 |  |  | 
| 1669 |  | /// Extracts the induction variables from a list of AffineForOps and returns | 
| 1670 |  | /// them. | 
| 1671 |  | void mlir::extractForInductionVars(ArrayRef<AffineForOp> forInsts, | 
| 1672 | 0 |                                    SmallVectorImpl<Value> *ivs) { | 
| 1673 | 0 |   ivs->reserve(forInsts.size()); | 
| 1674 | 0 |   for (auto forInst : forInsts) | 
| 1675 | 0 |     ivs->push_back(forInst.getInductionVar()); | 
| 1676 | 0 | } | 
| 1677 |  |  | 
| 1678 |  | //===----------------------------------------------------------------------===// | 
| 1679 |  | // AffineIfOp | 
| 1680 |  | //===----------------------------------------------------------------------===// | 
| 1681 |  |  | 
| 1682 |  | namespace { | 
| 1683 |  | /// Remove else blocks that have nothing other than the terminator. | 
| 1684 |  | struct SimplifyDeadElse : public OpRewritePattern<AffineIfOp> { | 
| 1685 |  |   using OpRewritePattern<AffineIfOp>::OpRewritePattern; | 
| 1686 |  |  | 
| 1687 |  |   LogicalResult matchAndRewrite(AffineIfOp ifOp, | 
| 1688 | 0 |                                 PatternRewriter &rewriter) const override { | 
| 1689 | 0 |     if (ifOp.elseRegion().empty() || | 
| 1690 | 0 |         !llvm::hasSingleElement(*ifOp.getElseBlock())) | 
| 1691 | 0 |       return failure(); | 
| 1692 | 0 |  | 
| 1693 | 0 |     rewriter.startRootUpdate(ifOp); | 
| 1694 | 0 |     rewriter.eraseBlock(ifOp.getElseBlock()); | 
| 1695 | 0 |     rewriter.finalizeRootUpdate(ifOp); | 
| 1696 | 0 |     return success(); | 
| 1697 | 0 |   } | 
| 1698 |  | }; | 
| 1699 |  | } // end anonymous namespace. | 
| 1700 |  |  | 
| 1701 | 0 | static LogicalResult verify(AffineIfOp op) { | 
| 1702 | 0 |   // Verify that we have a condition attribute. | 
| 1703 | 0 |   auto conditionAttr = | 
| 1704 | 0 |       op.getAttrOfType<IntegerSetAttr>(op.getConditionAttrName()); | 
| 1705 | 0 |   if (!conditionAttr) | 
| 1706 | 0 |     return op.emitOpError( | 
| 1707 | 0 |         "requires an integer set attribute named 'condition'"); | 
| 1708 | 0 |  | 
| 1709 | 0 |   // Verify that there are enough operands for the condition. | 
| 1710 | 0 |   IntegerSet condition = conditionAttr.getValue(); | 
| 1711 | 0 |   if (op.getNumOperands() != condition.getNumInputs()) | 
| 1712 | 0 |     return op.emitOpError( | 
| 1713 | 0 |         "operand count and condition integer set dimension and " | 
| 1714 | 0 |         "symbol count must match"); | 
| 1715 | 0 |  | 
| 1716 | 0 |   // Verify that the operands are valid dimension/symbols. | 
| 1717 | 0 |   if (failed(verifyDimAndSymbolIdentifiers(op, op.getOperands(), | 
| 1718 | 0 |                                            condition.getNumDims()))) | 
| 1719 | 0 |     return failure(); | 
| 1720 | 0 |  | 
| 1721 | 0 |   // Verify that the entry of each child region does not have arguments. | 
| 1722 | 0 |   for (auto ®ion : op.getOperation()->getRegions()) { | 
| 1723 | 0 |     for (auto &b : region) | 
| 1724 | 0 |       if (b.getNumArguments() != 0) | 
| 1725 | 0 |         return op.emitOpError( | 
| 1726 | 0 |             "requires that child entry blocks have no arguments"); | 
| 1727 | 0 |   } | 
| 1728 | 0 |   return success(); | 
| 1729 | 0 | } | 
| 1730 |  |  | 
| 1731 |  | static ParseResult parseAffineIfOp(OpAsmParser &parser, | 
| 1732 | 0 |                                    OperationState &result) { | 
| 1733 | 0 |   // Parse the condition attribute set. | 
| 1734 | 0 |   IntegerSetAttr conditionAttr; | 
| 1735 | 0 |   unsigned numDims; | 
| 1736 | 0 |   if (parser.parseAttribute(conditionAttr, AffineIfOp::getConditionAttrName(), | 
| 1737 | 0 |                             result.attributes) || | 
| 1738 | 0 |       parseDimAndSymbolList(parser, result.operands, numDims)) | 
| 1739 | 0 |     return failure(); | 
| 1740 | 0 |  | 
| 1741 | 0 |   // Verify the condition operands. | 
| 1742 | 0 |   auto set = conditionAttr.getValue(); | 
| 1743 | 0 |   if (set.getNumDims() != numDims) | 
| 1744 | 0 |     return parser.emitError( | 
| 1745 | 0 |         parser.getNameLoc(), | 
| 1746 | 0 |         "dim operand count and integer set dim count must match"); | 
| 1747 | 0 |   if (numDims + set.getNumSymbols() != result.operands.size()) | 
| 1748 | 0 |     return parser.emitError( | 
| 1749 | 0 |         parser.getNameLoc(), | 
| 1750 | 0 |         "symbol operand count and integer set symbol count must match"); | 
| 1751 | 0 |  | 
| 1752 | 0 |   // Create the regions for 'then' and 'else'.  The latter must be created even | 
| 1753 | 0 |   // if it remains empty for the validity of the operation. | 
| 1754 | 0 |   result.regions.reserve(2); | 
| 1755 | 0 |   Region *thenRegion = result.addRegion(); | 
| 1756 | 0 |   Region *elseRegion = result.addRegion(); | 
| 1757 | 0 | 
 | 
| 1758 | 0 |   // Parse the 'then' region. | 
| 1759 | 0 |   if (parser.parseRegion(*thenRegion, {}, {})) | 
| 1760 | 0 |     return failure(); | 
| 1761 | 0 |   AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(), | 
| 1762 | 0 |                                result.location); | 
| 1763 | 0 | 
 | 
| 1764 | 0 |   // If we find an 'else' keyword then parse the 'else' region. | 
| 1765 | 0 |   if (!parser.parseOptionalKeyword("else")) { | 
| 1766 | 0 |     if (parser.parseRegion(*elseRegion, {}, {})) | 
| 1767 | 0 |       return failure(); | 
| 1768 | 0 |     AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(), | 
| 1769 | 0 |                                  result.location); | 
| 1770 | 0 |   } | 
| 1771 | 0 | 
 | 
| 1772 | 0 |   // Parse the optional attribute list. | 
| 1773 | 0 |   if (parser.parseOptionalAttrDict(result.attributes)) | 
| 1774 | 0 |     return failure(); | 
| 1775 | 0 |  | 
| 1776 | 0 |   return success(); | 
| 1777 | 0 | } | 
| 1778 |  |  | 
| 1779 | 0 | static void print(OpAsmPrinter &p, AffineIfOp op) { | 
| 1780 | 0 |   auto conditionAttr = | 
| 1781 | 0 |       op.getAttrOfType<IntegerSetAttr>(op.getConditionAttrName()); | 
| 1782 | 0 |   p << "affine.if " << conditionAttr; | 
| 1783 | 0 |   printDimAndSymbolList(op.operand_begin(), op.operand_end(), | 
| 1784 | 0 |                         conditionAttr.getValue().getNumDims(), p); | 
| 1785 | 0 |   p.printRegion(op.thenRegion(), | 
| 1786 | 0 |                 /*printEntryBlockArgs=*/false, | 
| 1787 | 0 |                 /*printBlockTerminators=*/false); | 
| 1788 | 0 | 
 | 
| 1789 | 0 |   // Print the 'else' regions if it has any blocks. | 
| 1790 | 0 |   auto &elseRegion = op.elseRegion(); | 
| 1791 | 0 |   if (!elseRegion.empty()) { | 
| 1792 | 0 |     p << " else"; | 
| 1793 | 0 |     p.printRegion(elseRegion, | 
| 1794 | 0 |                   /*printEntryBlockArgs=*/false, | 
| 1795 | 0 |                   /*printBlockTerminators=*/false); | 
| 1796 | 0 |   } | 
| 1797 | 0 | 
 | 
| 1798 | 0 |   // Print the attribute list. | 
| 1799 | 0 |   p.printOptionalAttrDict(op.getAttrs(), | 
| 1800 | 0 |                           /*elidedAttrs=*/op.getConditionAttrName()); | 
| 1801 | 0 | } | 
| 1802 |  |  | 
| 1803 | 0 | IntegerSet AffineIfOp::getIntegerSet() { | 
| 1804 | 0 |   return getAttrOfType<IntegerSetAttr>(getConditionAttrName()).getValue(); | 
| 1805 | 0 | } | 
| 1806 | 0 | void AffineIfOp::setIntegerSet(IntegerSet newSet) { | 
| 1807 | 0 |   setAttr(getConditionAttrName(), IntegerSetAttr::get(newSet)); | 
| 1808 | 0 | } | 
| 1809 |  |  | 
| 1810 | 0 | void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) { | 
| 1811 | 0 |   setIntegerSet(set); | 
| 1812 | 0 |   getOperation()->setOperands(operands); | 
| 1813 | 0 | } | 
| 1814 |  |  | 
| 1815 |  | void AffineIfOp::build(OpBuilder &builder, OperationState &result, | 
| 1816 | 0 |                        IntegerSet set, ValueRange args, bool withElseRegion) { | 
| 1817 | 0 |   result.addOperands(args); | 
| 1818 | 0 |   result.addAttribute(getConditionAttrName(), IntegerSetAttr::get(set)); | 
| 1819 | 0 |   Region *thenRegion = result.addRegion(); | 
| 1820 | 0 |   Region *elseRegion = result.addRegion(); | 
| 1821 | 0 |   AffineIfOp::ensureTerminator(*thenRegion, builder, result.location); | 
| 1822 | 0 |   if (withElseRegion) | 
| 1823 | 0 |     AffineIfOp::ensureTerminator(*elseRegion, builder, result.location); | 
| 1824 | 0 | } | 
| 1825 |  |  | 
| 1826 |  | /// Canonicalize an affine if op's conditional (integer set + operands). | 
| 1827 |  | LogicalResult AffineIfOp::fold(ArrayRef<Attribute>, | 
| 1828 | 0 |                                SmallVectorImpl<OpFoldResult> &) { | 
| 1829 | 0 |   auto set = getIntegerSet(); | 
| 1830 | 0 |   SmallVector<Value, 4> operands(getOperands()); | 
| 1831 | 0 |   canonicalizeSetAndOperands(&set, &operands); | 
| 1832 | 0 | 
 | 
| 1833 | 0 |   // Any canonicalization change always leads to either a reduction in the | 
| 1834 | 0 |   // number of operands or a change in the number of symbolic operands | 
| 1835 | 0 |   // (promotion of dims to symbols). | 
| 1836 | 0 |   if (operands.size() < getIntegerSet().getNumInputs() || | 
| 1837 | 0 |       set.getNumSymbols() > getIntegerSet().getNumSymbols()) { | 
| 1838 | 0 |     setConditional(set, operands); | 
| 1839 | 0 |     return success(); | 
| 1840 | 0 |   } | 
| 1841 | 0 |  | 
| 1842 | 0 |   return failure(); | 
| 1843 | 0 | } | 
| 1844 |  |  | 
| 1845 |  | void AffineIfOp::getCanonicalizationPatterns(OwningRewritePatternList &results, | 
| 1846 | 0 |                                              MLIRContext *context) { | 
| 1847 | 0 |   results.insert<SimplifyDeadElse>(context); | 
| 1848 | 0 | } | 
| 1849 |  |  | 
| 1850 |  | //===----------------------------------------------------------------------===// | 
| 1851 |  | // AffineLoadOp | 
| 1852 |  | //===----------------------------------------------------------------------===// | 
| 1853 |  |  | 
| 1854 |  | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, | 
| 1855 | 0 |                          AffineMap map, ValueRange operands) { | 
| 1856 | 0 |   assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands"); | 
| 1857 | 0 |   result.addOperands(operands); | 
| 1858 | 0 |   if (map) | 
| 1859 | 0 |     result.addAttribute(getMapAttrName(), AffineMapAttr::get(map)); | 
| 1860 | 0 |   auto memrefType = operands[0].getType().cast<MemRefType>(); | 
| 1861 | 0 |   result.types.push_back(memrefType.getElementType()); | 
| 1862 | 0 | } | 
| 1863 |  |  | 
| 1864 |  | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, | 
| 1865 | 0 |                          Value memref, AffineMap map, ValueRange mapOperands) { | 
| 1866 | 0 |   assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info"); | 
| 1867 | 0 |   result.addOperands(memref); | 
| 1868 | 0 |   result.addOperands(mapOperands); | 
| 1869 | 0 |   auto memrefType = memref.getType().cast<MemRefType>(); | 
| 1870 | 0 |   result.addAttribute(getMapAttrName(), AffineMapAttr::get(map)); | 
| 1871 | 0 |   result.types.push_back(memrefType.getElementType()); | 
| 1872 | 0 | } | 
| 1873 |  |  | 
| 1874 |  | void AffineLoadOp::build(OpBuilder &builder, OperationState &result, | 
| 1875 | 0 |                          Value memref, ValueRange indices) { | 
| 1876 | 0 |   auto memrefType = memref.getType().cast<MemRefType>(); | 
| 1877 | 0 |   auto rank = memrefType.getRank(); | 
| 1878 | 0 |   // Create identity map for memrefs with at least one dimension or () -> () | 
| 1879 | 0 |   // for zero-dimensional memrefs. | 
| 1880 | 0 |   auto map = | 
| 1881 | 0 |       rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); | 
| 1882 | 0 |   build(builder, result, memref, map, indices); | 
| 1883 | 0 | } | 
| 1884 |  |  | 
| 1885 |  | static ParseResult parseAffineLoadOp(OpAsmParser &parser, | 
| 1886 | 0 |                                      OperationState &result) { | 
| 1887 | 0 |   auto &builder = parser.getBuilder(); | 
| 1888 | 0 |   auto indexTy = builder.getIndexType(); | 
| 1889 | 0 | 
 | 
| 1890 | 0 |   MemRefType type; | 
| 1891 | 0 |   OpAsmParser::OperandType memrefInfo; | 
| 1892 | 0 |   AffineMapAttr mapAttr; | 
| 1893 | 0 |   SmallVector<OpAsmParser::OperandType, 1> mapOperands; | 
| 1894 | 0 |   return failure( | 
| 1895 | 0 |       parser.parseOperand(memrefInfo) || | 
| 1896 | 0 |       parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, | 
| 1897 | 0 |                                     AffineLoadOp::getMapAttrName(), | 
| 1898 | 0 |                                     result.attributes) || | 
| 1899 | 0 |       parser.parseOptionalAttrDict(result.attributes) || | 
| 1900 | 0 |       parser.parseColonType(type) || | 
| 1901 | 0 |       parser.resolveOperand(memrefInfo, type, result.operands) || | 
| 1902 | 0 |       parser.resolveOperands(mapOperands, indexTy, result.operands) || | 
| 1903 | 0 |       parser.addTypeToList(type.getElementType(), result.types)); | 
| 1904 | 0 | } | 
| 1905 |  |  | 
| 1906 | 0 | static void print(OpAsmPrinter &p, AffineLoadOp op) { | 
| 1907 | 0 |   p << "affine.load " << op.getMemRef() << '['; | 
| 1908 | 0 |   if (AffineMapAttr mapAttr = | 
| 1909 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName())) | 
| 1910 | 0 |     p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands()); | 
| 1911 | 0 |   p << ']'; | 
| 1912 | 0 |   p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{op.getMapAttrName()}); | 
| 1913 | 0 |   p << " : " << op.getMemRefType(); | 
| 1914 | 0 | } | 
| 1915 |  |  | 
| 1916 |  | /// Verify common indexing invariants of affine.load, affine.store, | 
| 1917 |  | /// affine.vector_load and affine.vector_store. | 
| 1918 |  | static LogicalResult | 
| 1919 |  | verifyMemoryOpIndexing(Operation *op, AffineMapAttr mapAttr, | 
| 1920 |  |                        Operation::operand_range mapOperands, | 
| 1921 | 0 |                        MemRefType memrefType, unsigned numIndexOperands) { | 
| 1922 | 0 |   if (mapAttr) { | 
| 1923 | 0 |     AffineMap map = mapAttr.getValue(); | 
| 1924 | 0 |     if (map.getNumResults() != memrefType.getRank()) | 
| 1925 | 0 |       return op->emitOpError("affine map num results must equal memref rank"); | 
| 1926 | 0 |     if (map.getNumInputs() != numIndexOperands) | 
| 1927 | 0 |       return op->emitOpError("expects as many subscripts as affine map inputs"); | 
| 1928 | 0 |   } else { | 
| 1929 | 0 |     if (memrefType.getRank() != numIndexOperands) | 
| 1930 | 0 |       return op->emitOpError( | 
| 1931 | 0 |           "expects the number of subscripts to be equal to memref rank"); | 
| 1932 | 0 |   } | 
| 1933 | 0 |  | 
| 1934 | 0 |   Region *scope = getAffineScope(op); | 
| 1935 | 0 |   for (auto idx : mapOperands) { | 
| 1936 | 0 |     if (!idx.getType().isIndex()) | 
| 1937 | 0 |       return op->emitOpError("index to load must have 'index' type"); | 
| 1938 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 1939 | 0 |       return op->emitOpError("index must be a dimension or symbol identifier"); | 
| 1940 | 0 |   } | 
| 1941 | 0 | 
 | 
| 1942 | 0 |   return success(); | 
| 1943 | 0 | } | 
| 1944 |  |  | 
| 1945 | 0 | LogicalResult verify(AffineLoadOp op) { | 
| 1946 | 0 |   auto memrefType = op.getMemRefType(); | 
| 1947 | 0 |   if (op.getType() != memrefType.getElementType()) | 
| 1948 | 0 |     return op.emitOpError("result type must match element type of memref"); | 
| 1949 | 0 |  | 
| 1950 | 0 |   if (failed(verifyMemoryOpIndexing( | 
| 1951 | 0 |           op.getOperation(), | 
| 1952 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()), | 
| 1953 | 0 |           op.getMapOperands(), memrefType, | 
| 1954 | 0 |           /*numIndexOperands=*/op.getNumOperands() - 1))) | 
| 1955 | 0 |     return failure(); | 
| 1956 | 0 |  | 
| 1957 | 0 |   return success(); | 
| 1958 | 0 | } | 
| 1959 |  |  | 
| 1960 |  | void AffineLoadOp::getCanonicalizationPatterns( | 
| 1961 | 0 |     OwningRewritePatternList &results, MLIRContext *context) { | 
| 1962 | 0 |   results.insert<SimplifyAffineOp<AffineLoadOp>>(context); | 
| 1963 | 0 | } | 
| 1964 |  |  | 
| 1965 | 0 | OpFoldResult AffineLoadOp::fold(ArrayRef<Attribute> cstOperands) { | 
| 1966 | 0 |   /// load(memrefcast) -> load | 
| 1967 | 0 |   if (succeeded(foldMemRefCast(*this))) | 
| 1968 | 0 |     return getResult(); | 
| 1969 | 0 |   return OpFoldResult(); | 
| 1970 | 0 | } | 
| 1971 |  |  | 
| 1972 |  | //===----------------------------------------------------------------------===// | 
| 1973 |  | // AffineStoreOp | 
| 1974 |  | //===----------------------------------------------------------------------===// | 
| 1975 |  |  | 
| 1976 |  | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, | 
| 1977 |  |                           Value valueToStore, Value memref, AffineMap map, | 
| 1978 | 0 |                           ValueRange mapOperands) { | 
| 1979 | 0 |   assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info"); | 
| 1980 | 0 |   result.addOperands(valueToStore); | 
| 1981 | 0 |   result.addOperands(memref); | 
| 1982 | 0 |   result.addOperands(mapOperands); | 
| 1983 | 0 |   result.addAttribute(getMapAttrName(), AffineMapAttr::get(map)); | 
| 1984 | 0 | } | 
| 1985 |  |  | 
| 1986 |  | // Use identity map. | 
| 1987 |  | void AffineStoreOp::build(OpBuilder &builder, OperationState &result, | 
| 1988 |  |                           Value valueToStore, Value memref, | 
| 1989 | 0 |                           ValueRange indices) { | 
| 1990 | 0 |   auto memrefType = memref.getType().cast<MemRefType>(); | 
| 1991 | 0 |   auto rank = memrefType.getRank(); | 
| 1992 | 0 |   // Create identity map for memrefs with at least one dimension or () -> () | 
| 1993 | 0 |   // for zero-dimensional memrefs. | 
| 1994 | 0 |   auto map = | 
| 1995 | 0 |       rank ? builder.getMultiDimIdentityMap(rank) : builder.getEmptyAffineMap(); | 
| 1996 | 0 |   build(builder, result, valueToStore, memref, map, indices); | 
| 1997 | 0 | } | 
| 1998 |  |  | 
| 1999 |  | static ParseResult parseAffineStoreOp(OpAsmParser &parser, | 
| 2000 | 0 |                                       OperationState &result) { | 
| 2001 | 0 |   auto indexTy = parser.getBuilder().getIndexType(); | 
| 2002 | 0 | 
 | 
| 2003 | 0 |   MemRefType type; | 
| 2004 | 0 |   OpAsmParser::OperandType storeValueInfo; | 
| 2005 | 0 |   OpAsmParser::OperandType memrefInfo; | 
| 2006 | 0 |   AffineMapAttr mapAttr; | 
| 2007 | 0 |   SmallVector<OpAsmParser::OperandType, 1> mapOperands; | 
| 2008 | 0 |   return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() || | 
| 2009 | 0 |                  parser.parseOperand(memrefInfo) || | 
| 2010 | 0 |                  parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, | 
| 2011 | 0 |                                                AffineStoreOp::getMapAttrName(), | 
| 2012 | 0 |                                                result.attributes) || | 
| 2013 | 0 |                  parser.parseOptionalAttrDict(result.attributes) || | 
| 2014 | 0 |                  parser.parseColonType(type) || | 
| 2015 | 0 |                  parser.resolveOperand(storeValueInfo, type.getElementType(), | 
| 2016 | 0 |                                        result.operands) || | 
| 2017 | 0 |                  parser.resolveOperand(memrefInfo, type, result.operands) || | 
| 2018 | 0 |                  parser.resolveOperands(mapOperands, indexTy, result.operands)); | 
| 2019 | 0 | } | 
| 2020 |  |  | 
| 2021 | 0 | static void print(OpAsmPrinter &p, AffineStoreOp op) { | 
| 2022 | 0 |   p << "affine.store " << op.getValueToStore(); | 
| 2023 | 0 |   p << ", " << op.getMemRef() << '['; | 
| 2024 | 0 |   if (AffineMapAttr mapAttr = | 
| 2025 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName())) | 
| 2026 | 0 |     p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands()); | 
| 2027 | 0 |   p << ']'; | 
| 2028 | 0 |   p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{op.getMapAttrName()}); | 
| 2029 | 0 |   p << " : " << op.getMemRefType(); | 
| 2030 | 0 | } | 
| 2031 |  |  | 
| 2032 | 0 | LogicalResult verify(AffineStoreOp op) { | 
| 2033 | 0 |   // First operand must have same type as memref element type. | 
| 2034 | 0 |   auto memrefType = op.getMemRefType(); | 
| 2035 | 0 |   if (op.getValueToStore().getType() != memrefType.getElementType()) | 
| 2036 | 0 |     return op.emitOpError( | 
| 2037 | 0 |         "first operand must have same type memref element type"); | 
| 2038 | 0 |  | 
| 2039 | 0 |   if (failed(verifyMemoryOpIndexing( | 
| 2040 | 0 |           op.getOperation(), | 
| 2041 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()), | 
| 2042 | 0 |           op.getMapOperands(), memrefType, | 
| 2043 | 0 |           /*numIndexOperands=*/op.getNumOperands() - 2))) | 
| 2044 | 0 |     return failure(); | 
| 2045 | 0 |  | 
| 2046 | 0 |   return success(); | 
| 2047 | 0 | } | 
| 2048 |  |  | 
| 2049 |  | void AffineStoreOp::getCanonicalizationPatterns( | 
| 2050 | 0 |     OwningRewritePatternList &results, MLIRContext *context) { | 
| 2051 | 0 |   results.insert<SimplifyAffineOp<AffineStoreOp>>(context); | 
| 2052 | 0 | } | 
| 2053 |  |  | 
| 2054 |  | LogicalResult AffineStoreOp::fold(ArrayRef<Attribute> cstOperands, | 
| 2055 | 0 |                                   SmallVectorImpl<OpFoldResult> &results) { | 
| 2056 | 0 |   /// store(memrefcast) -> store | 
| 2057 | 0 |   return foldMemRefCast(*this); | 
| 2058 | 0 | } | 
| 2059 |  |  | 
| 2060 |  | //===----------------------------------------------------------------------===// | 
| 2061 |  | // AffineMinMaxOpBase | 
| 2062 |  | //===----------------------------------------------------------------------===// | 
| 2063 |  |  | 
| 2064 |  | template <typename T> | 
| 2065 | 0 | static LogicalResult verifyAffineMinMaxOp(T op) { | 
| 2066 | 0 |   // Verify that operand count matches affine map dimension and symbol count. | 
| 2067 | 0 |   if (op.getNumOperands() != op.map().getNumDims() + op.map().getNumSymbols()) | 
| 2068 | 0 |     return op.emitOpError( | 
| 2069 | 0 |         "operand count and affine map dimension and symbol count must match"); | 
| 2070 | 0 |   return success(); | 
| 2071 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL20verifyAffineMinMaxOpIN4mlir11AffineMaxOpEENS0_13LogicalResultET_Unexecuted instantiation: AffineOps.cpp:_ZL20verifyAffineMinMaxOpIN4mlir11AffineMinOpEENS0_13LogicalResultET_ | 
| 2072 |  |  | 
| 2073 |  | template <typename T> | 
| 2074 | 0 | static void printAffineMinMaxOp(OpAsmPrinter &p, T op) { | 
| 2075 | 0 |   p << op.getOperationName() << ' ' << op.getAttr(T::getMapAttrName()); | 
| 2076 | 0 |   auto operands = op.getOperands(); | 
| 2077 | 0 |   unsigned numDims = op.map().getNumDims(); | 
| 2078 | 0 |   p << '(' << operands.take_front(numDims) << ')'; | 
| 2079 | 0 | 
 | 
| 2080 | 0 |   if (operands.size() != numDims) | 
| 2081 | 0 |     p << '[' << operands.drop_front(numDims) << ']'; | 
| 2082 | 0 |   p.printOptionalAttrDict(op.getAttrs(), | 
| 2083 | 0 |                           /*elidedAttrs=*/{T::getMapAttrName()}); | 
| 2084 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL19printAffineMinMaxOpIN4mlir11AffineMaxOpEEvRNS0_12OpAsmPrinterET_Unexecuted instantiation: AffineOps.cpp:_ZL19printAffineMinMaxOpIN4mlir11AffineMinOpEEvRNS0_12OpAsmPrinterET_ | 
| 2085 |  |  | 
| 2086 |  | template <typename T> | 
| 2087 |  | static ParseResult parseAffineMinMaxOp(OpAsmParser &parser, | 
| 2088 | 0 |                                        OperationState &result) { | 
| 2089 | 0 |   auto &builder = parser.getBuilder(); | 
| 2090 | 0 |   auto indexType = builder.getIndexType(); | 
| 2091 | 0 |   SmallVector<OpAsmParser::OperandType, 8> dim_infos; | 
| 2092 | 0 |   SmallVector<OpAsmParser::OperandType, 8> sym_infos; | 
| 2093 | 0 |   AffineMapAttr mapAttr; | 
| 2094 | 0 |   return failure( | 
| 2095 | 0 |       parser.parseAttribute(mapAttr, T::getMapAttrName(), result.attributes) || | 
| 2096 | 0 |       parser.parseOperandList(dim_infos, OpAsmParser::Delimiter::Paren) || | 
| 2097 | 0 |       parser.parseOperandList(sym_infos, | 
| 2098 | 0 |                               OpAsmParser::Delimiter::OptionalSquare) || | 
| 2099 | 0 |       parser.parseOptionalAttrDict(result.attributes) || | 
| 2100 | 0 |       parser.resolveOperands(dim_infos, indexType, result.operands) || | 
| 2101 | 0 |       parser.resolveOperands(sym_infos, indexType, result.operands) || | 
| 2102 | 0 |       parser.addTypeToList(indexType, result.types)); | 
| 2103 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL19parseAffineMinMaxOpIN4mlir11AffineMaxOpEENS0_11ParseResultERNS0_11OpAsmParserERNS0_14OperationStateEUnexecuted instantiation: AffineOps.cpp:_ZL19parseAffineMinMaxOpIN4mlir11AffineMinOpEENS0_11ParseResultERNS0_11OpAsmParserERNS0_14OperationStateE | 
| 2104 |  |  | 
| 2105 |  | /// Fold an affine min or max operation with the given operands. The operand | 
| 2106 |  | /// list may contain nulls, which are interpreted as the operand not being a | 
| 2107 |  | /// constant. | 
| 2108 |  | template <typename T> | 
| 2109 | 0 | static OpFoldResult foldMinMaxOp(T op, ArrayRef<Attribute> operands) { | 
| 2110 | 0 |   static_assert(llvm::is_one_of<T, AffineMinOp, AffineMaxOp>::value, | 
| 2111 | 0 |                 "expected affine min or max op"); | 
| 2112 | 0 | 
 | 
| 2113 | 0 |   // Fold the affine map. | 
| 2114 | 0 |   // TODO(andydavis, ntv) Fold more cases: | 
| 2115 | 0 |   // min(some_affine, some_affine + constant, ...), etc. | 
| 2116 | 0 |   SmallVector<int64_t, 2> results; | 
| 2117 | 0 |   auto foldedMap = op.map().partialConstantFold(operands, &results); | 
| 2118 | 0 | 
 | 
| 2119 | 0 |   // If some of the map results are not constant, try changing the map in-place. | 
| 2120 | 0 |   if (results.empty()) { | 
| 2121 | 0 |     // If the map is the same, report that folding did not happen. | 
| 2122 | 0 |     if (foldedMap == op.map()) | 
| 2123 | 0 |       return {}; | 
| 2124 | 0 |     op.setAttr("map", AffineMapAttr::get(foldedMap)); | 
| 2125 | 0 |     return op.getResult(); | 
| 2126 | 0 |   } | 
| 2127 | 0 |  | 
| 2128 | 0 |   // Otherwise, completely fold the op into a constant. | 
| 2129 | 0 |   auto resultIt = std::is_same<T, AffineMinOp>::value | 
| 2130 | 0 |                       ? std::min_element(results.begin(), results.end()) | 
| 2131 | 0 |                       : std::max_element(results.begin(), results.end()); | 
| 2132 | 0 |   if (resultIt == results.end()) | 
| 2133 | 0 |     return {}; | 
| 2134 | 0 |   return IntegerAttr::get(IndexType::get(op.getContext()), *resultIt); | 
| 2135 | 0 | } Unexecuted instantiation: AffineOps.cpp:_ZL12foldMinMaxOpIN4mlir11AffineMinOpEENS0_12OpFoldResultET_N4llvm8ArrayRefINS0_9AttributeEEEUnexecuted instantiation: AffineOps.cpp:_ZL12foldMinMaxOpIN4mlir11AffineMaxOpEENS0_12OpFoldResultET_N4llvm8ArrayRefINS0_9AttributeEEE | 
| 2136 |  |  | 
| 2137 |  | //===----------------------------------------------------------------------===// | 
| 2138 |  | // AffineMinOp | 
| 2139 |  | //===----------------------------------------------------------------------===// | 
| 2140 |  | // | 
| 2141 |  | //   %0 = affine.min (d0) -> (1000, d0 + 512) (%i0) | 
| 2142 |  | // | 
| 2143 |  |  | 
| 2144 | 0 | OpFoldResult AffineMinOp::fold(ArrayRef<Attribute> operands) { | 
| 2145 | 0 |   return foldMinMaxOp(*this, operands); | 
| 2146 | 0 | } | 
| 2147 |  |  | 
| 2148 |  | void AffineMinOp::getCanonicalizationPatterns( | 
| 2149 | 0 |     OwningRewritePatternList &patterns, MLIRContext *context) { | 
| 2150 | 0 |   patterns.insert<SimplifyAffineOp<AffineMinOp>>(context); | 
| 2151 | 0 | } | 
| 2152 |  |  | 
| 2153 |  | //===----------------------------------------------------------------------===// | 
| 2154 |  | // AffineMaxOp | 
| 2155 |  | //===----------------------------------------------------------------------===// | 
| 2156 |  | // | 
| 2157 |  | //   %0 = affine.max (d0) -> (1000, d0 + 512) (%i0) | 
| 2158 |  | // | 
| 2159 |  |  | 
| 2160 | 0 | OpFoldResult AffineMaxOp::fold(ArrayRef<Attribute> operands) { | 
| 2161 | 0 |   return foldMinMaxOp(*this, operands); | 
| 2162 | 0 | } | 
| 2163 |  |  | 
| 2164 |  | void AffineMaxOp::getCanonicalizationPatterns( | 
| 2165 | 0 |     OwningRewritePatternList &patterns, MLIRContext *context) { | 
| 2166 | 0 |   patterns.insert<SimplifyAffineOp<AffineMaxOp>>(context); | 
| 2167 | 0 | } | 
| 2168 |  |  | 
| 2169 |  | //===----------------------------------------------------------------------===// | 
| 2170 |  | // AffinePrefetchOp | 
| 2171 |  | //===----------------------------------------------------------------------===// | 
| 2172 |  |  | 
| 2173 |  | // | 
| 2174 |  | // affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32> | 
| 2175 |  | // | 
| 2176 |  | static ParseResult parseAffinePrefetchOp(OpAsmParser &parser, | 
| 2177 | 0 |                                          OperationState &result) { | 
| 2178 | 0 |   auto &builder = parser.getBuilder(); | 
| 2179 | 0 |   auto indexTy = builder.getIndexType(); | 
| 2180 | 0 | 
 | 
| 2181 | 0 |   MemRefType type; | 
| 2182 | 0 |   OpAsmParser::OperandType memrefInfo; | 
| 2183 | 0 |   IntegerAttr hintInfo; | 
| 2184 | 0 |   auto i32Type = parser.getBuilder().getIntegerType(32); | 
| 2185 | 0 |   StringRef readOrWrite, cacheType; | 
| 2186 | 0 | 
 | 
| 2187 | 0 |   AffineMapAttr mapAttr; | 
| 2188 | 0 |   SmallVector<OpAsmParser::OperandType, 1> mapOperands; | 
| 2189 | 0 |   if (parser.parseOperand(memrefInfo) || | 
| 2190 | 0 |       parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, | 
| 2191 | 0 |                                     AffinePrefetchOp::getMapAttrName(), | 
| 2192 | 0 |                                     result.attributes) || | 
| 2193 | 0 |       parser.parseComma() || parser.parseKeyword(&readOrWrite) || | 
| 2194 | 0 |       parser.parseComma() || parser.parseKeyword("locality") || | 
| 2195 | 0 |       parser.parseLess() || | 
| 2196 | 0 |       parser.parseAttribute(hintInfo, i32Type, | 
| 2197 | 0 |                             AffinePrefetchOp::getLocalityHintAttrName(), | 
| 2198 | 0 |                             result.attributes) || | 
| 2199 | 0 |       parser.parseGreater() || parser.parseComma() || | 
| 2200 | 0 |       parser.parseKeyword(&cacheType) || | 
| 2201 | 0 |       parser.parseOptionalAttrDict(result.attributes) || | 
| 2202 | 0 |       parser.parseColonType(type) || | 
| 2203 | 0 |       parser.resolveOperand(memrefInfo, type, result.operands) || | 
| 2204 | 0 |       parser.resolveOperands(mapOperands, indexTy, result.operands)) | 
| 2205 | 0 |     return failure(); | 
| 2206 | 0 |  | 
| 2207 | 0 |   if (!readOrWrite.equals("read") && !readOrWrite.equals("write")) | 
| 2208 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 2209 | 0 |                             "rw specifier has to be 'read' or 'write'"); | 
| 2210 | 0 |   result.addAttribute( | 
| 2211 | 0 |       AffinePrefetchOp::getIsWriteAttrName(), | 
| 2212 | 0 |       parser.getBuilder().getBoolAttr(readOrWrite.equals("write"))); | 
| 2213 | 0 | 
 | 
| 2214 | 0 |   if (!cacheType.equals("data") && !cacheType.equals("instr")) | 
| 2215 | 0 |     return parser.emitError(parser.getNameLoc(), | 
| 2216 | 0 |                             "cache type has to be 'data' or 'instr'"); | 
| 2217 | 0 |  | 
| 2218 | 0 |   result.addAttribute( | 
| 2219 | 0 |       AffinePrefetchOp::getIsDataCacheAttrName(), | 
| 2220 | 0 |       parser.getBuilder().getBoolAttr(cacheType.equals("data"))); | 
| 2221 | 0 | 
 | 
| 2222 | 0 |   return success(); | 
| 2223 | 0 | } | 
| 2224 |  |  | 
| 2225 | 0 | static void print(OpAsmPrinter &p, AffinePrefetchOp op) { | 
| 2226 | 0 |   p << AffinePrefetchOp::getOperationName() << " " << op.memref() << '['; | 
| 2227 | 0 |   AffineMapAttr mapAttr = op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()); | 
| 2228 | 0 |   if (mapAttr) { | 
| 2229 | 0 |     SmallVector<Value, 2> operands(op.getMapOperands()); | 
| 2230 | 0 |     p.printAffineMapOfSSAIds(mapAttr, operands); | 
| 2231 | 0 |   } | 
| 2232 | 0 |   p << ']' << ", " << (op.isWrite() ? "write" : "read") << ", " | 
| 2233 | 0 |     << "locality<" << op.localityHint() << ">, " | 
| 2234 | 0 |     << (op.isDataCache() ? "data" : "instr"); | 
| 2235 | 0 |   p.printOptionalAttrDict( | 
| 2236 | 0 |       op.getAttrs(), | 
| 2237 | 0 |       /*elidedAttrs=*/{op.getMapAttrName(), op.getLocalityHintAttrName(), | 
| 2238 | 0 |                        op.getIsDataCacheAttrName(), op.getIsWriteAttrName()}); | 
| 2239 | 0 |   p << " : " << op.getMemRefType(); | 
| 2240 | 0 | } | 
| 2241 |  |  | 
| 2242 | 0 | static LogicalResult verify(AffinePrefetchOp op) { | 
| 2243 | 0 |   auto mapAttr = op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()); | 
| 2244 | 0 |   if (mapAttr) { | 
| 2245 | 0 |     AffineMap map = mapAttr.getValue(); | 
| 2246 | 0 |     if (map.getNumResults() != op.getMemRefType().getRank()) | 
| 2247 | 0 |       return op.emitOpError("affine.prefetch affine map num results must equal" | 
| 2248 | 0 |                             " memref rank"); | 
| 2249 | 0 |     if (map.getNumInputs() + 1 != op.getNumOperands()) | 
| 2250 | 0 |       return op.emitOpError("too few operands"); | 
| 2251 | 0 |   } else { | 
| 2252 | 0 |     if (op.getNumOperands() != 1) | 
| 2253 | 0 |       return op.emitOpError("too few operands"); | 
| 2254 | 0 |   } | 
| 2255 | 0 |  | 
| 2256 | 0 |   Region *scope = getAffineScope(op); | 
| 2257 | 0 |   for (auto idx : op.getMapOperands()) { | 
| 2258 | 0 |     if (!isValidAffineIndexOperand(idx, scope)) | 
| 2259 | 0 |       return op.emitOpError("index must be a dimension or symbol identifier"); | 
| 2260 | 0 |   } | 
| 2261 | 0 |   return success(); | 
| 2262 | 0 | } | 
| 2263 |  |  | 
| 2264 |  | void AffinePrefetchOp::getCanonicalizationPatterns( | 
| 2265 | 0 |     OwningRewritePatternList &results, MLIRContext *context) { | 
| 2266 | 0 |   // prefetch(memrefcast) -> prefetch | 
| 2267 | 0 |   results.insert<SimplifyAffineOp<AffinePrefetchOp>>(context); | 
| 2268 | 0 | } | 
| 2269 |  |  | 
| 2270 |  | LogicalResult AffinePrefetchOp::fold(ArrayRef<Attribute> cstOperands, | 
| 2271 | 0 |                                      SmallVectorImpl<OpFoldResult> &results) { | 
| 2272 | 0 |   /// prefetch(memrefcast) -> prefetch | 
| 2273 | 0 |   return foldMemRefCast(*this); | 
| 2274 | 0 | } | 
| 2275 |  |  | 
| 2276 |  | //===----------------------------------------------------------------------===// | 
| 2277 |  | // AffineParallelOp | 
| 2278 |  | //===----------------------------------------------------------------------===// | 
| 2279 |  |  | 
| 2280 |  | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, | 
| 2281 | 0 |                              ArrayRef<int64_t> ranges) { | 
| 2282 | 0 |   SmallVector<AffineExpr, 8> lbExprs(ranges.size(), | 
| 2283 | 0 |                                      builder.getAffineConstantExpr(0)); | 
| 2284 | 0 |   auto lbMap = AffineMap::get(0, 0, lbExprs, builder.getContext()); | 
| 2285 | 0 |   SmallVector<AffineExpr, 8> ubExprs; | 
| 2286 | 0 |   for (int64_t range : ranges) | 
| 2287 | 0 |     ubExprs.push_back(builder.getAffineConstantExpr(range)); | 
| 2288 | 0 |   auto ubMap = AffineMap::get(0, 0, ubExprs, builder.getContext()); | 
| 2289 | 0 |   build(builder, result, lbMap, {}, ubMap, {}); | 
| 2290 | 0 | } | 
| 2291 |  |  | 
| 2292 |  | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, | 
| 2293 |  |                              AffineMap lbMap, ValueRange lbArgs, | 
| 2294 | 0 |                              AffineMap ubMap, ValueRange ubArgs) { | 
| 2295 | 0 |   auto numDims = lbMap.getNumResults(); | 
| 2296 | 0 |   // Verify that the dimensionality of both maps are the same. | 
| 2297 | 0 |   assert(numDims == ubMap.getNumResults() && | 
| 2298 | 0 |          "num dims and num results mismatch"); | 
| 2299 | 0 |   // Make default step sizes of 1. | 
| 2300 | 0 |   SmallVector<int64_t, 8> steps(numDims, 1); | 
| 2301 | 0 |   build(builder, result, lbMap, lbArgs, ubMap, ubArgs, steps); | 
| 2302 | 0 | } | 
| 2303 |  |  | 
| 2304 |  | void AffineParallelOp::build(OpBuilder &builder, OperationState &result, | 
| 2305 |  |                              AffineMap lbMap, ValueRange lbArgs, | 
| 2306 |  |                              AffineMap ubMap, ValueRange ubArgs, | 
| 2307 |  |                              ArrayRef<int64_t> steps) { | 
| 2308 |  |   auto numDims = lbMap.getNumResults(); | 
| 2309 |  |   // Verify that the dimensionality of the maps matches the number of steps. | 
| 2310 |  |   assert(numDims == ubMap.getNumResults() && | 
| 2311 |  |          "num dims and num results mismatch"); | 
| 2312 |  |   assert(numDims == steps.size() && "num dims and num steps mismatch"); | 
| 2313 |  |   result.addAttribute(getLowerBoundsMapAttrName(), AffineMapAttr::get(lbMap)); | 
| 2314 |  |   result.addAttribute(getUpperBoundsMapAttrName(), AffineMapAttr::get(ubMap)); | 
| 2315 |  |   result.addAttribute(getStepsAttrName(), builder.getI64ArrayAttr(steps)); | 
| 2316 |  |   result.addOperands(lbArgs); | 
| 2317 |  |   result.addOperands(ubArgs); | 
| 2318 |  |   // Create a region and a block for the body. | 
| 2319 |  |   auto bodyRegion = result.addRegion(); | 
| 2320 |  |   auto body = new Block(); | 
| 2321 |  |   // Add all the block arguments. | 
| 2322 |  |   for (unsigned i = 0; i < numDims; ++i) | 
| 2323 |  |     body->addArgument(IndexType::get(builder.getContext())); | 
| 2324 |  |   bodyRegion->push_back(body); | 
| 2325 |  |   ensureTerminator(*bodyRegion, builder, result.location); | 
| 2326 |  | } | 
| 2327 |  |  | 
| 2328 | 0 | unsigned AffineParallelOp::getNumDims() { return steps().size(); } | 
| 2329 |  |  | 
| 2330 | 0 | AffineParallelOp::operand_range AffineParallelOp::getLowerBoundsOperands() { | 
| 2331 | 0 |   return getOperands().take_front(lowerBoundsMap().getNumInputs()); | 
| 2332 | 0 | } | 
| 2333 |  |  | 
| 2334 | 0 | AffineParallelOp::operand_range AffineParallelOp::getUpperBoundsOperands() { | 
| 2335 | 0 |   return getOperands().drop_front(lowerBoundsMap().getNumInputs()); | 
| 2336 | 0 | } | 
| 2337 |  |  | 
| 2338 | 0 | AffineValueMap AffineParallelOp::getLowerBoundsValueMap() { | 
| 2339 | 0 |   return AffineValueMap(lowerBoundsMap(), getLowerBoundsOperands()); | 
| 2340 | 0 | } | 
| 2341 |  |  | 
| 2342 | 0 | AffineValueMap AffineParallelOp::getUpperBoundsValueMap() { | 
| 2343 | 0 |   return AffineValueMap(upperBoundsMap(), getUpperBoundsOperands()); | 
| 2344 | 0 | } | 
| 2345 |  |  | 
| 2346 | 0 | AffineValueMap AffineParallelOp::getRangesValueMap() { | 
| 2347 | 0 |   AffineValueMap out; | 
| 2348 | 0 |   AffineValueMap::difference(getUpperBoundsValueMap(), getLowerBoundsValueMap(), | 
| 2349 | 0 |                              &out); | 
| 2350 | 0 |   return out; | 
| 2351 | 0 | } | 
| 2352 |  |  | 
| 2353 | 0 | Optional<SmallVector<int64_t, 8>> AffineParallelOp::getConstantRanges() { | 
| 2354 | 0 |   // Try to convert all the ranges to constant expressions. | 
| 2355 | 0 |   SmallVector<int64_t, 8> out; | 
| 2356 | 0 |   AffineValueMap rangesValueMap = getRangesValueMap(); | 
| 2357 | 0 |   out.reserve(rangesValueMap.getNumResults()); | 
| 2358 | 0 |   for (unsigned i = 0, e = rangesValueMap.getNumResults(); i < e; ++i) { | 
| 2359 | 0 |     auto expr = rangesValueMap.getResult(i); | 
| 2360 | 0 |     auto cst = expr.dyn_cast<AffineConstantExpr>(); | 
| 2361 | 0 |     if (!cst) | 
| 2362 | 0 |       return llvm::None; | 
| 2363 | 0 |     out.push_back(cst.getValue()); | 
| 2364 | 0 |   } | 
| 2365 | 0 |   return out; | 
| 2366 | 0 | } | 
| 2367 |  |  | 
| 2368 | 0 | Block *AffineParallelOp::getBody() { return ®ion().front(); } | 
| 2369 |  |  | 
| 2370 | 0 | OpBuilder AffineParallelOp::getBodyBuilder() { | 
| 2371 | 0 |   return OpBuilder(getBody(), std::prev(getBody()->end())); | 
| 2372 | 0 | } | 
| 2373 |  |  | 
| 2374 | 0 | void AffineParallelOp::setSteps(ArrayRef<int64_t> newSteps) { | 
| 2375 | 0 |   assert(newSteps.size() == getNumDims() && "steps & num dims mismatch"); | 
| 2376 | 0 |   setAttr(getStepsAttrName(), getBodyBuilder().getI64ArrayAttr(newSteps)); | 
| 2377 | 0 | } | 
| 2378 |  |  | 
| 2379 | 0 | static LogicalResult verify(AffineParallelOp op) { | 
| 2380 | 0 |   auto numDims = op.getNumDims(); | 
| 2381 | 0 |   if (op.lowerBoundsMap().getNumResults() != numDims || | 
| 2382 | 0 |       op.upperBoundsMap().getNumResults() != numDims || | 
| 2383 | 0 |       op.steps().size() != numDims || | 
| 2384 | 0 |       op.getBody()->getNumArguments() != numDims) { | 
| 2385 | 0 |     return op.emitOpError("region argument count and num results of upper " | 
| 2386 | 0 |                           "bounds, lower bounds, and steps must all match"); | 
| 2387 | 0 |   } | 
| 2388 | 0 |   // Verify that the bound operands are valid dimension/symbols. | 
| 2389 | 0 |   /// Lower bounds. | 
| 2390 | 0 |   if (failed(verifyDimAndSymbolIdentifiers(op, op.getLowerBoundsOperands(), | 
| 2391 | 0 |                                            op.lowerBoundsMap().getNumDims()))) | 
| 2392 | 0 |     return failure(); | 
| 2393 | 0 |   /// Upper bounds. | 
| 2394 | 0 |   if (failed(verifyDimAndSymbolIdentifiers(op, op.getUpperBoundsOperands(), | 
| 2395 | 0 |                                            op.upperBoundsMap().getNumDims()))) | 
| 2396 | 0 |     return failure(); | 
| 2397 | 0 |   return success(); | 
| 2398 | 0 | } | 
| 2399 |  |  | 
| 2400 | 0 | static void print(OpAsmPrinter &p, AffineParallelOp op) { | 
| 2401 | 0 |   p << op.getOperationName() << " (" << op.getBody()->getArguments() << ") = ("; | 
| 2402 | 0 |   p.printAffineMapOfSSAIds(op.lowerBoundsMapAttr(), | 
| 2403 | 0 |                            op.getLowerBoundsOperands()); | 
| 2404 | 0 |   p << ") to ("; | 
| 2405 | 0 |   p.printAffineMapOfSSAIds(op.upperBoundsMapAttr(), | 
| 2406 | 0 |                            op.getUpperBoundsOperands()); | 
| 2407 | 0 |   p << ')'; | 
| 2408 | 0 |   SmallVector<int64_t, 4> steps; | 
| 2409 | 0 |   bool elideSteps = true; | 
| 2410 | 0 |   for (auto attr : op.steps()) { | 
| 2411 | 0 |     auto step = attr.cast<IntegerAttr>().getInt(); | 
| 2412 | 0 |     elideSteps &= (step == 1); | 
| 2413 | 0 |     steps.push_back(step); | 
| 2414 | 0 |   } | 
| 2415 | 0 |   if (!elideSteps) { | 
| 2416 | 0 |     p << " step ("; | 
| 2417 | 0 |     llvm::interleaveComma(steps, p); | 
| 2418 | 0 |     p << ')'; | 
| 2419 | 0 |   } | 
| 2420 | 0 |   p.printRegion(op.region(), /*printEntryBlockArgs=*/false, | 
| 2421 | 0 |                 /*printBlockTerminators=*/false); | 
| 2422 | 0 |   p.printOptionalAttrDict( | 
| 2423 | 0 |       op.getAttrs(), | 
| 2424 | 0 |       /*elidedAttrs=*/{AffineParallelOp::getLowerBoundsMapAttrName(), | 
| 2425 | 0 |                        AffineParallelOp::getUpperBoundsMapAttrName(), | 
| 2426 | 0 |                        AffineParallelOp::getStepsAttrName()}); | 
| 2427 | 0 | } | 
| 2428 |  |  | 
| 2429 |  | // | 
| 2430 |  | // operation ::= `affine.parallel` `(` ssa-ids `)` `=` `(` map-of-ssa-ids `)` | 
| 2431 |  | //               `to` `(` map-of-ssa-ids `)` steps? region attr-dict? | 
| 2432 |  | // steps     ::= `steps` `(` integer-literals `)` | 
| 2433 |  | // | 
| 2434 |  | static ParseResult parseAffineParallelOp(OpAsmParser &parser, | 
| 2435 | 0 |                                          OperationState &result) { | 
| 2436 | 0 |   auto &builder = parser.getBuilder(); | 
| 2437 | 0 |   auto indexType = builder.getIndexType(); | 
| 2438 | 0 |   AffineMapAttr lowerBoundsAttr, upperBoundsAttr; | 
| 2439 | 0 |   SmallVector<OpAsmParser::OperandType, 4> ivs; | 
| 2440 | 0 |   SmallVector<OpAsmParser::OperandType, 4> lowerBoundsMapOperands; | 
| 2441 | 0 |   SmallVector<OpAsmParser::OperandType, 4> upperBoundsMapOperands; | 
| 2442 | 0 |   if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1, | 
| 2443 | 0 |                                      OpAsmParser::Delimiter::Paren) || | 
| 2444 | 0 |       parser.parseEqual() || | 
| 2445 | 0 |       parser.parseAffineMapOfSSAIds( | 
| 2446 | 0 |           lowerBoundsMapOperands, lowerBoundsAttr, | 
| 2447 | 0 |           AffineParallelOp::getLowerBoundsMapAttrName(), result.attributes, | 
| 2448 | 0 |           OpAsmParser::Delimiter::Paren) || | 
| 2449 | 0 |       parser.resolveOperands(lowerBoundsMapOperands, indexType, | 
| 2450 | 0 |                              result.operands) || | 
| 2451 | 0 |       parser.parseKeyword("to") || | 
| 2452 | 0 |       parser.parseAffineMapOfSSAIds( | 
| 2453 | 0 |           upperBoundsMapOperands, upperBoundsAttr, | 
| 2454 | 0 |           AffineParallelOp::getUpperBoundsMapAttrName(), result.attributes, | 
| 2455 | 0 |           OpAsmParser::Delimiter::Paren) || | 
| 2456 | 0 |       parser.resolveOperands(upperBoundsMapOperands, indexType, | 
| 2457 | 0 |                              result.operands)) | 
| 2458 | 0 |     return failure(); | 
| 2459 | 0 |  | 
| 2460 | 0 |   AffineMapAttr stepsMapAttr; | 
| 2461 | 0 |   NamedAttrList stepsAttrs; | 
| 2462 | 0 |   SmallVector<OpAsmParser::OperandType, 4> stepsMapOperands; | 
| 2463 | 0 |   if (failed(parser.parseOptionalKeyword("step"))) { | 
| 2464 | 0 |     SmallVector<int64_t, 4> steps(ivs.size(), 1); | 
| 2465 | 0 |     result.addAttribute(AffineParallelOp::getStepsAttrName(), | 
| 2466 | 0 |                         builder.getI64ArrayAttr(steps)); | 
| 2467 | 0 |   } else { | 
| 2468 | 0 |     if (parser.parseAffineMapOfSSAIds(stepsMapOperands, stepsMapAttr, | 
| 2469 | 0 |                                       AffineParallelOp::getStepsAttrName(), | 
| 2470 | 0 |                                       stepsAttrs, | 
| 2471 | 0 |                                       OpAsmParser::Delimiter::Paren)) | 
| 2472 | 0 |       return failure(); | 
| 2473 | 0 |  | 
| 2474 | 0 |     // Convert steps from an AffineMap into an I64ArrayAttr. | 
| 2475 | 0 |     SmallVector<int64_t, 4> steps; | 
| 2476 | 0 |     auto stepsMap = stepsMapAttr.getValue(); | 
| 2477 | 0 |     for (const auto &result : stepsMap.getResults()) { | 
| 2478 | 0 |       auto constExpr = result.dyn_cast<AffineConstantExpr>(); | 
| 2479 | 0 |       if (!constExpr) | 
| 2480 | 0 |         return parser.emitError(parser.getNameLoc(), | 
| 2481 | 0 |                                 "steps must be constant integers"); | 
| 2482 | 0 |       steps.push_back(constExpr.getValue()); | 
| 2483 | 0 |     } | 
| 2484 | 0 |     result.addAttribute(AffineParallelOp::getStepsAttrName(), | 
| 2485 | 0 |                         builder.getI64ArrayAttr(steps)); | 
| 2486 | 0 |   } | 
| 2487 | 0 | 
 | 
| 2488 | 0 |   // Now parse the body. | 
| 2489 | 0 |   Region *body = result.addRegion(); | 
| 2490 | 0 |   SmallVector<Type, 4> types(ivs.size(), indexType); | 
| 2491 | 0 |   if (parser.parseRegion(*body, ivs, types) || | 
| 2492 | 0 |       parser.parseOptionalAttrDict(result.attributes)) | 
| 2493 | 0 |     return failure(); | 
| 2494 | 0 |  | 
| 2495 | 0 |   // Add a terminator if none was parsed. | 
| 2496 | 0 |   AffineParallelOp::ensureTerminator(*body, builder, result.location); | 
| 2497 | 0 |   return success(); | 
| 2498 | 0 | } | 
| 2499 |  |  | 
| 2500 |  | //===----------------------------------------------------------------------===// | 
| 2501 |  | // AffineVectorLoadOp | 
| 2502 |  | //===----------------------------------------------------------------------===// | 
| 2503 |  |  | 
| 2504 |  | static ParseResult parseAffineVectorLoadOp(OpAsmParser &parser, | 
| 2505 | 0 |                                            OperationState &result) { | 
| 2506 | 0 |   auto &builder = parser.getBuilder(); | 
| 2507 | 0 |   auto indexTy = builder.getIndexType(); | 
| 2508 | 0 | 
 | 
| 2509 | 0 |   MemRefType memrefType; | 
| 2510 | 0 |   VectorType resultType; | 
| 2511 | 0 |   OpAsmParser::OperandType memrefInfo; | 
| 2512 | 0 |   AffineMapAttr mapAttr; | 
| 2513 | 0 |   SmallVector<OpAsmParser::OperandType, 1> mapOperands; | 
| 2514 | 0 |   return failure( | 
| 2515 | 0 |       parser.parseOperand(memrefInfo) || | 
| 2516 | 0 |       parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, | 
| 2517 | 0 |                                     AffineVectorLoadOp::getMapAttrName(), | 
| 2518 | 0 |                                     result.attributes) || | 
| 2519 | 0 |       parser.parseOptionalAttrDict(result.attributes) || | 
| 2520 | 0 |       parser.parseColonType(memrefType) || parser.parseComma() || | 
| 2521 | 0 |       parser.parseType(resultType) || | 
| 2522 | 0 |       parser.resolveOperand(memrefInfo, memrefType, result.operands) || | 
| 2523 | 0 |       parser.resolveOperands(mapOperands, indexTy, result.operands) || | 
| 2524 | 0 |       parser.addTypeToList(resultType, result.types)); | 
| 2525 | 0 | } | 
| 2526 |  |  | 
| 2527 | 0 | static void print(OpAsmPrinter &p, AffineVectorLoadOp op) { | 
| 2528 | 0 |   p << "affine.vector_load " << op.getMemRef() << '['; | 
| 2529 | 0 |   if (AffineMapAttr mapAttr = | 
| 2530 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName())) | 
| 2531 | 0 |     p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands()); | 
| 2532 | 0 |   p << ']'; | 
| 2533 | 0 |   p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{op.getMapAttrName()}); | 
| 2534 | 0 |   p << " : " << op.getMemRefType() << ", " << op.getType(); | 
| 2535 | 0 | } | 
| 2536 |  |  | 
| 2537 |  | /// Verify common invariants of affine.vector_load and affine.vector_store. | 
| 2538 |  | static LogicalResult verifyVectorMemoryOp(Operation *op, MemRefType memrefType, | 
| 2539 | 0 |                                           VectorType vectorType) { | 
| 2540 | 0 |   // Check that memref and vector element types match. | 
| 2541 | 0 |   if (memrefType.getElementType() != vectorType.getElementType()) | 
| 2542 | 0 |     return op->emitOpError( | 
| 2543 | 0 |         "requires memref and vector types of the same elemental type"); | 
| 2544 | 0 |  | 
| 2545 | 0 |   return success(); | 
| 2546 | 0 | } | 
| 2547 |  |  | 
| 2548 | 0 | static LogicalResult verify(AffineVectorLoadOp op) { | 
| 2549 | 0 |   MemRefType memrefType = op.getMemRefType(); | 
| 2550 | 0 |   if (failed(verifyMemoryOpIndexing( | 
| 2551 | 0 |           op.getOperation(), | 
| 2552 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()), | 
| 2553 | 0 |           op.getMapOperands(), memrefType, | 
| 2554 | 0 |           /*numIndexOperands=*/op.getNumOperands() - 1))) | 
| 2555 | 0 |     return failure(); | 
| 2556 | 0 |  | 
| 2557 | 0 |   if (failed(verifyVectorMemoryOp(op.getOperation(), memrefType, | 
| 2558 | 0 |                                   op.getVectorType()))) | 
| 2559 | 0 |     return failure(); | 
| 2560 | 0 |  | 
| 2561 | 0 |   return success(); | 
| 2562 | 0 | } | 
| 2563 |  |  | 
| 2564 |  | //===----------------------------------------------------------------------===// | 
| 2565 |  | // AffineVectorStoreOp | 
| 2566 |  | //===----------------------------------------------------------------------===// | 
| 2567 |  |  | 
| 2568 |  | static ParseResult parseAffineVectorStoreOp(OpAsmParser &parser, | 
| 2569 | 0 |                                             OperationState &result) { | 
| 2570 | 0 |   auto indexTy = parser.getBuilder().getIndexType(); | 
| 2571 | 0 | 
 | 
| 2572 | 0 |   MemRefType memrefType; | 
| 2573 | 0 |   VectorType resultType; | 
| 2574 | 0 |   OpAsmParser::OperandType storeValueInfo; | 
| 2575 | 0 |   OpAsmParser::OperandType memrefInfo; | 
| 2576 | 0 |   AffineMapAttr mapAttr; | 
| 2577 | 0 |   SmallVector<OpAsmParser::OperandType, 1> mapOperands; | 
| 2578 | 0 |   return failure( | 
| 2579 | 0 |       parser.parseOperand(storeValueInfo) || parser.parseComma() || | 
| 2580 | 0 |       parser.parseOperand(memrefInfo) || | 
| 2581 | 0 |       parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, | 
| 2582 | 0 |                                     AffineVectorStoreOp::getMapAttrName(), | 
| 2583 | 0 |                                     result.attributes) || | 
| 2584 | 0 |       parser.parseOptionalAttrDict(result.attributes) || | 
| 2585 | 0 |       parser.parseColonType(memrefType) || parser.parseComma() || | 
| 2586 | 0 |       parser.parseType(resultType) || | 
| 2587 | 0 |       parser.resolveOperand(storeValueInfo, resultType, result.operands) || | 
| 2588 | 0 |       parser.resolveOperand(memrefInfo, memrefType, result.operands) || | 
| 2589 | 0 |       parser.resolveOperands(mapOperands, indexTy, result.operands)); | 
| 2590 | 0 | } | 
| 2591 |  |  | 
| 2592 | 0 | static void print(OpAsmPrinter &p, AffineVectorStoreOp op) { | 
| 2593 | 0 |   p << "affine.vector_store " << op.getValueToStore(); | 
| 2594 | 0 |   p << ", " << op.getMemRef() << '['; | 
| 2595 | 0 |   if (AffineMapAttr mapAttr = | 
| 2596 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName())) | 
| 2597 | 0 |     p.printAffineMapOfSSAIds(mapAttr, op.getMapOperands()); | 
| 2598 | 0 |   p << ']'; | 
| 2599 | 0 |   p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{op.getMapAttrName()}); | 
| 2600 | 0 |   p << " : " << op.getMemRefType() << ", " << op.getValueToStore().getType(); | 
| 2601 | 0 | } | 
| 2602 |  |  | 
| 2603 | 0 | static LogicalResult verify(AffineVectorStoreOp op) { | 
| 2604 | 0 |   MemRefType memrefType = op.getMemRefType(); | 
| 2605 | 0 |   if (failed(verifyMemoryOpIndexing( | 
| 2606 | 0 |           op.getOperation(), | 
| 2607 | 0 |           op.getAttrOfType<AffineMapAttr>(op.getMapAttrName()), | 
| 2608 | 0 |           op.getMapOperands(), memrefType, | 
| 2609 | 0 |           /*numIndexOperands=*/op.getNumOperands() - 2))) | 
| 2610 | 0 |     return failure(); | 
| 2611 | 0 |  | 
| 2612 | 0 |   if (failed(verifyVectorMemoryOp(op.getOperation(), memrefType, | 
| 2613 | 0 |                                   op.getVectorType()))) | 
| 2614 | 0 |     return failure(); | 
| 2615 | 0 |  | 
| 2616 | 0 |   return success(); | 
| 2617 | 0 | } | 
| 2618 |  |  | 
| 2619 |  | //===----------------------------------------------------------------------===// | 
| 2620 |  | // TableGen'd op method definitions | 
| 2621 |  | //===----------------------------------------------------------------------===// | 
| 2622 |  |  | 
| 2623 |  | #define GET_OP_CLASSES | 
| 2624 |  | #include "mlir/Dialect/Affine/IR/AffineOps.cpp.inc" |