/home/arjun/llvm-project/mlir/lib/Analysis/AffineStructures.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- AffineStructures.cpp - MLIR Affine Structures Class-----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // Structures for affine/polyhedral analysis of affine dialect ops. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "mlir/Analysis/AffineStructures.h" |
14 | | #include "mlir/Analysis/Presburger/Simplex.h" |
15 | | #include "mlir/Dialect/Affine/IR/AffineOps.h" |
16 | | #include "mlir/Dialect/Affine/IR/AffineValueMap.h" |
17 | | #include "mlir/Dialect/StandardOps/IR/Ops.h" |
18 | | #include "mlir/IR/AffineExprVisitor.h" |
19 | | #include "mlir/IR/IntegerSet.h" |
20 | | #include "mlir/Support/LLVM.h" |
21 | | #include "mlir/Support/MathExtras.h" |
22 | | #include "llvm/ADT/SmallPtrSet.h" |
23 | | #include "llvm/Support/Debug.h" |
24 | | #include "llvm/Support/raw_ostream.h" |
25 | | |
26 | | #define DEBUG_TYPE "affine-structures" |
27 | | |
28 | | using namespace mlir; |
29 | | using llvm::SmallDenseMap; |
30 | | using llvm::SmallDenseSet; |
31 | | |
32 | | namespace { |
33 | | |
34 | | // See comments for SimpleAffineExprFlattener. |
35 | | // An AffineExprFlattener extends a SimpleAffineExprFlattener by recording |
36 | | // constraint information associated with mod's, floordiv's, and ceildiv's |
37 | | // in FlatAffineConstraints 'localVarCst'. |
38 | | struct AffineExprFlattener : public SimpleAffineExprFlattener { |
39 | | public: |
40 | | // Constraints connecting newly introduced local variables (for mod's and |
41 | | // div's) to existing (dimensional and symbolic) ones. These are always |
42 | | // inequalities. |
43 | | FlatAffineConstraints localVarCst; |
44 | | |
45 | | AffineExprFlattener(unsigned nDims, unsigned nSymbols, MLIRContext *ctx) |
46 | 0 | : SimpleAffineExprFlattener(nDims, nSymbols) { |
47 | 0 | localVarCst.reset(nDims, nSymbols, /*numLocals=*/0); |
48 | 0 | } |
49 | | |
50 | | private: |
51 | | // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr). |
52 | | // The local identifier added is always a floordiv of a pure add/mul affine |
53 | | // function of other identifiers, coefficients of which are specified in |
54 | | // `dividend' and with respect to the positive constant `divisor'. localExpr |
55 | | // is the simplified tree expression (AffineExpr) corresponding to the |
56 | | // quantifier. |
57 | | void addLocalFloorDivId(ArrayRef<int64_t> dividend, int64_t divisor, |
58 | 0 | AffineExpr localExpr) override { |
59 | 0 | SimpleAffineExprFlattener::addLocalFloorDivId(dividend, divisor, localExpr); |
60 | 0 | // Update localVarCst. |
61 | 0 | localVarCst.addLocalFloorDiv(dividend, divisor); |
62 | 0 | } |
63 | | }; |
64 | | |
65 | | } // end anonymous namespace |
66 | | |
67 | | // Flattens the expressions in map. Returns failure if 'expr' was unable to be |
68 | | // flattened (i.e., semi-affine expressions not handled yet). |
69 | | static LogicalResult |
70 | | getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims, |
71 | | unsigned numSymbols, |
72 | | std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
73 | 0 | FlatAffineConstraints *localVarCst) { |
74 | 0 | if (exprs.empty()) { |
75 | 0 | localVarCst->reset(numDims, numSymbols); |
76 | 0 | return success(); |
77 | 0 | } |
78 | 0 | |
79 | 0 | AffineExprFlattener flattener(numDims, numSymbols, exprs[0].getContext()); |
80 | 0 | // Use the same flattener to simplify each expression successively. This way |
81 | 0 | // local identifiers / expressions are shared. |
82 | 0 | for (auto expr : exprs) { |
83 | 0 | if (!expr.isPureAffine()) |
84 | 0 | return failure(); |
85 | 0 | |
86 | 0 | flattener.walkPostOrder(expr); |
87 | 0 | } |
88 | 0 |
|
89 | 0 | assert(flattener.operandExprStack.size() == exprs.size()); |
90 | 0 | flattenedExprs->clear(); |
91 | 0 | flattenedExprs->assign(flattener.operandExprStack.begin(), |
92 | 0 | flattener.operandExprStack.end()); |
93 | 0 |
|
94 | 0 | if (localVarCst) |
95 | 0 | localVarCst->clearAndCopyFrom(flattener.localVarCst); |
96 | 0 |
|
97 | 0 | return success(); |
98 | 0 | } |
99 | | |
100 | | // Flattens 'expr' into 'flattenedExpr'. Returns failure if 'expr' was unable to |
101 | | // be flattened (semi-affine expressions not handled yet). |
102 | | LogicalResult |
103 | | mlir::getFlattenedAffineExpr(AffineExpr expr, unsigned numDims, |
104 | | unsigned numSymbols, |
105 | | SmallVectorImpl<int64_t> *flattenedExpr, |
106 | 0 | FlatAffineConstraints *localVarCst) { |
107 | 0 | std::vector<SmallVector<int64_t, 8>> flattenedExprs; |
108 | 0 | LogicalResult ret = ::getFlattenedAffineExprs({expr}, numDims, numSymbols, |
109 | 0 | &flattenedExprs, localVarCst); |
110 | 0 | *flattenedExpr = flattenedExprs[0]; |
111 | 0 | return ret; |
112 | 0 | } |
113 | | |
114 | | /// Flattens the expressions in map. Returns failure if 'expr' was unable to be |
115 | | /// flattened (i.e., semi-affine expressions not handled yet). |
116 | | LogicalResult mlir::getFlattenedAffineExprs( |
117 | | AffineMap map, std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
118 | 0 | FlatAffineConstraints *localVarCst) { |
119 | 0 | if (map.getNumResults() == 0) { |
120 | 0 | localVarCst->reset(map.getNumDims(), map.getNumSymbols()); |
121 | 0 | return success(); |
122 | 0 | } |
123 | 0 | return ::getFlattenedAffineExprs(map.getResults(), map.getNumDims(), |
124 | 0 | map.getNumSymbols(), flattenedExprs, |
125 | 0 | localVarCst); |
126 | 0 | } |
127 | | |
128 | | LogicalResult mlir::getFlattenedAffineExprs( |
129 | | IntegerSet set, std::vector<SmallVector<int64_t, 8>> *flattenedExprs, |
130 | 0 | FlatAffineConstraints *localVarCst) { |
131 | 0 | if (set.getNumConstraints() == 0) { |
132 | 0 | localVarCst->reset(set.getNumDims(), set.getNumSymbols()); |
133 | 0 | return success(); |
134 | 0 | } |
135 | 0 | return ::getFlattenedAffineExprs(set.getConstraints(), set.getNumDims(), |
136 | 0 | set.getNumSymbols(), flattenedExprs, |
137 | 0 | localVarCst); |
138 | 0 | } |
139 | | |
140 | | //===----------------------------------------------------------------------===// |
141 | | // FlatAffineConstraints. |
142 | | //===----------------------------------------------------------------------===// |
143 | | |
144 | | // Copy constructor. |
145 | | FlatAffineConstraints::FlatAffineConstraints( |
146 | 0 | const FlatAffineConstraints &other) { |
147 | 0 | numReservedCols = other.numReservedCols; |
148 | 0 | numDims = other.getNumDimIds(); |
149 | 0 | numSymbols = other.getNumSymbolIds(); |
150 | 0 | numIds = other.getNumIds(); |
151 | 0 |
|
152 | 0 | auto otherIds = other.getIds(); |
153 | 0 | ids.reserve(numReservedCols); |
154 | 0 | ids.append(otherIds.begin(), otherIds.end()); |
155 | 0 |
|
156 | 0 | unsigned numReservedEqualities = other.getNumReservedEqualities(); |
157 | 0 | unsigned numReservedInequalities = other.getNumReservedInequalities(); |
158 | 0 |
|
159 | 0 | equalities.reserve(numReservedEqualities * numReservedCols); |
160 | 0 | inequalities.reserve(numReservedInequalities * numReservedCols); |
161 | 0 |
|
162 | 0 | for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { |
163 | 0 | addInequality(other.getInequality(r)); |
164 | 0 | } |
165 | 0 | for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { |
166 | 0 | addEquality(other.getEquality(r)); |
167 | 0 | } |
168 | 0 | } |
169 | | |
170 | | // Clones this object. |
171 | 0 | std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const { |
172 | 0 | return std::make_unique<FlatAffineConstraints>(*this); |
173 | 0 | } |
174 | | |
175 | | // Construct from an IntegerSet. |
176 | | FlatAffineConstraints::FlatAffineConstraints(IntegerSet set) |
177 | | : numReservedCols(set.getNumInputs() + 1), |
178 | | numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()), |
179 | 0 | numSymbols(set.getNumSymbols()) { |
180 | 0 | equalities.reserve(set.getNumEqualities() * numReservedCols); |
181 | 0 | inequalities.reserve(set.getNumInequalities() * numReservedCols); |
182 | 0 | ids.resize(numIds, None); |
183 | 0 |
|
184 | 0 | // Flatten expressions and add them to the constraint system. |
185 | 0 | std::vector<SmallVector<int64_t, 8>> flatExprs; |
186 | 0 | FlatAffineConstraints localVarCst; |
187 | 0 | if (failed(getFlattenedAffineExprs(set, &flatExprs, &localVarCst))) { |
188 | 0 | assert(false && "flattening unimplemented for semi-affine integer sets"); |
189 | 0 | return; |
190 | 0 | } |
191 | 0 | assert(flatExprs.size() == set.getNumConstraints()); |
192 | 0 | for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) { |
193 | 0 | addLocalId(getNumLocalIds()); |
194 | 0 | } |
195 | 0 |
|
196 | 0 | for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) { |
197 | 0 | const auto &flatExpr = flatExprs[i]; |
198 | 0 | assert(flatExpr.size() == getNumCols()); |
199 | 0 | if (set.getEqFlags()[i]) { |
200 | 0 | addEquality(flatExpr); |
201 | 0 | } else { |
202 | 0 | addInequality(flatExpr); |
203 | 0 | } |
204 | 0 | } |
205 | 0 | // Add the other constraints involving local id's from flattening. |
206 | 0 | append(localVarCst); |
207 | 0 | } |
208 | | |
209 | | void FlatAffineConstraints::reset(unsigned numReservedInequalities, |
210 | | unsigned numReservedEqualities, |
211 | | unsigned newNumReservedCols, |
212 | | unsigned newNumDims, unsigned newNumSymbols, |
213 | | unsigned newNumLocals, |
214 | 0 | ArrayRef<Value> idArgs) { |
215 | 0 | assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 && |
216 | 0 | "minimum 1 column"); |
217 | 0 | numReservedCols = newNumReservedCols; |
218 | 0 | numDims = newNumDims; |
219 | 0 | numSymbols = newNumSymbols; |
220 | 0 | numIds = numDims + numSymbols + newNumLocals; |
221 | 0 | assert(idArgs.empty() || idArgs.size() == numIds); |
222 | 0 |
|
223 | 0 | clearConstraints(); |
224 | 0 | if (numReservedEqualities >= 1) |
225 | 0 | equalities.reserve(newNumReservedCols * numReservedEqualities); |
226 | 0 | if (numReservedInequalities >= 1) |
227 | 0 | inequalities.reserve(newNumReservedCols * numReservedInequalities); |
228 | 0 | if (idArgs.empty()) { |
229 | 0 | ids.resize(numIds, None); |
230 | 0 | } else { |
231 | 0 | ids.assign(idArgs.begin(), idArgs.end()); |
232 | 0 | } |
233 | 0 | } |
234 | | |
235 | | void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols, |
236 | | unsigned newNumLocals, |
237 | 0 | ArrayRef<Value> idArgs) { |
238 | 0 | reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims, |
239 | 0 | newNumSymbols, newNumLocals, idArgs); |
240 | 0 | } |
241 | | |
242 | 0 | void FlatAffineConstraints::append(const FlatAffineConstraints &other) { |
243 | 0 | assert(other.getNumCols() == getNumCols()); |
244 | 0 | assert(other.getNumDimIds() == getNumDimIds()); |
245 | 0 | assert(other.getNumSymbolIds() == getNumSymbolIds()); |
246 | 0 |
|
247 | 0 | inequalities.reserve(inequalities.size() + |
248 | 0 | other.getNumInequalities() * numReservedCols); |
249 | 0 | equalities.reserve(equalities.size() + |
250 | 0 | other.getNumEqualities() * numReservedCols); |
251 | 0 |
|
252 | 0 | for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) { |
253 | 0 | addInequality(other.getInequality(r)); |
254 | 0 | } |
255 | 0 | for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) { |
256 | 0 | addEquality(other.getEquality(r)); |
257 | 0 | } |
258 | 0 | } |
259 | | |
260 | 0 | void FlatAffineConstraints::addLocalId(unsigned pos) { |
261 | 0 | addId(IdKind::Local, pos); |
262 | 0 | } |
263 | | |
264 | 0 | void FlatAffineConstraints::addDimId(unsigned pos, Value id) { |
265 | 0 | addId(IdKind::Dimension, pos, id); |
266 | 0 | } |
267 | | |
268 | 0 | void FlatAffineConstraints::addSymbolId(unsigned pos, Value id) { |
269 | 0 | addId(IdKind::Symbol, pos, id); |
270 | 0 | } |
271 | | |
272 | | /// Adds a dimensional identifier. The added column is initialized to |
273 | | /// zero. |
274 | 0 | void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value id) { |
275 | 0 | if (kind == IdKind::Dimension) |
276 | 0 | assert(pos <= getNumDimIds()); |
277 | 0 | else if (kind == IdKind::Symbol) |
278 | 0 | assert(pos <= getNumSymbolIds()); |
279 | 0 | else |
280 | 0 | assert(pos <= getNumLocalIds()); |
281 | 0 |
|
282 | 0 | unsigned oldNumReservedCols = numReservedCols; |
283 | 0 |
|
284 | 0 | // Check if a resize is necessary. |
285 | 0 | if (getNumCols() + 1 > numReservedCols) { |
286 | 0 | equalities.resize(getNumEqualities() * (getNumCols() + 1)); |
287 | 0 | inequalities.resize(getNumInequalities() * (getNumCols() + 1)); |
288 | 0 | numReservedCols++; |
289 | 0 | } |
290 | 0 |
|
291 | 0 | int absolutePos; |
292 | 0 |
|
293 | 0 | if (kind == IdKind::Dimension) { |
294 | 0 | absolutePos = pos; |
295 | 0 | numDims++; |
296 | 0 | } else if (kind == IdKind::Symbol) { |
297 | 0 | absolutePos = pos + getNumDimIds(); |
298 | 0 | numSymbols++; |
299 | 0 | } else { |
300 | 0 | absolutePos = pos + getNumDimIds() + getNumSymbolIds(); |
301 | 0 | } |
302 | 0 | numIds++; |
303 | 0 |
|
304 | 0 | // Note that getNumCols() now will already return the new size, which will be |
305 | 0 | // at least one. |
306 | 0 | int numInequalities = static_cast<int>(getNumInequalities()); |
307 | 0 | int numEqualities = static_cast<int>(getNumEqualities()); |
308 | 0 | int numCols = static_cast<int>(getNumCols()); |
309 | 0 | for (int r = numInequalities - 1; r >= 0; r--) { |
310 | 0 | for (int c = numCols - 2; c >= 0; c--) { |
311 | 0 | if (c < absolutePos) |
312 | 0 | atIneq(r, c) = inequalities[r * oldNumReservedCols + c]; |
313 | 0 | else |
314 | 0 | atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c]; |
315 | 0 | } |
316 | 0 | atIneq(r, absolutePos) = 0; |
317 | 0 | } |
318 | 0 |
|
319 | 0 | for (int r = numEqualities - 1; r >= 0; r--) { |
320 | 0 | for (int c = numCols - 2; c >= 0; c--) { |
321 | 0 | // All values in column absolutePositions < absolutePos have the same |
322 | 0 | // coordinates in the 2-d view of the coefficient buffer. |
323 | 0 | if (c < absolutePos) |
324 | 0 | atEq(r, c) = equalities[r * oldNumReservedCols + c]; |
325 | 0 | else |
326 | 0 | // Those at absolutePosition >= absolutePos, get a shifted |
327 | 0 | // absolutePosition. |
328 | 0 | atEq(r, c + 1) = equalities[r * oldNumReservedCols + c]; |
329 | 0 | } |
330 | 0 | // Initialize added dimension to zero. |
331 | 0 | atEq(r, absolutePos) = 0; |
332 | 0 | } |
333 | 0 |
|
334 | 0 | // If an 'id' is provided, insert it; otherwise use None. |
335 | 0 | if (id) |
336 | 0 | ids.insert(ids.begin() + absolutePos, id); |
337 | 0 | else |
338 | 0 | ids.insert(ids.begin() + absolutePos, None); |
339 | 0 | assert(ids.size() == getNumIds()); |
340 | 0 | } |
341 | | |
342 | | /// Checks if two constraint systems are in the same space, i.e., if they are |
343 | | /// associated with the same set of identifiers, appearing in the same order. |
344 | | static bool areIdsAligned(const FlatAffineConstraints &A, |
345 | 0 | const FlatAffineConstraints &B) { |
346 | 0 | return A.getNumDimIds() == B.getNumDimIds() && |
347 | 0 | A.getNumSymbolIds() == B.getNumSymbolIds() && |
348 | 0 | A.getNumIds() == B.getNumIds() && A.getIds().equals(B.getIds()); |
349 | 0 | } |
350 | | |
351 | | /// Calls areIdsAligned to check if two constraint systems have the same set |
352 | | /// of identifiers in the same order. |
353 | | bool FlatAffineConstraints::areIdsAlignedWithOther( |
354 | 0 | const FlatAffineConstraints &other) { |
355 | 0 | return areIdsAligned(*this, other); |
356 | 0 | } |
357 | | |
358 | | /// Checks if the SSA values associated with `cst''s identifiers are unique. |
359 | | static bool LLVM_ATTRIBUTE_UNUSED |
360 | 0 | areIdsUnique(const FlatAffineConstraints &cst) { |
361 | 0 | SmallPtrSet<Value, 8> uniqueIds; |
362 | 0 | for (auto id : cst.getIds()) { |
363 | 0 | if (id.hasValue() && !uniqueIds.insert(id.getValue()).second) |
364 | 0 | return false; |
365 | 0 | } |
366 | 0 | return true; |
367 | 0 | } |
368 | | |
369 | | // Swap the posA^th identifier with the posB^th identifier. |
370 | 0 | static void swapId(FlatAffineConstraints *A, unsigned posA, unsigned posB) { |
371 | 0 | assert(posA < A->getNumIds() && "invalid position A"); |
372 | 0 | assert(posB < A->getNumIds() && "invalid position B"); |
373 | 0 |
|
374 | 0 | if (posA == posB) |
375 | 0 | return; |
376 | 0 | |
377 | 0 | for (unsigned r = 0, e = A->getNumInequalities(); r < e; r++) { |
378 | 0 | std::swap(A->atIneq(r, posA), A->atIneq(r, posB)); |
379 | 0 | } |
380 | 0 | for (unsigned r = 0, e = A->getNumEqualities(); r < e; r++) { |
381 | 0 | std::swap(A->atEq(r, posA), A->atEq(r, posB)); |
382 | 0 | } |
383 | 0 | std::swap(A->getId(posA), A->getId(posB)); |
384 | 0 | } |
385 | | |
386 | | /// Merge and align the identifiers of A and B starting at 'offset', so that |
387 | | /// both constraint systems get the union of the contained identifiers that is |
388 | | /// dimension-wise and symbol-wise unique; both constraint systems are updated |
389 | | /// so that they have the union of all identifiers, with A's original |
390 | | /// identifiers appearing first followed by any of B's identifiers that didn't |
391 | | /// appear in A. Local identifiers of each system are by design separate/local |
392 | | /// and are placed one after other (A's followed by B's). |
393 | | // Eg: Input: A has ((%i %j) [%M %N]) and B has (%k, %j) [%P, %N, %M]) |
394 | | // Output: both A, B have (%i, %j, %k) [%M, %N, %P] |
395 | | // |
396 | | static void mergeAndAlignIds(unsigned offset, FlatAffineConstraints *A, |
397 | 0 | FlatAffineConstraints *B) { |
398 | 0 | assert(offset <= A->getNumDimIds() && offset <= B->getNumDimIds()); |
399 | 0 | // A merge/align isn't meaningful if a cst's ids aren't distinct. |
400 | 0 | assert(areIdsUnique(*A) && "A's id values aren't unique"); |
401 | 0 | assert(areIdsUnique(*B) && "B's id values aren't unique"); |
402 | 0 |
|
403 | 0 | assert(std::all_of(A->getIds().begin() + offset, |
404 | 0 | A->getIds().begin() + A->getNumDimAndSymbolIds(), |
405 | 0 | [](Optional<Value> id) { return id.hasValue(); })); |
406 | 0 |
|
407 | 0 | assert(std::all_of(B->getIds().begin() + offset, |
408 | 0 | B->getIds().begin() + B->getNumDimAndSymbolIds(), |
409 | 0 | [](Optional<Value> id) { return id.hasValue(); })); |
410 | 0 |
|
411 | 0 | // Place local id's of A after local id's of B. |
412 | 0 | for (unsigned l = 0, e = A->getNumLocalIds(); l < e; l++) { |
413 | 0 | B->addLocalId(0); |
414 | 0 | } |
415 | 0 | for (unsigned t = 0, e = B->getNumLocalIds() - A->getNumLocalIds(); t < e; |
416 | 0 | t++) { |
417 | 0 | A->addLocalId(A->getNumLocalIds()); |
418 | 0 | } |
419 | 0 |
|
420 | 0 | SmallVector<Value, 4> aDimValues, aSymValues; |
421 | 0 | A->getIdValues(offset, A->getNumDimIds(), &aDimValues); |
422 | 0 | A->getIdValues(A->getNumDimIds(), A->getNumDimAndSymbolIds(), &aSymValues); |
423 | 0 | { |
424 | 0 | // Merge dims from A into B. |
425 | 0 | unsigned d = offset; |
426 | 0 | for (auto aDimValue : aDimValues) { |
427 | 0 | unsigned loc; |
428 | 0 | if (B->findId(aDimValue, &loc)) { |
429 | 0 | assert(loc >= offset && "A's dim appears in B's aligned range"); |
430 | 0 | assert(loc < B->getNumDimIds() && |
431 | 0 | "A's dim appears in B's non-dim position"); |
432 | 0 | swapId(B, d, loc); |
433 | 0 | } else { |
434 | 0 | B->addDimId(d); |
435 | 0 | B->setIdValue(d, aDimValue); |
436 | 0 | } |
437 | 0 | d++; |
438 | 0 | } |
439 | 0 |
|
440 | 0 | // Dimensions that are in B, but not in A, are added at the end. |
441 | 0 | for (unsigned t = A->getNumDimIds(), e = B->getNumDimIds(); t < e; t++) { |
442 | 0 | A->addDimId(A->getNumDimIds()); |
443 | 0 | A->setIdValue(A->getNumDimIds() - 1, B->getIdValue(t)); |
444 | 0 | } |
445 | 0 | } |
446 | 0 | { |
447 | 0 | // Merge symbols: merge A's symbols into B first. |
448 | 0 | unsigned s = B->getNumDimIds(); |
449 | 0 | for (auto aSymValue : aSymValues) { |
450 | 0 | unsigned loc; |
451 | 0 | if (B->findId(aSymValue, &loc)) { |
452 | 0 | assert(loc >= B->getNumDimIds() && loc < B->getNumDimAndSymbolIds() && |
453 | 0 | "A's symbol appears in B's non-symbol position"); |
454 | 0 | swapId(B, s, loc); |
455 | 0 | } else { |
456 | 0 | B->addSymbolId(s - B->getNumDimIds()); |
457 | 0 | B->setIdValue(s, aSymValue); |
458 | 0 | } |
459 | 0 | s++; |
460 | 0 | } |
461 | 0 | // Symbols that are in B, but not in A, are added at the end. |
462 | 0 | for (unsigned t = A->getNumDimAndSymbolIds(), |
463 | 0 | e = B->getNumDimAndSymbolIds(); |
464 | 0 | t < e; t++) { |
465 | 0 | A->addSymbolId(A->getNumSymbolIds()); |
466 | 0 | A->setIdValue(A->getNumDimAndSymbolIds() - 1, B->getIdValue(t)); |
467 | 0 | } |
468 | 0 | } |
469 | 0 | assert(areIdsAligned(*A, *B) && "IDs expected to be aligned"); |
470 | 0 | } |
471 | | |
472 | | // Call 'mergeAndAlignIds' to align constraint systems of 'this' and 'other'. |
473 | | void FlatAffineConstraints::mergeAndAlignIdsWithOther( |
474 | 0 | unsigned offset, FlatAffineConstraints *other) { |
475 | 0 | mergeAndAlignIds(offset, this, other); |
476 | 0 | } |
477 | | |
478 | | // This routine may add additional local variables if the flattened expression |
479 | | // corresponding to the map has such variables due to mod's, ceildiv's, and |
480 | | // floordiv's in it. |
481 | 0 | LogicalResult FlatAffineConstraints::composeMap(const AffineValueMap *vMap) { |
482 | 0 | std::vector<SmallVector<int64_t, 8>> flatExprs; |
483 | 0 | FlatAffineConstraints localCst; |
484 | 0 | if (failed(getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs, |
485 | 0 | &localCst))) { |
486 | 0 | LLVM_DEBUG(llvm::dbgs() |
487 | 0 | << "composition unimplemented for semi-affine maps\n"); |
488 | 0 | return failure(); |
489 | 0 | } |
490 | 0 | assert(flatExprs.size() == vMap->getNumResults()); |
491 | 0 |
|
492 | 0 | // Add localCst information. |
493 | 0 | if (localCst.getNumLocalIds() > 0) { |
494 | 0 | localCst.setIdValues(0, /*end=*/localCst.getNumDimAndSymbolIds(), |
495 | 0 | /*values=*/vMap->getOperands()); |
496 | 0 | // Align localCst and this. |
497 | 0 | mergeAndAlignIds(/*offset=*/0, &localCst, this); |
498 | 0 | // Finally, append localCst to this constraint set. |
499 | 0 | append(localCst); |
500 | 0 | } |
501 | 0 |
|
502 | 0 | // Add dimensions corresponding to the map's results. |
503 | 0 | for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) { |
504 | 0 | // TODO: Consider using a batched version to add a range of IDs. |
505 | 0 | addDimId(0); |
506 | 0 | } |
507 | 0 |
|
508 | 0 | // We add one equality for each result connecting the result dim of the map to |
509 | 0 | // the other identifiers. |
510 | 0 | // For eg: if the expression is 16*i0 + i1, and this is the r^th |
511 | 0 | // iteration/result of the value map, we are adding the equality: |
512 | 0 | // d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we |
513 | 0 | // add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0. |
514 | 0 | for (unsigned r = 0, e = flatExprs.size(); r < e; r++) { |
515 | 0 | const auto &flatExpr = flatExprs[r]; |
516 | 0 | assert(flatExpr.size() >= vMap->getNumOperands() + 1); |
517 | 0 |
|
518 | 0 | // eqToAdd is the equality corresponding to the flattened affine expression. |
519 | 0 | SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0); |
520 | 0 | // Set the coefficient for this result to one. |
521 | 0 | eqToAdd[r] = 1; |
522 | 0 |
|
523 | 0 | // Dims and symbols. |
524 | 0 | for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) { |
525 | 0 | unsigned loc; |
526 | 0 | bool ret = findId(vMap->getOperand(i), &loc); |
527 | 0 | assert(ret && "value map's id can't be found"); |
528 | 0 | (void)ret; |
529 | 0 | // Negate 'eq[r]' since the newly added dimension will be set to this one. |
530 | 0 | eqToAdd[loc] = -flatExpr[i]; |
531 | 0 | } |
532 | 0 | // Local vars common to eq and localCst are at the beginning. |
533 | 0 | unsigned j = getNumDimIds() + getNumSymbolIds(); |
534 | 0 | unsigned end = flatExpr.size() - 1; |
535 | 0 | for (unsigned i = vMap->getNumOperands(); i < end; i++, j++) { |
536 | 0 | eqToAdd[j] = -flatExpr[i]; |
537 | 0 | } |
538 | 0 |
|
539 | 0 | // Constant term. |
540 | 0 | eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1]; |
541 | 0 |
|
542 | 0 | // Add the equality connecting the result of the map to this constraint set. |
543 | 0 | addEquality(eqToAdd); |
544 | 0 | } |
545 | 0 |
|
546 | 0 | return success(); |
547 | 0 | } |
548 | | |
549 | | // Similar to composeMap except that no Value's need be associated with the |
550 | | // constraint system nor are they looked at -- since the dimensions and |
551 | | // symbols of 'other' are expected to correspond 1:1 to 'this' system. It |
552 | | // is thus not convenient to share code with composeMap. |
553 | 0 | LogicalResult FlatAffineConstraints::composeMatchingMap(AffineMap other) { |
554 | 0 | assert(other.getNumDims() == getNumDimIds() && "dim mismatch"); |
555 | 0 | assert(other.getNumSymbols() == getNumSymbolIds() && "symbol mismatch"); |
556 | 0 |
|
557 | 0 | std::vector<SmallVector<int64_t, 8>> flatExprs; |
558 | 0 | FlatAffineConstraints localCst; |
559 | 0 | if (failed(getFlattenedAffineExprs(other, &flatExprs, &localCst))) { |
560 | 0 | LLVM_DEBUG(llvm::dbgs() |
561 | 0 | << "composition unimplemented for semi-affine maps\n"); |
562 | 0 | return failure(); |
563 | 0 | } |
564 | 0 | assert(flatExprs.size() == other.getNumResults()); |
565 | 0 |
|
566 | 0 | // Add localCst information. |
567 | 0 | if (localCst.getNumLocalIds() > 0) { |
568 | 0 | // Place local id's of A after local id's of B. |
569 | 0 | for (unsigned l = 0, e = localCst.getNumLocalIds(); l < e; l++) { |
570 | 0 | addLocalId(0); |
571 | 0 | } |
572 | 0 | // Finally, append localCst to this constraint set. |
573 | 0 | append(localCst); |
574 | 0 | } |
575 | 0 |
|
576 | 0 | // Add dimensions corresponding to the map's results. |
577 | 0 | for (unsigned t = 0, e = other.getNumResults(); t < e; t++) { |
578 | 0 | addDimId(0); |
579 | 0 | } |
580 | 0 |
|
581 | 0 | // We add one equality for each result connecting the result dim of the map to |
582 | 0 | // the other identifiers. |
583 | 0 | // For eg: if the expression is 16*i0 + i1, and this is the r^th |
584 | 0 | // iteration/result of the value map, we are adding the equality: |
585 | 0 | // d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we |
586 | 0 | // add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0. |
587 | 0 | for (unsigned r = 0, e = flatExprs.size(); r < e; r++) { |
588 | 0 | const auto &flatExpr = flatExprs[r]; |
589 | 0 | assert(flatExpr.size() >= other.getNumInputs() + 1); |
590 | 0 |
|
591 | 0 | // eqToAdd is the equality corresponding to the flattened affine expression. |
592 | 0 | SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0); |
593 | 0 | // Set the coefficient for this result to one. |
594 | 0 | eqToAdd[r] = 1; |
595 | 0 |
|
596 | 0 | // Dims and symbols. |
597 | 0 | for (unsigned i = 0, f = other.getNumInputs(); i < f; i++) { |
598 | 0 | // Negate 'eq[r]' since the newly added dimension will be set to this one. |
599 | 0 | eqToAdd[e + i] = -flatExpr[i]; |
600 | 0 | } |
601 | 0 | // Local vars common to eq and localCst are at the beginning. |
602 | 0 | unsigned j = getNumDimIds() + getNumSymbolIds(); |
603 | 0 | unsigned end = flatExpr.size() - 1; |
604 | 0 | for (unsigned i = other.getNumInputs(); i < end; i++, j++) { |
605 | 0 | eqToAdd[j] = -flatExpr[i]; |
606 | 0 | } |
607 | 0 |
|
608 | 0 | // Constant term. |
609 | 0 | eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1]; |
610 | 0 |
|
611 | 0 | // Add the equality connecting the result of the map to this constraint set. |
612 | 0 | addEquality(eqToAdd); |
613 | 0 | } |
614 | 0 |
|
615 | 0 | return success(); |
616 | 0 | } |
617 | | |
618 | | // Turn a dimension into a symbol. |
619 | 0 | static void turnDimIntoSymbol(FlatAffineConstraints *cst, Value id) { |
620 | 0 | unsigned pos; |
621 | 0 | if (cst->findId(id, &pos) && pos < cst->getNumDimIds()) { |
622 | 0 | swapId(cst, pos, cst->getNumDimIds() - 1); |
623 | 0 | cst->setDimSymbolSeparation(cst->getNumSymbolIds() + 1); |
624 | 0 | } |
625 | 0 | } |
626 | | |
627 | | // Turn a symbol into a dimension. |
628 | 0 | static void turnSymbolIntoDim(FlatAffineConstraints *cst, Value id) { |
629 | 0 | unsigned pos; |
630 | 0 | if (cst->findId(id, &pos) && pos >= cst->getNumDimIds() && |
631 | 0 | pos < cst->getNumDimAndSymbolIds()) { |
632 | 0 | swapId(cst, pos, cst->getNumDimIds()); |
633 | 0 | cst->setDimSymbolSeparation(cst->getNumSymbolIds() - 1); |
634 | 0 | } |
635 | 0 | } |
636 | | |
637 | | // Changes all symbol identifiers which are loop IVs to dim identifiers. |
638 | 0 | void FlatAffineConstraints::convertLoopIVSymbolsToDims() { |
639 | 0 | // Gather all symbols which are loop IVs. |
640 | 0 | SmallVector<Value, 4> loopIVs; |
641 | 0 | for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) { |
642 | 0 | if (ids[i].hasValue() && getForInductionVarOwner(ids[i].getValue())) |
643 | 0 | loopIVs.push_back(ids[i].getValue()); |
644 | 0 | } |
645 | 0 | // Turn each symbol in 'loopIVs' into a dim identifier. |
646 | 0 | for (auto iv : loopIVs) { |
647 | 0 | turnSymbolIntoDim(this, iv); |
648 | 0 | } |
649 | 0 | } |
650 | | |
651 | 0 | void FlatAffineConstraints::addInductionVarOrTerminalSymbol(Value id) { |
652 | 0 | if (containsId(id)) |
653 | 0 | return; |
654 | 0 | |
655 | 0 | // Caller is expected to fully compose map/operands if necessary. |
656 | 0 | assert((isTopLevelValue(id) || isForInductionVar(id)) && |
657 | 0 | "non-terminal symbol / loop IV expected"); |
658 | 0 | // Outer loop IVs could be used in forOp's bounds. |
659 | 0 | if (auto loop = getForInductionVarOwner(id)) { |
660 | 0 | addDimId(getNumDimIds(), id); |
661 | 0 | if (failed(this->addAffineForOpDomain(loop))) |
662 | 0 | LLVM_DEBUG( |
663 | 0 | loop.emitWarning("failed to add domain info to constraint system")); |
664 | 0 | return; |
665 | 0 | } |
666 | 0 | // Add top level symbol. |
667 | 0 | addSymbolId(getNumSymbolIds(), id); |
668 | 0 | // Check if the symbol is a constant. |
669 | 0 | if (auto constOp = id.getDefiningOp<ConstantIndexOp>()) |
670 | 0 | setIdToConstant(id, constOp.getValue()); |
671 | 0 | } |
672 | | |
673 | 0 | LogicalResult FlatAffineConstraints::addAffineForOpDomain(AffineForOp forOp) { |
674 | 0 | unsigned pos; |
675 | 0 | // Pre-condition for this method. |
676 | 0 | if (!findId(forOp.getInductionVar(), &pos)) { |
677 | 0 | assert(false && "Value not found"); |
678 | 0 | return failure(); |
679 | 0 | } |
680 | 0 | |
681 | 0 | int64_t step = forOp.getStep(); |
682 | 0 | if (step != 1) { |
683 | 0 | if (!forOp.hasConstantLowerBound()) |
684 | 0 | forOp.emitWarning("domain conservatively approximated"); |
685 | 0 | else { |
686 | 0 | // Add constraints for the stride. |
687 | 0 | // (iv - lb) % step = 0 can be written as: |
688 | 0 | // (iv - lb) - step * q = 0 where q = (iv - lb) / step. |
689 | 0 | // Add local variable 'q' and add the above equality. |
690 | 0 | // The first constraint is q = (iv - lb) floordiv step |
691 | 0 | SmallVector<int64_t, 8> dividend(getNumCols(), 0); |
692 | 0 | int64_t lb = forOp.getConstantLowerBound(); |
693 | 0 | dividend[pos] = 1; |
694 | 0 | dividend.back() -= lb; |
695 | 0 | addLocalFloorDiv(dividend, step); |
696 | 0 | // Second constraint: (iv - lb) - step * q = 0. |
697 | 0 | SmallVector<int64_t, 8> eq(getNumCols(), 0); |
698 | 0 | eq[pos] = 1; |
699 | 0 | eq.back() -= lb; |
700 | 0 | // For the local var just added above. |
701 | 0 | eq[getNumCols() - 2] = -step; |
702 | 0 | addEquality(eq); |
703 | 0 | } |
704 | 0 | } |
705 | 0 |
|
706 | 0 | if (forOp.hasConstantLowerBound()) { |
707 | 0 | addConstantLowerBound(pos, forOp.getConstantLowerBound()); |
708 | 0 | } else { |
709 | 0 | // Non-constant lower bound case. |
710 | 0 | if (failed(addLowerOrUpperBound(pos, forOp.getLowerBoundMap(), |
711 | 0 | forOp.getLowerBoundOperands(), |
712 | 0 | /*eq=*/false, /*lower=*/true))) |
713 | 0 | return failure(); |
714 | 0 | } |
715 | 0 | |
716 | 0 | if (forOp.hasConstantUpperBound()) { |
717 | 0 | addConstantUpperBound(pos, forOp.getConstantUpperBound() - 1); |
718 | 0 | return success(); |
719 | 0 | } |
720 | 0 | // Non-constant upper bound case. |
721 | 0 | return addLowerOrUpperBound(pos, forOp.getUpperBoundMap(), |
722 | 0 | forOp.getUpperBoundOperands(), |
723 | 0 | /*eq=*/false, /*lower=*/false); |
724 | 0 | } |
725 | | |
726 | | // Searches for a constraint with a non-zero coefficient at 'colIdx' in |
727 | | // equality (isEq=true) or inequality (isEq=false) constraints. |
728 | | // Returns true and sets row found in search in 'rowIdx'. |
729 | | // Returns false otherwise. |
730 | | static bool findConstraintWithNonZeroAt(const FlatAffineConstraints &cst, |
731 | | unsigned colIdx, bool isEq, |
732 | 0 | unsigned *rowIdx) { |
733 | 0 | assert(colIdx < cst.getNumCols() && "position out of bounds"); |
734 | 0 | auto at = [&](unsigned rowIdx) -> int64_t { |
735 | 0 | return isEq ? cst.atEq(rowIdx, colIdx) : cst.atIneq(rowIdx, colIdx); |
736 | 0 | }; |
737 | 0 | unsigned e = isEq ? cst.getNumEqualities() : cst.getNumInequalities(); |
738 | 0 | for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) { |
739 | 0 | if (at(*rowIdx) != 0) { |
740 | 0 | return true; |
741 | 0 | } |
742 | 0 | } |
743 | 0 | return false; |
744 | 0 | } |
745 | | |
746 | | // Normalizes the coefficient values across all columns in 'rowIDx' by their |
747 | | // GCD in equality or inequality constraints as specified by 'isEq'. |
748 | | template <bool isEq> |
749 | | static void normalizeConstraintByGCD(FlatAffineConstraints *constraints, |
750 | 0 | unsigned rowIdx) { |
751 | 0 | auto at = [&](unsigned colIdx) -> int64_t { |
752 | 0 | return isEq ? constraints->atEq(rowIdx, colIdx) |
753 | 0 | : constraints->atIneq(rowIdx, colIdx); |
754 | 0 | }; Unexecuted instantiation: AffineStructures.cpp:_ZZL24normalizeConstraintByGCDILb1EEvPN4mlir21FlatAffineConstraintsEjENKUljE_clEj Unexecuted instantiation: AffineStructures.cpp:_ZZL24normalizeConstraintByGCDILb0EEvPN4mlir21FlatAffineConstraintsEjENKUljE_clEj |
755 | 0 | uint64_t gcd = std::abs(at(0)); |
756 | 0 | for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) { |
757 | 0 | gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j))); |
758 | 0 | } |
759 | 0 | if (gcd > 0 && gcd != 1) { |
760 | 0 | for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) { |
761 | 0 | int64_t v = at(j) / static_cast<int64_t>(gcd); |
762 | 0 | isEq ? constraints->atEq(rowIdx, j) = v |
763 | 0 | : constraints->atIneq(rowIdx, j) = v; |
764 | 0 | } |
765 | 0 | } |
766 | 0 | } Unexecuted instantiation: AffineStructures.cpp:_ZL24normalizeConstraintByGCDILb1EEvPN4mlir21FlatAffineConstraintsEj Unexecuted instantiation: AffineStructures.cpp:_ZL24normalizeConstraintByGCDILb0EEvPN4mlir21FlatAffineConstraintsEj |
767 | | |
768 | 0 | void FlatAffineConstraints::normalizeConstraintsByGCD() { |
769 | 0 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
770 | 0 | normalizeConstraintByGCD</*isEq=*/true>(this, i); |
771 | 0 | } |
772 | 0 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
773 | 0 | normalizeConstraintByGCD</*isEq=*/false>(this, i); |
774 | 0 | } |
775 | 0 | } |
776 | | |
777 | 6 | bool FlatAffineConstraints::hasConsistentState() const { |
778 | 6 | if (inequalities.size() != getNumInequalities() * numReservedCols) |
779 | 0 | return false; |
780 | 6 | if (equalities.size() != getNumEqualities() * numReservedCols) |
781 | 0 | return false; |
782 | 6 | if (ids.size() != getNumIds()) |
783 | 0 | return false; |
784 | 6 | |
785 | 6 | // Catches errors where numDims, numSymbols, numIds aren't consistent. |
786 | 6 | if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds) |
787 | 0 | return false; |
788 | 6 | |
789 | 6 | return true; |
790 | 6 | } |
791 | | |
792 | | /// Checks all rows of equality/inequality constraints for trivial |
793 | | /// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced |
794 | | /// after elimination. Returns 'true' if an invalid constraint is found; |
795 | | /// 'false' otherwise. |
796 | 0 | bool FlatAffineConstraints::hasInvalidConstraint() const { |
797 | 0 | assert(hasConsistentState()); |
798 | 0 | auto check = [&](bool isEq) -> bool { |
799 | 0 | unsigned numCols = getNumCols(); |
800 | 0 | unsigned numRows = isEq ? getNumEqualities() : getNumInequalities(); |
801 | 0 | for (unsigned i = 0, e = numRows; i < e; ++i) { |
802 | 0 | unsigned j; |
803 | 0 | for (j = 0; j < numCols - 1; ++j) { |
804 | 0 | int64_t v = isEq ? atEq(i, j) : atIneq(i, j); |
805 | 0 | // Skip rows with non-zero variable coefficients. |
806 | 0 | if (v != 0) |
807 | 0 | break; |
808 | 0 | } |
809 | 0 | if (j < numCols - 1) { |
810 | 0 | continue; |
811 | 0 | } |
812 | 0 | // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'. |
813 | 0 | // Example invalid constraints include: '1 == 0' or '-1 >= 0' |
814 | 0 | int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1); |
815 | 0 | if ((isEq && v != 0) || (!isEq && v < 0)) { |
816 | 0 | return true; |
817 | 0 | } |
818 | 0 | } |
819 | 0 | return false; |
820 | 0 | }; |
821 | 0 | if (check(/*isEq=*/true)) |
822 | 0 | return true; |
823 | 0 | return check(/*isEq=*/false); |
824 | 0 | } |
825 | | |
826 | | // Eliminate identifier from constraint at 'rowIdx' based on coefficient at |
827 | | // pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be |
828 | | // updated as they have already been eliminated. |
829 | | static void eliminateFromConstraint(FlatAffineConstraints *constraints, |
830 | | unsigned rowIdx, unsigned pivotRow, |
831 | | unsigned pivotCol, unsigned elimColStart, |
832 | 0 | bool isEq) { |
833 | 0 | // Skip if equality 'rowIdx' if same as 'pivotRow'. |
834 | 0 | if (isEq && rowIdx == pivotRow) |
835 | 0 | return; |
836 | 0 | auto at = [&](unsigned i, unsigned j) -> int64_t { |
837 | 0 | return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j); |
838 | 0 | }; |
839 | 0 | int64_t leadCoeff = at(rowIdx, pivotCol); |
840 | 0 | // Skip if leading coefficient at 'rowIdx' is already zero. |
841 | 0 | if (leadCoeff == 0) |
842 | 0 | return; |
843 | 0 | int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol); |
844 | 0 | int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1; |
845 | 0 | int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff); |
846 | 0 | int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff)); |
847 | 0 | int64_t rowMultiplier = lcm / std::abs(leadCoeff); |
848 | 0 |
|
849 | 0 | unsigned numCols = constraints->getNumCols(); |
850 | 0 | for (unsigned j = 0; j < numCols; ++j) { |
851 | 0 | // Skip updating column 'j' if it was just eliminated. |
852 | 0 | if (j >= elimColStart && j < pivotCol) |
853 | 0 | continue; |
854 | 0 | int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) + |
855 | 0 | rowMultiplier * at(rowIdx, j); |
856 | 0 | isEq ? constraints->atEq(rowIdx, j) = v |
857 | 0 | : constraints->atIneq(rowIdx, j) = v; |
858 | 0 | } |
859 | 0 | } |
860 | | |
861 | | // Remove coefficients in column range [colStart, colLimit) in place. |
862 | | // This removes in data in the specified column range, and copies any |
863 | | // remaining valid data into place. |
864 | | static void shiftColumnsToLeft(FlatAffineConstraints *constraints, |
865 | | unsigned colStart, unsigned colLimit, |
866 | 0 | bool isEq) { |
867 | 0 | assert(colLimit <= constraints->getNumIds()); |
868 | 0 | if (colLimit <= colStart) |
869 | 0 | return; |
870 | 0 | |
871 | 0 | unsigned numCols = constraints->getNumCols(); |
872 | 0 | unsigned numRows = isEq ? constraints->getNumEqualities() |
873 | 0 | : constraints->getNumInequalities(); |
874 | 0 | unsigned numToEliminate = colLimit - colStart; |
875 | 0 | for (unsigned r = 0, e = numRows; r < e; ++r) { |
876 | 0 | for (unsigned c = colLimit; c < numCols; ++c) { |
877 | 0 | if (isEq) { |
878 | 0 | constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c); |
879 | 0 | } else { |
880 | 0 | constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c); |
881 | 0 | } |
882 | 0 | } |
883 | 0 | } |
884 | 0 | } |
885 | | |
886 | | // Removes identifiers in column range [idStart, idLimit), and copies any |
887 | | // remaining valid data into place, and updates member variables. |
888 | 0 | void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) { |
889 | 0 | assert(idLimit < getNumCols() && "invalid id limit"); |
890 | 0 |
|
891 | 0 | if (idStart >= idLimit) |
892 | 0 | return; |
893 | 0 | |
894 | 0 | // We are going to be removing one or more identifiers from the range. |
895 | 0 | assert(idStart < numIds && "invalid idStart position"); |
896 | 0 |
|
897 | 0 | // TODO(andydavis) Make 'removeIdRange' a lambda called from here. |
898 | 0 | // Remove eliminated identifiers from equalities. |
899 | 0 | shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true); |
900 | 0 |
|
901 | 0 | // Remove eliminated identifiers from inequalities. |
902 | 0 | shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false); |
903 | 0 |
|
904 | 0 | // Update members numDims, numSymbols and numIds. |
905 | 0 | unsigned numDimsEliminated = 0; |
906 | 0 | unsigned numLocalsEliminated = 0; |
907 | 0 | unsigned numColsEliminated = idLimit - idStart; |
908 | 0 | if (idStart < numDims) { |
909 | 0 | numDimsEliminated = std::min(numDims, idLimit) - idStart; |
910 | 0 | } |
911 | 0 | // Check how many local id's were removed. Note that our identifier order is |
912 | 0 | // [dims, symbols, locals]. Local id start at position numDims + numSymbols. |
913 | 0 | if (idLimit > numDims + numSymbols) { |
914 | 0 | numLocalsEliminated = std::min( |
915 | 0 | idLimit - std::max(idStart, numDims + numSymbols), getNumLocalIds()); |
916 | 0 | } |
917 | 0 | unsigned numSymbolsEliminated = |
918 | 0 | numColsEliminated - numDimsEliminated - numLocalsEliminated; |
919 | 0 |
|
920 | 0 | numDims -= numDimsEliminated; |
921 | 0 | numSymbols -= numSymbolsEliminated; |
922 | 0 | numIds = numIds - numColsEliminated; |
923 | 0 |
|
924 | 0 | ids.erase(ids.begin() + idStart, ids.begin() + idLimit); |
925 | 0 |
|
926 | 0 | // No resize necessary. numReservedCols remains the same. |
927 | 0 | } |
928 | | |
929 | | /// Returns the position of the identifier that has the minimum <number of lower |
930 | | /// bounds> times <number of upper bounds> from the specified range of |
931 | | /// identifiers [start, end). It is often best to eliminate in the increasing |
932 | | /// order of these counts when doing Fourier-Motzkin elimination since FM adds |
933 | | /// that many new constraints. |
934 | | static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst, |
935 | 0 | unsigned start, unsigned end) { |
936 | 0 | assert(start < cst.getNumIds() && end < cst.getNumIds() + 1); |
937 | 0 |
|
938 | 0 | auto getProductOfNumLowerUpperBounds = [&](unsigned pos) { |
939 | 0 | unsigned numLb = 0; |
940 | 0 | unsigned numUb = 0; |
941 | 0 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
942 | 0 | if (cst.atIneq(r, pos) > 0) { |
943 | 0 | ++numLb; |
944 | 0 | } else if (cst.atIneq(r, pos) < 0) { |
945 | 0 | ++numUb; |
946 | 0 | } |
947 | 0 | } |
948 | 0 | return numLb * numUb; |
949 | 0 | }; |
950 | 0 |
|
951 | 0 | unsigned minLoc = start; |
952 | 0 | unsigned min = getProductOfNumLowerUpperBounds(start); |
953 | 0 | for (unsigned c = start + 1; c < end; c++) { |
954 | 0 | unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c); |
955 | 0 | if (numLbUbProduct < min) { |
956 | 0 | min = numLbUbProduct; |
957 | 0 | minLoc = c; |
958 | 0 | } |
959 | 0 | } |
960 | 0 | return minLoc; |
961 | 0 | } |
962 | | |
963 | | // Checks for emptiness of the set by eliminating identifiers successively and |
964 | | // using the GCD test (on all equality constraints) and checking for trivially |
965 | | // invalid constraints. Returns 'true' if the constraint system is found to be |
966 | | // empty; false otherwise. |
967 | 0 | bool FlatAffineConstraints::isEmpty() const { |
968 | 0 | if (isEmptyByGCDTest() || hasInvalidConstraint()) |
969 | 0 | return true; |
970 | 0 | |
971 | 0 | // First, eliminate as many identifiers as possible using Gaussian |
972 | 0 | // elimination. |
973 | 0 | FlatAffineConstraints tmpCst(*this); |
974 | 0 | unsigned currentPos = 0; |
975 | 0 | while (currentPos < tmpCst.getNumIds()) { |
976 | 0 | tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds()); |
977 | 0 | ++currentPos; |
978 | 0 | // We check emptiness through trivial checks after eliminating each ID to |
979 | 0 | // detect emptiness early. Since the checks isEmptyByGCDTest() and |
980 | 0 | // hasInvalidConstraint() are linear time and single sweep on the constraint |
981 | 0 | // buffer, this appears reasonable - but can optimize in the future. |
982 | 0 | if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest()) |
983 | 0 | return true; |
984 | 0 | } |
985 | 0 |
|
986 | 0 | // Eliminate the remaining using FM. |
987 | 0 | for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) { |
988 | 0 | tmpCst.FourierMotzkinEliminate( |
989 | 0 | getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds())); |
990 | 0 | // Check for a constraint explosion. This rarely happens in practice, but |
991 | 0 | // this check exists as a safeguard against improperly constructed |
992 | 0 | // constraint systems or artificially created arbitrarily complex systems |
993 | 0 | // that aren't the intended use case for FlatAffineConstraints. This is |
994 | 0 | // needed since FM has a worst case exponential complexity in theory. |
995 | 0 | if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) { |
996 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n"); |
997 | 0 | return false; |
998 | 0 | } |
999 | 0 |
|
1000 | 0 | // FM wouldn't have modified the equalities in any way. So no need to again |
1001 | 0 | // run GCD test. Check for trivial invalid constraints. |
1002 | 0 | if (tmpCst.hasInvalidConstraint()) |
1003 | 0 | return true; |
1004 | 0 | } |
1005 | 0 | return false; |
1006 | 0 | } |
1007 | | |
1008 | | // Runs the GCD test on all equality constraints. Returns 'true' if this test |
1009 | | // fails on any equality. Returns 'false' otherwise. |
1010 | | // This test can be used to disprove the existence of a solution. If it returns |
1011 | | // true, no integer solution to the equality constraints can exist. |
1012 | | // |
1013 | | // GCD test definition: |
1014 | | // |
1015 | | // The equality constraint: |
1016 | | // |
1017 | | // c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0 |
1018 | | // |
1019 | | // has an integer solution iff: |
1020 | | // |
1021 | | // GCD of c_1, c_2, ..., c_n divides c_0. |
1022 | | // |
1023 | 6 | bool FlatAffineConstraints::isEmptyByGCDTest() const { |
1024 | 6 | assert(hasConsistentState()); |
1025 | 6 | unsigned numCols = getNumCols(); |
1026 | 13 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
1027 | 7 | uint64_t gcd = std::abs(atEq(i, 0)); |
1028 | 23 | for (unsigned j = 1; j < numCols - 1; ++j) { |
1029 | 16 | gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j))); |
1030 | 16 | } |
1031 | 7 | int64_t v = std::abs(atEq(i, numCols - 1)); |
1032 | 7 | if (gcd > 0 && (v % gcd != 0)) { |
1033 | 0 | return true; |
1034 | 0 | } |
1035 | 7 | } |
1036 | 6 | return false; |
1037 | 6 | } |
1038 | | |
1039 | | // First, try the GCD test heuristic. |
1040 | | // |
1041 | | // If that doesn't find the set empty, check if the set is unbounded. If it is, |
1042 | | // we cannot use the GBR algorithm and we conservatively return false. |
1043 | | // |
1044 | | // If the set is bounded, we use the complete emptiness check for this case |
1045 | | // provided by Simplex::findIntegerSample(), which gives a definitive answer. |
1046 | 6 | bool FlatAffineConstraints::isIntegerEmpty() const { |
1047 | 6 | if (isEmptyByGCDTest()) |
1048 | 0 | return true; |
1049 | 6 | |
1050 | 6 | Simplex simplex(*this); |
1051 | 6 | if (simplex.isUnbounded()) |
1052 | 1 | return false; |
1053 | 5 | return !simplex.findIntegerSample().hasValue(); |
1054 | 5 | } |
1055 | | |
1056 | | Optional<SmallVector<int64_t, 8>> |
1057 | 25 | FlatAffineConstraints::findIntegerSample() const { |
1058 | 25 | return Simplex(*this).findIntegerSample(); |
1059 | 25 | } |
1060 | | |
1061 | | /// Tightens inequalities given that we are dealing with integer spaces. This is |
1062 | | /// analogous to the GCD test but applied to inequalities. The constant term can |
1063 | | /// be reduced to the preceding multiple of the GCD of the coefficients, i.e., |
1064 | | /// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a |
1065 | | /// fast method - linear in the number of coefficients. |
1066 | | // Example on how this affects practical cases: consider the scenario: |
1067 | | // 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield |
1068 | | // j >= 100 instead of the tighter (exact) j >= 128. |
1069 | 0 | void FlatAffineConstraints::GCDTightenInequalities() { |
1070 | 0 | unsigned numCols = getNumCols(); |
1071 | 0 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1072 | 0 | uint64_t gcd = std::abs(atIneq(i, 0)); |
1073 | 0 | for (unsigned j = 1; j < numCols - 1; ++j) { |
1074 | 0 | gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j))); |
1075 | 0 | } |
1076 | 0 | if (gcd > 0 && gcd != 1) { |
1077 | 0 | int64_t gcdI = static_cast<int64_t>(gcd); |
1078 | 0 | // Tighten the constant term and normalize the constraint by the GCD. |
1079 | 0 | atIneq(i, numCols - 1) = mlir::floorDiv(atIneq(i, numCols - 1), gcdI); |
1080 | 0 | for (unsigned j = 0, e = numCols - 1; j < e; ++j) |
1081 | 0 | atIneq(i, j) /= gcdI; |
1082 | 0 | } |
1083 | 0 | } |
1084 | 0 | } |
1085 | | |
1086 | | // Eliminates all identifier variables in column range [posStart, posLimit). |
1087 | | // Returns the number of variables eliminated. |
1088 | | unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart, |
1089 | 0 | unsigned posLimit) { |
1090 | 0 | // Return if identifier positions to eliminate are out of range. |
1091 | 0 | assert(posLimit <= numIds); |
1092 | 0 | assert(hasConsistentState()); |
1093 | 0 |
|
1094 | 0 | if (posStart >= posLimit) |
1095 | 0 | return 0; |
1096 | 0 | |
1097 | 0 | GCDTightenInequalities(); |
1098 | 0 |
|
1099 | 0 | unsigned pivotCol = 0; |
1100 | 0 | for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) { |
1101 | 0 | // Find a row which has a non-zero coefficient in column 'j'. |
1102 | 0 | unsigned pivotRow; |
1103 | 0 | if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true, |
1104 | 0 | &pivotRow)) { |
1105 | 0 | // No pivot row in equalities with non-zero at 'pivotCol'. |
1106 | 0 | if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false, |
1107 | 0 | &pivotRow)) { |
1108 | 0 | // If inequalities are also non-zero in 'pivotCol', it can be |
1109 | 0 | // eliminated. |
1110 | 0 | continue; |
1111 | 0 | } |
1112 | 0 | break; |
1113 | 0 | } |
1114 | 0 | |
1115 | 0 | // Eliminate identifier at 'pivotCol' from each equality row. |
1116 | 0 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
1117 | 0 | eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, |
1118 | 0 | /*isEq=*/true); |
1119 | 0 | normalizeConstraintByGCD</*isEq=*/true>(this, i); |
1120 | 0 | } |
1121 | 0 |
|
1122 | 0 | // Eliminate identifier at 'pivotCol' from each inequality row. |
1123 | 0 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
1124 | 0 | eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart, |
1125 | 0 | /*isEq=*/false); |
1126 | 0 | normalizeConstraintByGCD</*isEq=*/false>(this, i); |
1127 | 0 | } |
1128 | 0 | removeEquality(pivotRow); |
1129 | 0 | GCDTightenInequalities(); |
1130 | 0 | } |
1131 | 0 | // Update position limit based on number eliminated. |
1132 | 0 | posLimit = pivotCol; |
1133 | 0 | // Remove eliminated columns from all constraints. |
1134 | 0 | removeIdRange(posStart, posLimit); |
1135 | 0 | return posLimit - posStart; |
1136 | 0 | } |
1137 | | |
1138 | | // Detect the identifier at 'pos' (say id_r) as modulo of another identifier |
1139 | | // (say id_n) w.r.t a constant. When this happens, another identifier (say id_q) |
1140 | | // could be detected as the floordiv of n. For eg: |
1141 | | // id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=> |
1142 | | // id_r = id_n mod 4, id_q = id_n floordiv 4. |
1143 | | // lbConst and ubConst are the constant lower and upper bounds for 'pos' - |
1144 | | // pre-detected at the caller. |
1145 | | static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos, |
1146 | | int64_t lbConst, int64_t ubConst, |
1147 | 0 | SmallVectorImpl<AffineExpr> *memo) { |
1148 | 0 | assert(pos < cst.getNumIds() && "invalid position"); |
1149 | 0 |
|
1150 | 0 | // Check if 0 <= id_r <= divisor - 1 and if id_r is equal to |
1151 | 0 | // id_n - divisor * id_q. If these are true, then id_n becomes the dividend |
1152 | 0 | // and id_q the quotient when dividing id_n by the divisor. |
1153 | 0 |
|
1154 | 0 | if (lbConst != 0 || ubConst < 1) |
1155 | 0 | return false; |
1156 | 0 | |
1157 | 0 | int64_t divisor = ubConst + 1; |
1158 | 0 |
|
1159 | 0 | // Now check for: id_r = id_n - divisor * id_q. As an example, we |
1160 | 0 | // are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0. |
1161 | 0 | unsigned seenQuotient = 0, seenDividend = 0; |
1162 | 0 | int quotientPos = -1, dividendPos = -1; |
1163 | 0 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
1164 | 0 | // id_n should have coeff 1 or -1. |
1165 | 0 | if (std::abs(cst.atEq(r, pos)) != 1) |
1166 | 0 | continue; |
1167 | 0 | // constant term should be 0. |
1168 | 0 | if (cst.atEq(r, cst.getNumCols() - 1) != 0) |
1169 | 0 | continue; |
1170 | 0 | unsigned c, f; |
1171 | 0 | int quotientSign = 1, dividendSign = 1; |
1172 | 0 | for (c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) { |
1173 | 0 | if (c == pos) |
1174 | 0 | continue; |
1175 | 0 | // The coefficient of the quotient should be +/-divisor. |
1176 | 0 | // TODO(bondhugula): could be extended to detect an affine function for |
1177 | 0 | // the quotient (i.e., the coeff could be a non-zero multiple of divisor). |
1178 | 0 | int64_t v = cst.atEq(r, c) * cst.atEq(r, pos); |
1179 | 0 | if (v == divisor || v == -divisor) { |
1180 | 0 | seenQuotient++; |
1181 | 0 | quotientPos = c; |
1182 | 0 | quotientSign = v > 0 ? 1 : -1; |
1183 | 0 | } |
1184 | 0 | // The coefficient of the dividend should be +/-1. |
1185 | 0 | // TODO(bondhugula): could be extended to detect an affine function of |
1186 | 0 | // the other identifiers as the dividend. |
1187 | 0 | else if (v == -1 || v == 1) { |
1188 | 0 | seenDividend++; |
1189 | 0 | dividendPos = c; |
1190 | 0 | dividendSign = v < 0 ? 1 : -1; |
1191 | 0 | } else if (cst.atEq(r, c) != 0) { |
1192 | 0 | // Cannot be inferred as a mod since the constraint has a coefficient |
1193 | 0 | // for an identifier that's neither a unit nor the divisor (see TODOs |
1194 | 0 | // above). |
1195 | 0 | break; |
1196 | 0 | } |
1197 | 0 | } |
1198 | 0 | if (c < f) |
1199 | 0 | // Cannot be inferred as a mod since the constraint has a coefficient for |
1200 | 0 | // an identifier that's neither a unit nor the divisor (see TODOs above). |
1201 | 0 | continue; |
1202 | 0 | |
1203 | 0 | // We are looking for exactly one identifier as the dividend. |
1204 | 0 | if (seenDividend == 1 && seenQuotient >= 1) { |
1205 | 0 | if (!(*memo)[dividendPos]) |
1206 | 0 | return false; |
1207 | 0 | // Successfully detected a mod. |
1208 | 0 | (*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign; |
1209 | 0 | auto ub = cst.getConstantUpperBound(dividendPos); |
1210 | 0 | if (ub.hasValue() && ub.getValue() < divisor) |
1211 | 0 | // The mod can be optimized away. |
1212 | 0 | (*memo)[pos] = (*memo)[dividendPos] * dividendSign; |
1213 | 0 | else |
1214 | 0 | (*memo)[pos] = (*memo)[dividendPos] % divisor * dividendSign; |
1215 | 0 |
|
1216 | 0 | if (seenQuotient == 1 && !(*memo)[quotientPos]) |
1217 | 0 | // Successfully detected a floordiv as well. |
1218 | 0 | (*memo)[quotientPos] = |
1219 | 0 | (*memo)[dividendPos].floorDiv(divisor) * quotientSign; |
1220 | 0 | return true; |
1221 | 0 | } |
1222 | 0 | } |
1223 | 0 | return false; |
1224 | 0 | } |
1225 | | |
1226 | | /// Gather all lower and upper bounds of the identifier at `pos`, and |
1227 | | /// optionally any equalities on it. In addition, the bounds are to be |
1228 | | /// independent of identifiers in position range [`offset`, `offset` + `num`). |
1229 | | void FlatAffineConstraints::getLowerAndUpperBoundIndices( |
1230 | | unsigned pos, SmallVectorImpl<unsigned> *lbIndices, |
1231 | | SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices, |
1232 | 0 | unsigned offset, unsigned num) const { |
1233 | 0 | assert(pos < getNumIds() && "invalid position"); |
1234 | 0 | assert(offset + num < getNumCols() && "invalid range"); |
1235 | 0 |
|
1236 | 0 | // Checks for a constraint that has a non-zero coeff for the identifiers in |
1237 | 0 | // the position range [offset, offset + num) while ignoring `pos`. |
1238 | 0 | auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) { |
1239 | 0 | unsigned c, f; |
1240 | 0 | auto cst = isEq ? getEquality(r) : getInequality(r); |
1241 | 0 | for (c = offset, f = offset + num; c < f; ++c) { |
1242 | 0 | if (c == pos) |
1243 | 0 | continue; |
1244 | 0 | if (cst[c] != 0) |
1245 | 0 | break; |
1246 | 0 | } |
1247 | 0 | return c < f; |
1248 | 0 | }; |
1249 | 0 |
|
1250 | 0 | // Gather all lower bounds and upper bounds of the variable. Since the |
1251 | 0 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
1252 | 0 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
1253 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1254 | 0 | // The bounds are to be independent of [offset, offset + num) columns. |
1255 | 0 | if (containsConstraintDependentOnRange(r, /*isEq=*/false)) |
1256 | 0 | continue; |
1257 | 0 | if (atIneq(r, pos) >= 1) { |
1258 | 0 | // Lower bound. |
1259 | 0 | lbIndices->push_back(r); |
1260 | 0 | } else if (atIneq(r, pos) <= -1) { |
1261 | 0 | // Upper bound. |
1262 | 0 | ubIndices->push_back(r); |
1263 | 0 | } |
1264 | 0 | } |
1265 | 0 |
|
1266 | 0 | // An equality is both a lower and upper bound. Record any equalities |
1267 | 0 | // involving the pos^th identifier. |
1268 | 0 | if (!eqIndices) |
1269 | 0 | return; |
1270 | 0 | |
1271 | 0 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1272 | 0 | if (atEq(r, pos) == 0) |
1273 | 0 | continue; |
1274 | 0 | if (containsConstraintDependentOnRange(r, /*isEq=*/true)) |
1275 | 0 | continue; |
1276 | 0 | eqIndices->push_back(r); |
1277 | 0 | } |
1278 | 0 | } |
1279 | | |
1280 | | /// Check if the pos^th identifier can be expressed as a floordiv of an affine |
1281 | | /// function of other identifiers (where the divisor is a positive constant) |
1282 | | /// given the initial set of expressions in `exprs`. If it can be, the |
1283 | | /// corresponding position in `exprs` is set as the detected affine expr. For |
1284 | | /// eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4. An equality can |
1285 | | /// also yield a floordiv: eg. 4q = i + j <=> q = (i + j) floordiv 4. 32q + 28 |
1286 | | /// <= i <= 32q + 31 => q = i floordiv 32. |
1287 | | static bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos, |
1288 | | MLIRContext *context, |
1289 | 0 | SmallVectorImpl<AffineExpr> &exprs) { |
1290 | 0 | assert(pos < cst.getNumIds() && "invalid position"); |
1291 | 0 |
|
1292 | 0 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
1293 | 0 | cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices); |
1294 | 0 |
|
1295 | 0 | // Check if any lower bound, upper bound pair is of the form: |
1296 | 0 | // divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id' |
1297 | 0 | // divisor * id <= expr <-- Upper bound for 'id' |
1298 | 0 | // Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1). |
1299 | 0 | // |
1300 | 0 | // For example, if -32*k + 16*i + j >= 0 |
1301 | 0 | // 32*k - 16*i - j + 31 >= 0 <=> |
1302 | 0 | // k = ( 16*i + j ) floordiv 32 |
1303 | 0 | unsigned seenDividends = 0; |
1304 | 0 | for (auto ubPos : ubIndices) { |
1305 | 0 | for (auto lbPos : lbIndices) { |
1306 | 0 | // Check if the lower bound's constant term is divisor - 1. The |
1307 | 0 | // 'divisor' here is cst.atIneq(lbPos, pos) and we already know that it's |
1308 | 0 | // positive (since cst.Ineq(lbPos, ...) is a lower bound expr for 'pos'. |
1309 | 0 | int64_t divisor = cst.atIneq(lbPos, pos); |
1310 | 0 | int64_t lbConstTerm = cst.atIneq(lbPos, cst.getNumCols() - 1); |
1311 | 0 | if (lbConstTerm != divisor - 1) |
1312 | 0 | continue; |
1313 | 0 | // Check if upper bound's constant term is 0. |
1314 | 0 | if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0) |
1315 | 0 | continue; |
1316 | 0 | // For the remaining part, check if the lower bound expr's coeff's are |
1317 | 0 | // negations of corresponding upper bound ones'. |
1318 | 0 | unsigned c, f; |
1319 | 0 | for (c = 0, f = cst.getNumCols() - 1; c < f; c++) { |
1320 | 0 | if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c)) |
1321 | 0 | break; |
1322 | 0 | if (c != pos && cst.atIneq(lbPos, c) != 0) |
1323 | 0 | seenDividends++; |
1324 | 0 | } |
1325 | 0 | // Lb coeff's aren't negative of ub coeff's (for the non constant term |
1326 | 0 | // part). |
1327 | 0 | if (c < f) |
1328 | 0 | continue; |
1329 | 0 | if (seenDividends >= 1) { |
1330 | 0 | // Construct the dividend expression. |
1331 | 0 | auto dividendExpr = getAffineConstantExpr(0, context); |
1332 | 0 | unsigned c, f; |
1333 | 0 | for (c = 0, f = cst.getNumCols() - 1; c < f; c++) { |
1334 | 0 | if (c == pos) |
1335 | 0 | continue; |
1336 | 0 | int64_t ubVal = cst.atIneq(ubPos, c); |
1337 | 0 | if (ubVal == 0) |
1338 | 0 | continue; |
1339 | 0 | if (!exprs[c]) |
1340 | 0 | break; |
1341 | 0 | dividendExpr = dividendExpr + ubVal * exprs[c]; |
1342 | 0 | } |
1343 | 0 | // Expression can't be constructed as it depends on a yet unknown |
1344 | 0 | // identifier. |
1345 | 0 | // TODO(mlir-team): Visit/compute the identifiers in an order so that |
1346 | 0 | // this doesn't happen. More complex but much more efficient. |
1347 | 0 | if (c < f) |
1348 | 0 | continue; |
1349 | 0 | // Successfully detected the floordiv. |
1350 | 0 | exprs[pos] = dividendExpr.floorDiv(divisor); |
1351 | 0 | return true; |
1352 | 0 | } |
1353 | 0 | } |
1354 | 0 | } |
1355 | 0 | return false; |
1356 | 0 | } |
1357 | | |
1358 | | // Fills an inequality row with the value 'val'. |
1359 | | static inline void fillInequality(FlatAffineConstraints *cst, unsigned r, |
1360 | 0 | int64_t val) { |
1361 | 0 | for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) { |
1362 | 0 | cst->atIneq(r, c) = val; |
1363 | 0 | } |
1364 | 0 | } |
1365 | | |
1366 | | // Negates an inequality. |
1367 | 0 | static inline void negateInequality(FlatAffineConstraints *cst, unsigned r) { |
1368 | 0 | for (unsigned c = 0, f = cst->getNumCols(); c < f; c++) { |
1369 | 0 | cst->atIneq(r, c) = -cst->atIneq(r, c); |
1370 | 0 | } |
1371 | 0 | } |
1372 | | |
1373 | | // A more complex check to eliminate redundant inequalities. Uses FourierMotzkin |
1374 | | // to check if a constraint is redundant. |
1375 | 0 | void FlatAffineConstraints::removeRedundantInequalities() { |
1376 | 0 | SmallVector<bool, 32> redun(getNumInequalities(), false); |
1377 | 0 | // To check if an inequality is redundant, we replace the inequality by its |
1378 | 0 | // complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting |
1379 | 0 | // system is empty. If it is, the inequality is redundant. |
1380 | 0 | FlatAffineConstraints tmpCst(*this); |
1381 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1382 | 0 | // Change the inequality to its complement. |
1383 | 0 | negateInequality(&tmpCst, r); |
1384 | 0 | tmpCst.atIneq(r, tmpCst.getNumCols() - 1)--; |
1385 | 0 | if (tmpCst.isEmpty()) { |
1386 | 0 | redun[r] = true; |
1387 | 0 | // Zero fill the redundant inequality. |
1388 | 0 | fillInequality(this, r, /*val=*/0); |
1389 | 0 | fillInequality(&tmpCst, r, /*val=*/0); |
1390 | 0 | } else { |
1391 | 0 | // Reverse the change (to avoid recreating tmpCst each time). |
1392 | 0 | tmpCst.atIneq(r, tmpCst.getNumCols() - 1)++; |
1393 | 0 | negateInequality(&tmpCst, r); |
1394 | 0 | } |
1395 | 0 | } |
1396 | 0 |
|
1397 | 0 | // Scan to get rid of all rows marked redundant, in-place. |
1398 | 0 | auto copyRow = [&](unsigned src, unsigned dest) { |
1399 | 0 | if (src == dest) |
1400 | 0 | return; |
1401 | 0 | for (unsigned c = 0, e = getNumCols(); c < e; c++) { |
1402 | 0 | atIneq(dest, c) = atIneq(src, c); |
1403 | 0 | } |
1404 | 0 | }; |
1405 | 0 | unsigned pos = 0; |
1406 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1407 | 0 | if (!redun[r]) |
1408 | 0 | copyRow(r, pos++); |
1409 | 0 | } |
1410 | 0 | inequalities.resize(numReservedCols * pos); |
1411 | 0 | } |
1412 | | |
1413 | | std::pair<AffineMap, AffineMap> FlatAffineConstraints::getLowerAndUpperBound( |
1414 | | unsigned pos, unsigned offset, unsigned num, unsigned symStartPos, |
1415 | | ArrayRef<AffineExpr> localExprs, MLIRContext *context) const { |
1416 | | assert(pos + offset < getNumDimIds() && "invalid dim start pos"); |
1417 | | assert(symStartPos >= (pos + offset) && "invalid sym start pos"); |
1418 | | assert(getNumLocalIds() == localExprs.size() && |
1419 | | "incorrect local exprs count"); |
1420 | | |
1421 | | SmallVector<unsigned, 4> lbIndices, ubIndices, eqIndices; |
1422 | | getLowerAndUpperBoundIndices(pos + offset, &lbIndices, &ubIndices, &eqIndices, |
1423 | | offset, num); |
1424 | | |
1425 | | /// Add to 'b' from 'a' in set [0, offset) U [offset + num, symbStartPos). |
1426 | 0 | auto addCoeffs = [&](ArrayRef<int64_t> a, SmallVectorImpl<int64_t> &b) { |
1427 | 0 | b.clear(); |
1428 | 0 | for (unsigned i = 0, e = a.size(); i < e; ++i) { |
1429 | 0 | if (i < offset || i >= offset + num) |
1430 | 0 | b.push_back(a[i]); |
1431 | 0 | } |
1432 | 0 | }; |
1433 | | |
1434 | | SmallVector<int64_t, 8> lb, ub; |
1435 | | SmallVector<AffineExpr, 4> lbExprs; |
1436 | | unsigned dimCount = symStartPos - num; |
1437 | | unsigned symCount = getNumDimAndSymbolIds() - symStartPos; |
1438 | | lbExprs.reserve(lbIndices.size() + eqIndices.size()); |
1439 | | // Lower bound expressions. |
1440 | | for (auto idx : lbIndices) { |
1441 | | auto ineq = getInequality(idx); |
1442 | | // Extract the lower bound (in terms of other coeff's + const), i.e., if |
1443 | | // i - j + 1 >= 0 is the constraint, 'pos' is for i the lower bound is j |
1444 | | // - 1. |
1445 | | addCoeffs(ineq, lb); |
1446 | | std::transform(lb.begin(), lb.end(), lb.begin(), std::negate<int64_t>()); |
1447 | | auto expr = |
1448 | | getAffineExprFromFlatForm(lb, dimCount, symCount, localExprs, context); |
1449 | | // expr ceildiv divisor is (expr + divisor - 1) floordiv divisor |
1450 | | int64_t divisor = std::abs(ineq[pos + offset]); |
1451 | | expr = (expr + divisor - 1).floorDiv(divisor); |
1452 | | lbExprs.push_back(expr); |
1453 | | } |
1454 | | |
1455 | | SmallVector<AffineExpr, 4> ubExprs; |
1456 | | ubExprs.reserve(ubIndices.size() + eqIndices.size()); |
1457 | | // Upper bound expressions. |
1458 | | for (auto idx : ubIndices) { |
1459 | | auto ineq = getInequality(idx); |
1460 | | // Extract the upper bound (in terms of other coeff's + const). |
1461 | | addCoeffs(ineq, ub); |
1462 | | auto expr = |
1463 | | getAffineExprFromFlatForm(ub, dimCount, symCount, localExprs, context); |
1464 | | expr = expr.floorDiv(std::abs(ineq[pos + offset])); |
1465 | | // Upper bound is exclusive. |
1466 | | ubExprs.push_back(expr + 1); |
1467 | | } |
1468 | | |
1469 | | // Equalities. It's both a lower and a upper bound. |
1470 | | SmallVector<int64_t, 4> b; |
1471 | | for (auto idx : eqIndices) { |
1472 | | auto eq = getEquality(idx); |
1473 | | addCoeffs(eq, b); |
1474 | | if (eq[pos + offset] > 0) |
1475 | | std::transform(b.begin(), b.end(), b.begin(), std::negate<int64_t>()); |
1476 | | |
1477 | | // Extract the upper bound (in terms of other coeff's + const). |
1478 | | auto expr = |
1479 | | getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context); |
1480 | | expr = expr.floorDiv(std::abs(eq[pos + offset])); |
1481 | | // Upper bound is exclusive. |
1482 | | ubExprs.push_back(expr + 1); |
1483 | | // Lower bound. |
1484 | | expr = |
1485 | | getAffineExprFromFlatForm(b, dimCount, symCount, localExprs, context); |
1486 | | expr = expr.ceilDiv(std::abs(eq[pos + offset])); |
1487 | | lbExprs.push_back(expr); |
1488 | | } |
1489 | | |
1490 | | auto lbMap = AffineMap::get(dimCount, symCount, lbExprs, context); |
1491 | | auto ubMap = AffineMap::get(dimCount, symCount, ubExprs, context); |
1492 | | |
1493 | | return {lbMap, ubMap}; |
1494 | | } |
1495 | | |
1496 | | /// Computes the lower and upper bounds of the first 'num' dimensional |
1497 | | /// identifiers (starting at 'offset') as affine maps of the remaining |
1498 | | /// identifiers (dimensional and symbolic identifiers). Local identifiers are |
1499 | | /// themselves explicitly computed as affine functions of other identifiers in |
1500 | | /// this process if needed. |
1501 | | void FlatAffineConstraints::getSliceBounds(unsigned offset, unsigned num, |
1502 | | MLIRContext *context, |
1503 | | SmallVectorImpl<AffineMap> *lbMaps, |
1504 | 0 | SmallVectorImpl<AffineMap> *ubMaps) { |
1505 | 0 | assert(num < getNumDimIds() && "invalid range"); |
1506 | 0 |
|
1507 | 0 | // Basic simplification. |
1508 | 0 | normalizeConstraintsByGCD(); |
1509 | 0 |
|
1510 | 0 | LLVM_DEBUG(llvm::dbgs() << "getSliceBounds for first " << num |
1511 | 0 | << " identifiers\n"); |
1512 | 0 | LLVM_DEBUG(dump()); |
1513 | 0 |
|
1514 | 0 | // Record computed/detected identifiers. |
1515 | 0 | SmallVector<AffineExpr, 8> memo(getNumIds()); |
1516 | 0 | // Initialize dimensional and symbolic identifiers. |
1517 | 0 | for (unsigned i = 0, e = getNumDimIds(); i < e; i++) { |
1518 | 0 | if (i < offset) |
1519 | 0 | memo[i] = getAffineDimExpr(i, context); |
1520 | 0 | else if (i >= offset + num) |
1521 | 0 | memo[i] = getAffineDimExpr(i - num, context); |
1522 | 0 | } |
1523 | 0 | for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++) |
1524 | 0 | memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context); |
1525 | 0 |
|
1526 | 0 | bool changed; |
1527 | 0 | do { |
1528 | 0 | changed = false; |
1529 | 0 | // Identify yet unknown identifiers as constants or mod's / floordiv's of |
1530 | 0 | // other identifiers if possible. |
1531 | 0 | for (unsigned pos = 0; pos < getNumIds(); pos++) { |
1532 | 0 | if (memo[pos]) |
1533 | 0 | continue; |
1534 | 0 | |
1535 | 0 | auto lbConst = getConstantLowerBound(pos); |
1536 | 0 | auto ubConst = getConstantUpperBound(pos); |
1537 | 0 | if (lbConst.hasValue() && ubConst.hasValue()) { |
1538 | 0 | // Detect equality to a constant. |
1539 | 0 | if (lbConst.getValue() == ubConst.getValue()) { |
1540 | 0 | memo[pos] = getAffineConstantExpr(lbConst.getValue(), context); |
1541 | 0 | changed = true; |
1542 | 0 | continue; |
1543 | 0 | } |
1544 | 0 | |
1545 | 0 | // Detect an identifier as modulo of another identifier w.r.t a |
1546 | 0 | // constant. |
1547 | 0 | if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(), |
1548 | 0 | &memo)) { |
1549 | 0 | changed = true; |
1550 | 0 | continue; |
1551 | 0 | } |
1552 | 0 | } |
1553 | 0 | |
1554 | 0 | // Detect an identifier as a floordiv of an affine function of other |
1555 | 0 | // identifiers (divisor is a positive constant). |
1556 | 0 | if (detectAsFloorDiv(*this, pos, context, memo)) { |
1557 | 0 | changed = true; |
1558 | 0 | continue; |
1559 | 0 | } |
1560 | 0 | |
1561 | 0 | // Detect an identifier as an expression of other identifiers. |
1562 | 0 | unsigned idx; |
1563 | 0 | if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) { |
1564 | 0 | continue; |
1565 | 0 | } |
1566 | 0 | |
1567 | 0 | // Build AffineExpr solving for identifier 'pos' in terms of all others. |
1568 | 0 | auto expr = getAffineConstantExpr(0, context); |
1569 | 0 | unsigned j, e; |
1570 | 0 | for (j = 0, e = getNumIds(); j < e; ++j) { |
1571 | 0 | if (j == pos) |
1572 | 0 | continue; |
1573 | 0 | int64_t c = atEq(idx, j); |
1574 | 0 | if (c == 0) |
1575 | 0 | continue; |
1576 | 0 | // If any of the involved IDs hasn't been found yet, we can't proceed. |
1577 | 0 | if (!memo[j]) |
1578 | 0 | break; |
1579 | 0 | expr = expr + memo[j] * c; |
1580 | 0 | } |
1581 | 0 | if (j < e) |
1582 | 0 | // Can't construct expression as it depends on a yet uncomputed |
1583 | 0 | // identifier. |
1584 | 0 | continue; |
1585 | 0 | |
1586 | 0 | // Add constant term to AffineExpr. |
1587 | 0 | expr = expr + atEq(idx, getNumIds()); |
1588 | 0 | int64_t vPos = atEq(idx, pos); |
1589 | 0 | assert(vPos != 0 && "expected non-zero here"); |
1590 | 0 | if (vPos > 0) |
1591 | 0 | expr = (-expr).floorDiv(vPos); |
1592 | 0 | else |
1593 | 0 | // vPos < 0. |
1594 | 0 | expr = expr.floorDiv(-vPos); |
1595 | 0 | // Successfully constructed expression. |
1596 | 0 | memo[pos] = expr; |
1597 | 0 | changed = true; |
1598 | 0 | } |
1599 | 0 | // This loop is guaranteed to reach a fixed point - since once an |
1600 | 0 | // identifier's explicit form is computed (in memo[pos]), it's not updated |
1601 | 0 | // again. |
1602 | 0 | } while (changed); |
1603 | 0 |
|
1604 | 0 | // Set the lower and upper bound maps for all the identifiers that were |
1605 | 0 | // computed as affine expressions of the rest as the "detected expr" and |
1606 | 0 | // "detected expr + 1" respectively; set the undetected ones to null. |
1607 | 0 | Optional<FlatAffineConstraints> tmpClone; |
1608 | 0 | for (unsigned pos = 0; pos < num; pos++) { |
1609 | 0 | unsigned numMapDims = getNumDimIds() - num; |
1610 | 0 | unsigned numMapSymbols = getNumSymbolIds(); |
1611 | 0 | AffineExpr expr = memo[pos + offset]; |
1612 | 0 | if (expr) |
1613 | 0 | expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols); |
1614 | 0 |
|
1615 | 0 | AffineMap &lbMap = (*lbMaps)[pos]; |
1616 | 0 | AffineMap &ubMap = (*ubMaps)[pos]; |
1617 | 0 |
|
1618 | 0 | if (expr) { |
1619 | 0 | lbMap = AffineMap::get(numMapDims, numMapSymbols, expr); |
1620 | 0 | ubMap = AffineMap::get(numMapDims, numMapSymbols, expr + 1); |
1621 | 0 | } else { |
1622 | 0 | // TODO(bondhugula): Whenever there are local identifiers in the |
1623 | 0 | // dependence constraints, we'll conservatively over-approximate, since we |
1624 | 0 | // don't always explicitly compute them above (in the while loop). |
1625 | 0 | if (getNumLocalIds() == 0) { |
1626 | 0 | // Work on a copy so that we don't update this constraint system. |
1627 | 0 | if (!tmpClone) { |
1628 | 0 | tmpClone.emplace(FlatAffineConstraints(*this)); |
1629 | 0 | // Removing redundant inequalities is necessary so that we don't get |
1630 | 0 | // redundant loop bounds. |
1631 | 0 | tmpClone->removeRedundantInequalities(); |
1632 | 0 | } |
1633 | 0 | std::tie(lbMap, ubMap) = tmpClone->getLowerAndUpperBound( |
1634 | 0 | pos, offset, num, getNumDimIds(), /*localExprs=*/{}, context); |
1635 | 0 | } |
1636 | 0 |
|
1637 | 0 | // If the above fails, we'll just use the constant lower bound and the |
1638 | 0 | // constant upper bound (if they exist) as the slice bounds. |
1639 | 0 | // TODO(b/126426796): being conservative for the moment in cases that |
1640 | 0 | // lead to multiple bounds - until getConstDifference in LoopFusion.cpp is |
1641 | 0 | // fixed (b/126426796). |
1642 | 0 | if (!lbMap || lbMap.getNumResults() > 1) { |
1643 | 0 | LLVM_DEBUG(llvm::dbgs() |
1644 | 0 | << "WARNING: Potentially over-approximating slice lb\n"); |
1645 | 0 | auto lbConst = getConstantLowerBound(pos + offset); |
1646 | 0 | if (lbConst.hasValue()) { |
1647 | 0 | lbMap = AffineMap::get( |
1648 | 0 | numMapDims, numMapSymbols, |
1649 | 0 | getAffineConstantExpr(lbConst.getValue(), context)); |
1650 | 0 | } |
1651 | 0 | } |
1652 | 0 | if (!ubMap || ubMap.getNumResults() > 1) { |
1653 | 0 | LLVM_DEBUG(llvm::dbgs() |
1654 | 0 | << "WARNING: Potentially over-approximating slice ub\n"); |
1655 | 0 | auto ubConst = getConstantUpperBound(pos + offset); |
1656 | 0 | if (ubConst.hasValue()) { |
1657 | 0 | (ubMap) = AffineMap::get( |
1658 | 0 | numMapDims, numMapSymbols, |
1659 | 0 | getAffineConstantExpr(ubConst.getValue() + 1, context)); |
1660 | 0 | } |
1661 | 0 | } |
1662 | 0 | } |
1663 | 0 | LLVM_DEBUG(llvm::dbgs() |
1664 | 0 | << "lb map for pos = " << Twine(pos + offset) << ", expr: "); |
1665 | 0 | LLVM_DEBUG(lbMap.dump();); |
1666 | 0 | LLVM_DEBUG(llvm::dbgs() |
1667 | 0 | << "ub map for pos = " << Twine(pos + offset) << ", expr: "); |
1668 | 0 | LLVM_DEBUG(ubMap.dump();); |
1669 | 0 | } |
1670 | 0 | } |
1671 | | |
1672 | | LogicalResult |
1673 | | FlatAffineConstraints::addLowerOrUpperBound(unsigned pos, AffineMap boundMap, |
1674 | | ValueRange boundOperands, bool eq, |
1675 | 0 | bool lower) { |
1676 | 0 | assert(pos < getNumDimAndSymbolIds() && "invalid position"); |
1677 | 0 | // Equality follows the logic of lower bound except that we add an equality |
1678 | 0 | // instead of an inequality. |
1679 | 0 | assert((!eq || boundMap.getNumResults() == 1) && "single result expected"); |
1680 | 0 | if (eq) |
1681 | 0 | lower = true; |
1682 | 0 |
|
1683 | 0 | // Fully compose map and operands; canonicalize and simplify so that we |
1684 | 0 | // transitively get to terminal symbols or loop IVs. |
1685 | 0 | auto map = boundMap; |
1686 | 0 | SmallVector<Value, 4> operands(boundOperands.begin(), boundOperands.end()); |
1687 | 0 | fullyComposeAffineMapAndOperands(&map, &operands); |
1688 | 0 | map = simplifyAffineMap(map); |
1689 | 0 | canonicalizeMapAndOperands(&map, &operands); |
1690 | 0 | for (auto operand : operands) |
1691 | 0 | addInductionVarOrTerminalSymbol(operand); |
1692 | 0 |
|
1693 | 0 | FlatAffineConstraints localVarCst; |
1694 | 0 | std::vector<SmallVector<int64_t, 8>> flatExprs; |
1695 | 0 | if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst))) { |
1696 | 0 | LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n"); |
1697 | 0 | return failure(); |
1698 | 0 | } |
1699 | 0 |
|
1700 | 0 | // Merge and align with localVarCst. |
1701 | 0 | if (localVarCst.getNumLocalIds() > 0) { |
1702 | 0 | // Set values for localVarCst. |
1703 | 0 | localVarCst.setIdValues(0, localVarCst.getNumDimAndSymbolIds(), operands); |
1704 | 0 | for (auto operand : operands) { |
1705 | 0 | unsigned pos; |
1706 | 0 | if (findId(operand, &pos)) { |
1707 | 0 | if (pos >= getNumDimIds() && pos < getNumDimAndSymbolIds()) { |
1708 | 0 | // If the local var cst has this as a dim, turn it into its symbol. |
1709 | 0 | turnDimIntoSymbol(&localVarCst, operand); |
1710 | 0 | } else if (pos < getNumDimIds()) { |
1711 | 0 | // Or vice versa. |
1712 | 0 | turnSymbolIntoDim(&localVarCst, operand); |
1713 | 0 | } |
1714 | 0 | } |
1715 | 0 | } |
1716 | 0 | mergeAndAlignIds(/*offset=*/0, this, &localVarCst); |
1717 | 0 | append(localVarCst); |
1718 | 0 | } |
1719 | 0 |
|
1720 | 0 | // Record positions of the operands in the constraint system. Need to do |
1721 | 0 | // this here since the constraint system changes after a bound is added. |
1722 | 0 | SmallVector<unsigned, 8> positions; |
1723 | 0 | unsigned numOperands = operands.size(); |
1724 | 0 | for (auto operand : operands) { |
1725 | 0 | unsigned pos; |
1726 | 0 | if (!findId(operand, &pos)) |
1727 | 0 | assert(0 && "expected to be found"); |
1728 | 0 | positions.push_back(pos); |
1729 | 0 | } |
1730 | 0 |
|
1731 | 0 | for (const auto &flatExpr : flatExprs) { |
1732 | 0 | SmallVector<int64_t, 4> ineq(getNumCols(), 0); |
1733 | 0 | ineq[pos] = lower ? 1 : -1; |
1734 | 0 | // Dims and symbols. |
1735 | 0 | for (unsigned j = 0, e = map.getNumInputs(); j < e; j++) { |
1736 | 0 | ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j]; |
1737 | 0 | } |
1738 | 0 | // Copy over the local id coefficients. |
1739 | 0 | unsigned numLocalIds = flatExpr.size() - 1 - numOperands; |
1740 | 0 | for (unsigned jj = 0, j = getNumIds() - numLocalIds; jj < numLocalIds; |
1741 | 0 | jj++, j++) { |
1742 | 0 | ineq[j] = |
1743 | 0 | lower ? -flatExpr[numOperands + jj] : flatExpr[numOperands + jj]; |
1744 | 0 | } |
1745 | 0 | // Constant term. |
1746 | 0 | ineq[getNumCols() - 1] = |
1747 | 0 | lower ? -flatExpr[flatExpr.size() - 1] |
1748 | 0 | // Upper bound in flattenedExpr is an exclusive one. |
1749 | 0 | : flatExpr[flatExpr.size() - 1] - 1; |
1750 | 0 | eq ? addEquality(ineq) : addInequality(ineq); |
1751 | 0 | } |
1752 | 0 | return success(); |
1753 | 0 | } |
1754 | | |
1755 | | // Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper |
1756 | | // bounds in 'ubMaps' to each value in `values' that appears in the constraint |
1757 | | // system. Note that both lower/upper bounds share the same operand list |
1758 | | // 'operands'. |
1759 | | // This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and |
1760 | | // skips any null AffineMaps in 'lbMaps' or 'ubMaps'. |
1761 | | // Note that both lower/upper bounds use operands from 'operands'. |
1762 | | // Returns failure for unimplemented cases such as semi-affine expressions or |
1763 | | // expressions with mod/floordiv. |
1764 | | LogicalResult FlatAffineConstraints::addSliceBounds(ArrayRef<Value> values, |
1765 | | ArrayRef<AffineMap> lbMaps, |
1766 | | ArrayRef<AffineMap> ubMaps, |
1767 | 0 | ArrayRef<Value> operands) { |
1768 | 0 | assert(values.size() == lbMaps.size()); |
1769 | 0 | assert(lbMaps.size() == ubMaps.size()); |
1770 | 0 |
|
1771 | 0 | for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) { |
1772 | 0 | unsigned pos; |
1773 | 0 | if (!findId(values[i], &pos)) |
1774 | 0 | continue; |
1775 | 0 | |
1776 | 0 | AffineMap lbMap = lbMaps[i]; |
1777 | 0 | AffineMap ubMap = ubMaps[i]; |
1778 | 0 | assert(!lbMap || lbMap.getNumInputs() == operands.size()); |
1779 | 0 | assert(!ubMap || ubMap.getNumInputs() == operands.size()); |
1780 | 0 |
|
1781 | 0 | // Check if this slice is just an equality along this dimension. |
1782 | 0 | if (lbMap && ubMap && lbMap.getNumResults() == 1 && |
1783 | 0 | ubMap.getNumResults() == 1 && |
1784 | 0 | lbMap.getResult(0) + 1 == ubMap.getResult(0)) { |
1785 | 0 | if (failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/true, |
1786 | 0 | /*lower=*/true))) |
1787 | 0 | return failure(); |
1788 | 0 | continue; |
1789 | 0 | } |
1790 | 0 | |
1791 | 0 | if (lbMap && failed(addLowerOrUpperBound(pos, lbMap, operands, /*eq=*/false, |
1792 | 0 | /*lower=*/true))) |
1793 | 0 | return failure(); |
1794 | 0 | |
1795 | 0 | if (ubMap && failed(addLowerOrUpperBound(pos, ubMap, operands, /*eq=*/false, |
1796 | 0 | /*lower=*/false))) |
1797 | 0 | return failure(); |
1798 | 0 | } |
1799 | 0 | return success(); |
1800 | 0 | } |
1801 | | |
1802 | 16 | void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) { |
1803 | 16 | assert(eq.size() == getNumCols()); |
1804 | 16 | unsigned offset = equalities.size(); |
1805 | 16 | equalities.resize(equalities.size() + numReservedCols); |
1806 | 16 | std::copy(eq.begin(), eq.end(), equalities.begin() + offset); |
1807 | 16 | } |
1808 | | |
1809 | 102 | void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) { |
1810 | 102 | assert(inEq.size() == getNumCols()); |
1811 | 102 | unsigned offset = inequalities.size(); |
1812 | 102 | inequalities.resize(inequalities.size() + numReservedCols); |
1813 | 102 | std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset); |
1814 | 102 | } |
1815 | | |
1816 | 0 | void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) { |
1817 | 0 | assert(pos < getNumCols()); |
1818 | 0 | unsigned offset = inequalities.size(); |
1819 | 0 | inequalities.resize(inequalities.size() + numReservedCols); |
1820 | 0 | std::fill(inequalities.begin() + offset, |
1821 | 0 | inequalities.begin() + offset + getNumCols(), 0); |
1822 | 0 | inequalities[offset + pos] = 1; |
1823 | 0 | inequalities[offset + getNumCols() - 1] = -lb; |
1824 | 0 | } |
1825 | | |
1826 | 0 | void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) { |
1827 | 0 | assert(pos < getNumCols()); |
1828 | 0 | unsigned offset = inequalities.size(); |
1829 | 0 | inequalities.resize(inequalities.size() + numReservedCols); |
1830 | 0 | std::fill(inequalities.begin() + offset, |
1831 | 0 | inequalities.begin() + offset + getNumCols(), 0); |
1832 | 0 | inequalities[offset + pos] = -1; |
1833 | 0 | inequalities[offset + getNumCols() - 1] = ub; |
1834 | 0 | } |
1835 | | |
1836 | | void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr, |
1837 | 0 | int64_t lb) { |
1838 | 0 | assert(expr.size() == getNumCols()); |
1839 | 0 | unsigned offset = inequalities.size(); |
1840 | 0 | inequalities.resize(inequalities.size() + numReservedCols); |
1841 | 0 | std::fill(inequalities.begin() + offset, |
1842 | 0 | inequalities.begin() + offset + getNumCols(), 0); |
1843 | 0 | std::copy(expr.begin(), expr.end(), inequalities.begin() + offset); |
1844 | 0 | inequalities[offset + getNumCols() - 1] += -lb; |
1845 | 0 | } |
1846 | | |
1847 | | void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr, |
1848 | 0 | int64_t ub) { |
1849 | 0 | assert(expr.size() == getNumCols()); |
1850 | 0 | unsigned offset = inequalities.size(); |
1851 | 0 | inequalities.resize(inequalities.size() + numReservedCols); |
1852 | 0 | std::fill(inequalities.begin() + offset, |
1853 | 0 | inequalities.begin() + offset + getNumCols(), 0); |
1854 | 0 | for (unsigned i = 0, e = getNumCols(); i < e; i++) { |
1855 | 0 | inequalities[offset + i] = -expr[i]; |
1856 | 0 | } |
1857 | 0 | inequalities[offset + getNumCols() - 1] += ub; |
1858 | 0 | } |
1859 | | |
1860 | | /// Adds a new local identifier as the floordiv of an affine function of other |
1861 | | /// identifiers, the coefficients of which are provided in 'dividend' and with |
1862 | | /// respect to a positive constant 'divisor'. Two constraints are added to the |
1863 | | /// system to capture equivalence with the floordiv. |
1864 | | /// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1. |
1865 | | void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend, |
1866 | 0 | int64_t divisor) { |
1867 | 0 | assert(dividend.size() == getNumCols() && "incorrect dividend size"); |
1868 | 0 | assert(divisor > 0 && "positive divisor expected"); |
1869 | 0 |
|
1870 | 0 | addLocalId(getNumLocalIds()); |
1871 | 0 |
|
1872 | 0 | // Add two constraints for this new identifier 'q'. |
1873 | 0 | SmallVector<int64_t, 8> bound(dividend.size() + 1); |
1874 | 0 |
|
1875 | 0 | // dividend - q * divisor >= 0 |
1876 | 0 | std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1, |
1877 | 0 | bound.begin()); |
1878 | 0 | bound.back() = dividend.back(); |
1879 | 0 | bound[getNumIds() - 1] = -divisor; |
1880 | 0 | addInequality(bound); |
1881 | 0 |
|
1882 | 0 | // -dividend +qdivisor * q + divisor - 1 >= 0 |
1883 | 0 | std::transform(bound.begin(), bound.end(), bound.begin(), |
1884 | 0 | std::negate<int64_t>()); |
1885 | 0 | bound[bound.size() - 1] += divisor - 1; |
1886 | 0 | addInequality(bound); |
1887 | 0 | } |
1888 | | |
1889 | 0 | bool FlatAffineConstraints::findId(Value id, unsigned *pos) const { |
1890 | 0 | unsigned i = 0; |
1891 | 0 | for (const auto &mayBeId : ids) { |
1892 | 0 | if (mayBeId.hasValue() && mayBeId.getValue() == id) { |
1893 | 0 | *pos = i; |
1894 | 0 | return true; |
1895 | 0 | } |
1896 | 0 | i++; |
1897 | 0 | } |
1898 | 0 | return false; |
1899 | 0 | } |
1900 | | |
1901 | 0 | bool FlatAffineConstraints::containsId(Value id) const { |
1902 | 0 | return llvm::any_of(ids, [&](const Optional<Value> &mayBeId) { |
1903 | 0 | return mayBeId.hasValue() && mayBeId.getValue() == id; |
1904 | 0 | }); |
1905 | 0 | } |
1906 | | |
1907 | 0 | void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) { |
1908 | 0 | assert(newSymbolCount <= numDims + numSymbols && |
1909 | 0 | "invalid separation position"); |
1910 | 0 | numDims = numDims + numSymbols - newSymbolCount; |
1911 | 0 | numSymbols = newSymbolCount; |
1912 | 0 | } |
1913 | | |
1914 | | /// Sets the specified identifier to a constant value. |
1915 | 0 | void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) { |
1916 | 0 | unsigned offset = equalities.size(); |
1917 | 0 | equalities.resize(equalities.size() + numReservedCols); |
1918 | 0 | std::fill(equalities.begin() + offset, |
1919 | 0 | equalities.begin() + offset + getNumCols(), 0); |
1920 | 0 | equalities[offset + pos] = 1; |
1921 | 0 | equalities[offset + getNumCols() - 1] = -val; |
1922 | 0 | } |
1923 | | |
1924 | | /// Sets the specified identifier to a constant value; asserts if the id is not |
1925 | | /// found. |
1926 | 0 | void FlatAffineConstraints::setIdToConstant(Value id, int64_t val) { |
1927 | 0 | unsigned pos; |
1928 | 0 | if (!findId(id, &pos)) |
1929 | 0 | // This is a pre-condition for this method. |
1930 | 0 | assert(0 && "id not found"); |
1931 | 0 | setIdToConstant(pos, val); |
1932 | 0 | } |
1933 | | |
1934 | 0 | void FlatAffineConstraints::removeEquality(unsigned pos) { |
1935 | 0 | unsigned numEqualities = getNumEqualities(); |
1936 | 0 | assert(pos < numEqualities); |
1937 | 0 | unsigned outputIndex = pos * numReservedCols; |
1938 | 0 | unsigned inputIndex = (pos + 1) * numReservedCols; |
1939 | 0 | unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols; |
1940 | 0 | std::copy(equalities.begin() + inputIndex, |
1941 | 0 | equalities.begin() + inputIndex + numElemsToCopy, |
1942 | 0 | equalities.begin() + outputIndex); |
1943 | 0 | assert(equalities.size() >= numReservedCols); |
1944 | 0 | equalities.resize(equalities.size() - numReservedCols); |
1945 | 0 | } |
1946 | | |
1947 | 0 | void FlatAffineConstraints::removeInequality(unsigned pos) { |
1948 | 0 | unsigned numInequalities = getNumInequalities(); |
1949 | 0 | assert(pos < numInequalities && "invalid position"); |
1950 | 0 | unsigned outputIndex = pos * numReservedCols; |
1951 | 0 | unsigned inputIndex = (pos + 1) * numReservedCols; |
1952 | 0 | unsigned numElemsToCopy = (numInequalities - pos - 1) * numReservedCols; |
1953 | 0 | std::copy(inequalities.begin() + inputIndex, |
1954 | 0 | inequalities.begin() + inputIndex + numElemsToCopy, |
1955 | 0 | inequalities.begin() + outputIndex); |
1956 | 0 | assert(inequalities.size() >= numReservedCols); |
1957 | 0 | inequalities.resize(inequalities.size() - numReservedCols); |
1958 | 0 | } |
1959 | | |
1960 | | /// Finds an equality that equates the specified identifier to a constant. |
1961 | | /// Returns the position of the equality row. If 'symbolic' is set to true, |
1962 | | /// symbols are also treated like a constant, i.e., an affine function of the |
1963 | | /// symbols is also treated like a constant. Returns -1 if such an equality |
1964 | | /// could not be found. |
1965 | | static int findEqualityToConstant(const FlatAffineConstraints &cst, |
1966 | 0 | unsigned pos, bool symbolic = false) { |
1967 | 0 | assert(pos < cst.getNumIds() && "invalid position"); |
1968 | 0 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
1969 | 0 | int64_t v = cst.atEq(r, pos); |
1970 | 0 | if (v * v != 1) |
1971 | 0 | continue; |
1972 | 0 | unsigned c; |
1973 | 0 | unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds(); |
1974 | 0 | // This checks for zeros in all positions other than 'pos' in [0, f) |
1975 | 0 | for (c = 0; c < f; c++) { |
1976 | 0 | if (c == pos) |
1977 | 0 | continue; |
1978 | 0 | if (cst.atEq(r, c) != 0) { |
1979 | 0 | // Dependent on another identifier. |
1980 | 0 | break; |
1981 | 0 | } |
1982 | 0 | } |
1983 | 0 | if (c == f) |
1984 | 0 | // Equality is free of other identifiers. |
1985 | 0 | return r; |
1986 | 0 | } |
1987 | 0 | return -1; |
1988 | 0 | } |
1989 | | |
1990 | 0 | void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) { |
1991 | 0 | assert(pos < getNumIds() && "invalid position"); |
1992 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
1993 | 0 | atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal; |
1994 | 0 | } |
1995 | 0 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
1996 | 0 | atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal; |
1997 | 0 | } |
1998 | 0 | removeId(pos); |
1999 | 0 | } |
2000 | | |
2001 | 0 | LogicalResult FlatAffineConstraints::constantFoldId(unsigned pos) { |
2002 | 0 | assert(pos < getNumIds() && "invalid position"); |
2003 | 0 | int rowIdx; |
2004 | 0 | if ((rowIdx = findEqualityToConstant(*this, pos)) == -1) |
2005 | 0 | return failure(); |
2006 | 0 | |
2007 | 0 | // atEq(rowIdx, pos) is either -1 or 1. |
2008 | 0 | assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1); |
2009 | 0 | int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos); |
2010 | 0 | setAndEliminate(pos, constVal); |
2011 | 0 | return success(); |
2012 | 0 | } |
2013 | | |
2014 | 0 | void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) { |
2015 | 0 | for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) { |
2016 | 0 | if (failed(constantFoldId(t))) |
2017 | 0 | t++; |
2018 | 0 | } |
2019 | 0 | } |
2020 | | |
2021 | | /// Returns the extent (upper bound - lower bound) of the specified |
2022 | | /// identifier if it is found to be a constant; returns None if it's not a |
2023 | | /// constant. This methods treats symbolic identifiers specially, i.e., |
2024 | | /// it looks for constant differences between affine expressions involving |
2025 | | /// only the symbolic identifiers. See comments at function definition for |
2026 | | /// example. 'lb', if provided, is set to the lower bound associated with the |
2027 | | /// constant difference. Note that 'lb' is purely symbolic and thus will contain |
2028 | | /// the coefficients of the symbolic identifiers and the constant coefficient. |
2029 | | // Egs: 0 <= i <= 15, return 16. |
2030 | | // s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol) |
2031 | | // s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16. |
2032 | | // s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb = |
2033 | | // ceil(s0 - 7 / 8) = floor(s0 / 8)). |
2034 | | Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize( |
2035 | | unsigned pos, SmallVectorImpl<int64_t> *lb, int64_t *boundFloorDivisor, |
2036 | | SmallVectorImpl<int64_t> *ub, unsigned *minLbPos, |
2037 | 0 | unsigned *minUbPos) const { |
2038 | 0 | assert(pos < getNumDimIds() && "Invalid identifier position"); |
2039 | 0 |
|
2040 | 0 | // Find an equality for 'pos'^th identifier that equates it to some function |
2041 | 0 | // of the symbolic identifiers (+ constant). |
2042 | 0 | int eqPos = findEqualityToConstant(*this, pos, /*symbolic=*/true); |
2043 | 0 | if (eqPos != -1) { |
2044 | 0 | auto eq = getEquality(eqPos); |
2045 | 0 | // If the equality involves a local var, punt for now. |
2046 | 0 | // TODO: this can be handled in the future by using the explicit |
2047 | 0 | // representation of the local vars. |
2048 | 0 | if (!std::all_of(eq.begin() + getNumDimAndSymbolIds(), eq.end() - 1, |
2049 | 0 | [](int64_t coeff) { return coeff == 0; })) |
2050 | 0 | return None; |
2051 | 0 | |
2052 | 0 | // This identifier can only take a single value. |
2053 | 0 | if (lb) { |
2054 | 0 | // Set lb to that symbolic value. |
2055 | 0 | lb->resize(getNumSymbolIds() + 1); |
2056 | 0 | if (ub) |
2057 | 0 | ub->resize(getNumSymbolIds() + 1); |
2058 | 0 | for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) { |
2059 | 0 | int64_t v = atEq(eqPos, pos); |
2060 | 0 | // atEq(eqRow, pos) is either -1 or 1. |
2061 | 0 | assert(v * v == 1); |
2062 | 0 | (*lb)[c] = v < 0 ? atEq(eqPos, getNumDimIds() + c) / -v |
2063 | 0 | : -atEq(eqPos, getNumDimIds() + c) / v; |
2064 | 0 | // Since this is an equality, ub = lb. |
2065 | 0 | if (ub) |
2066 | 0 | (*ub)[c] = (*lb)[c]; |
2067 | 0 | } |
2068 | 0 | assert(boundFloorDivisor && |
2069 | 0 | "both lb and divisor or none should be provided"); |
2070 | 0 | *boundFloorDivisor = 1; |
2071 | 0 | } |
2072 | 0 | if (minLbPos) |
2073 | 0 | *minLbPos = eqPos; |
2074 | 0 | if (minUbPos) |
2075 | 0 | *minUbPos = eqPos; |
2076 | 0 | return 1; |
2077 | 0 | } |
2078 | 0 |
|
2079 | 0 | // Check if the identifier appears at all in any of the inequalities. |
2080 | 0 | unsigned r, e; |
2081 | 0 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
2082 | 0 | if (atIneq(r, pos) != 0) |
2083 | 0 | break; |
2084 | 0 | } |
2085 | 0 | if (r == e) |
2086 | 0 | // If it doesn't, there isn't a bound on it. |
2087 | 0 | return None; |
2088 | 0 | |
2089 | 0 | // Positions of constraints that are lower/upper bounds on the variable. |
2090 | 0 | SmallVector<unsigned, 4> lbIndices, ubIndices; |
2091 | 0 |
|
2092 | 0 | // Gather all symbolic lower bounds and upper bounds of the variable, i.e., |
2093 | 0 | // the bounds can only involve symbolic (and local) identifiers. Since the |
2094 | 0 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
2095 | 0 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
2096 | 0 | getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices, |
2097 | 0 | /*eqIndices=*/nullptr, /*offset=*/0, |
2098 | 0 | /*num=*/getNumDimIds()); |
2099 | 0 |
|
2100 | 0 | Optional<int64_t> minDiff = None; |
2101 | 0 | unsigned minLbPosition = 0, minUbPosition = 0; |
2102 | 0 | for (auto ubPos : ubIndices) { |
2103 | 0 | for (auto lbPos : lbIndices) { |
2104 | 0 | // Look for a lower bound and an upper bound that only differ by a |
2105 | 0 | // constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst. |
2106 | 0 | // For example, if ii is the pos^th variable, we are looking for |
2107 | 0 | // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The |
2108 | 0 | // minimum among all such constant differences is kept since that's the |
2109 | 0 | // constant bounding the extent of the pos^th variable. |
2110 | 0 | unsigned j, e; |
2111 | 0 | for (j = 0, e = getNumCols() - 1; j < e; j++) |
2112 | 0 | if (atIneq(ubPos, j) != -atIneq(lbPos, j)) { |
2113 | 0 | break; |
2114 | 0 | } |
2115 | 0 | if (j < getNumCols() - 1) |
2116 | 0 | continue; |
2117 | 0 | int64_t diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) + |
2118 | 0 | atIneq(lbPos, getNumCols() - 1) + 1, |
2119 | 0 | atIneq(lbPos, pos)); |
2120 | 0 | if (minDiff == None || diff < minDiff) { |
2121 | 0 | minDiff = diff; |
2122 | 0 | minLbPosition = lbPos; |
2123 | 0 | minUbPosition = ubPos; |
2124 | 0 | } |
2125 | 0 | } |
2126 | 0 | } |
2127 | 0 | if (lb && minDiff.hasValue()) { |
2128 | 0 | // Set lb to the symbolic lower bound. |
2129 | 0 | lb->resize(getNumSymbolIds() + 1); |
2130 | 0 | if (ub) |
2131 | 0 | ub->resize(getNumSymbolIds() + 1); |
2132 | 0 | // The lower bound is the ceildiv of the lb constraint over the coefficient |
2133 | 0 | // of the variable at 'pos'. We express the ceildiv equivalently as a floor |
2134 | 0 | // for uniformity. For eg., if the lower bound constraint was: 32*d0 - N + |
2135 | 0 | // 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32). |
2136 | 0 | *boundFloorDivisor = atIneq(minLbPosition, pos); |
2137 | 0 | assert(*boundFloorDivisor == -atIneq(minUbPosition, pos)); |
2138 | 0 | for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) { |
2139 | 0 | (*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c); |
2140 | 0 | } |
2141 | 0 | if (ub) { |
2142 | 0 | for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) |
2143 | 0 | (*ub)[c] = atIneq(minUbPosition, getNumDimIds() + c); |
2144 | 0 | } |
2145 | 0 | // The lower bound leads to a ceildiv while the upper bound is a floordiv |
2146 | 0 | // whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val + |
2147 | 0 | // d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to |
2148 | 0 | // the constant term for the lower bound. |
2149 | 0 | (*lb)[getNumSymbolIds()] += atIneq(minLbPosition, pos) - 1; |
2150 | 0 | } |
2151 | 0 | if (minLbPos) |
2152 | 0 | *minLbPos = minLbPosition; |
2153 | 0 | if (minUbPos) |
2154 | 0 | *minUbPos = minUbPosition; |
2155 | 0 | return minDiff; |
2156 | 0 | } |
2157 | | |
2158 | | template <bool isLower> |
2159 | | Optional<int64_t> |
2160 | 0 | FlatAffineConstraints::computeConstantLowerOrUpperBound(unsigned pos) { |
2161 | 0 | assert(pos < getNumIds() && "invalid position"); |
2162 | 0 | // Project to 'pos'. |
2163 | 0 | projectOut(0, pos); |
2164 | 0 | projectOut(1, getNumIds() - 1); |
2165 | 0 | // Check if there's an equality equating the '0'^th identifier to a constant. |
2166 | 0 | int eqRowIdx = findEqualityToConstant(*this, 0, /*symbolic=*/false); |
2167 | 0 | if (eqRowIdx != -1) |
2168 | 0 | // atEq(rowIdx, 0) is either -1 or 1. |
2169 | 0 | return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0); |
2170 | 0 | |
2171 | 0 | // Check if the identifier appears at all in any of the inequalities. |
2172 | 0 | unsigned r, e; |
2173 | 0 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
2174 | 0 | if (atIneq(r, 0) != 0) |
2175 | 0 | break; |
2176 | 0 | } |
2177 | 0 | if (r == e) |
2178 | 0 | // If it doesn't, there isn't a bound on it. |
2179 | 0 | return None; |
2180 | 0 | |
2181 | 0 | Optional<int64_t> minOrMaxConst = None; |
2182 | 0 |
|
2183 | 0 | // Take the max across all const lower bounds (or min across all constant |
2184 | 0 | // upper bounds). |
2185 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
2186 | 0 | if (isLower) { |
2187 | 0 | if (atIneq(r, 0) <= 0) |
2188 | 0 | // Not a lower bound. |
2189 | 0 | continue; |
2190 | 0 | } else if (atIneq(r, 0) >= 0) { |
2191 | 0 | // Not an upper bound. |
2192 | 0 | continue; |
2193 | 0 | } |
2194 | 0 | unsigned c, f; |
2195 | 0 | for (c = 0, f = getNumCols() - 1; c < f; c++) |
2196 | 0 | if (c != 0 && atIneq(r, c) != 0) |
2197 | 0 | break; |
2198 | 0 | if (c < getNumCols() - 1) |
2199 | 0 | // Not a constant bound. |
2200 | 0 | continue; |
2201 | 0 | |
2202 | 0 | int64_t boundConst = |
2203 | 0 | isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0)) |
2204 | 0 | : mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0)); |
2205 | 0 | if (isLower) { |
2206 | 0 | if (minOrMaxConst == None || boundConst > minOrMaxConst) |
2207 | 0 | minOrMaxConst = boundConst; |
2208 | 0 | } else { |
2209 | 0 | if (minOrMaxConst == None || boundConst < minOrMaxConst) |
2210 | 0 | minOrMaxConst = boundConst; |
2211 | 0 | } |
2212 | 0 | } |
2213 | 0 | return minOrMaxConst; |
2214 | 0 | } Unexecuted instantiation: _ZN4mlir21FlatAffineConstraints32computeConstantLowerOrUpperBoundILb1EEEN4llvm8OptionalIlEEj Unexecuted instantiation: _ZN4mlir21FlatAffineConstraints32computeConstantLowerOrUpperBoundILb0EEEN4llvm8OptionalIlEEj |
2215 | | |
2216 | | Optional<int64_t> |
2217 | 0 | FlatAffineConstraints::getConstantLowerBound(unsigned pos) const { |
2218 | 0 | FlatAffineConstraints tmpCst(*this); |
2219 | 0 | return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/true>(pos); |
2220 | 0 | } |
2221 | | |
2222 | | Optional<int64_t> |
2223 | 0 | FlatAffineConstraints::getConstantUpperBound(unsigned pos) const { |
2224 | 0 | FlatAffineConstraints tmpCst(*this); |
2225 | 0 | return tmpCst.computeConstantLowerOrUpperBound</*isLower=*/false>(pos); |
2226 | 0 | } |
2227 | | |
2228 | | // A simple (naive and conservative) check for hyper-rectangularity. |
2229 | | bool FlatAffineConstraints::isHyperRectangular(unsigned pos, |
2230 | 0 | unsigned num) const { |
2231 | 0 | assert(pos < getNumCols() - 1); |
2232 | 0 | // Check for two non-zero coefficients in the range [pos, pos + sum). |
2233 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
2234 | 0 | unsigned sum = 0; |
2235 | 0 | for (unsigned c = pos; c < pos + num; c++) { |
2236 | 0 | if (atIneq(r, c) != 0) |
2237 | 0 | sum++; |
2238 | 0 | } |
2239 | 0 | if (sum > 1) |
2240 | 0 | return false; |
2241 | 0 | } |
2242 | 0 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
2243 | 0 | unsigned sum = 0; |
2244 | 0 | for (unsigned c = pos; c < pos + num; c++) { |
2245 | 0 | if (atEq(r, c) != 0) |
2246 | 0 | sum++; |
2247 | 0 | } |
2248 | 0 | if (sum > 1) |
2249 | 0 | return false; |
2250 | 0 | } |
2251 | 0 | return true; |
2252 | 0 | } |
2253 | | |
2254 | 0 | void FlatAffineConstraints::print(raw_ostream &os) const { |
2255 | 0 | assert(hasConsistentState()); |
2256 | 0 | os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds() |
2257 | 0 | << " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints() |
2258 | 0 | << " constraints)\n"; |
2259 | 0 | os << "("; |
2260 | 0 | for (unsigned i = 0, e = getNumIds(); i < e; i++) { |
2261 | 0 | if (ids[i] == None) |
2262 | 0 | os << "None "; |
2263 | 0 | else |
2264 | 0 | os << "Value "; |
2265 | 0 | } |
2266 | 0 | os << " const)\n"; |
2267 | 0 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) { |
2268 | 0 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2269 | 0 | os << atEq(i, j) << " "; |
2270 | 0 | } |
2271 | 0 | os << "= 0\n"; |
2272 | 0 | } |
2273 | 0 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) { |
2274 | 0 | for (unsigned j = 0, f = getNumCols(); j < f; ++j) { |
2275 | 0 | os << atIneq(i, j) << " "; |
2276 | 0 | } |
2277 | 0 | os << ">= 0\n"; |
2278 | 0 | } |
2279 | 0 | os << '\n'; |
2280 | 0 | } |
2281 | | |
2282 | 0 | void FlatAffineConstraints::dump() const { print(llvm::errs()); } |
2283 | | |
2284 | | /// Removes duplicate constraints, trivially true constraints, and constraints |
2285 | | /// that can be detected as redundant as a result of differing only in their |
2286 | | /// constant term part. A constraint of the form <non-negative constant> >= 0 is |
2287 | | /// considered trivially true. |
2288 | | // Uses a DenseSet to hash and detect duplicates followed by a linear scan to |
2289 | | // remove duplicates in place. |
2290 | 0 | void FlatAffineConstraints::removeTrivialRedundancy() { |
2291 | 0 | GCDTightenInequalities(); |
2292 | 0 | normalizeConstraintsByGCD(); |
2293 | 0 |
|
2294 | 0 | // A map used to detect redundancy stemming from constraints that only differ |
2295 | 0 | // in their constant term. The value stored is <row position, const term> |
2296 | 0 | // for a given row. |
2297 | 0 | SmallDenseMap<ArrayRef<int64_t>, std::pair<unsigned, int64_t>> |
2298 | 0 | rowsWithoutConstTerm; |
2299 | 0 | // To unique rows. |
2300 | 0 | SmallDenseSet<ArrayRef<int64_t>, 8> rowSet; |
2301 | 0 |
|
2302 | 0 | // Check if constraint is of the form <non-negative-constant> >= 0. |
2303 | 0 | auto isTriviallyValid = [&](unsigned r) -> bool { |
2304 | 0 | for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) { |
2305 | 0 | if (atIneq(r, c) != 0) |
2306 | 0 | return false; |
2307 | 0 | } |
2308 | 0 | return atIneq(r, getNumCols() - 1) >= 0; |
2309 | 0 | }; |
2310 | 0 |
|
2311 | 0 | // Detect and mark redundant constraints. |
2312 | 0 | SmallVector<bool, 256> redunIneq(getNumInequalities(), false); |
2313 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
2314 | 0 | int64_t *rowStart = inequalities.data() + numReservedCols * r; |
2315 | 0 | auto row = ArrayRef<int64_t>(rowStart, getNumCols()); |
2316 | 0 | if (isTriviallyValid(r) || !rowSet.insert(row).second) { |
2317 | 0 | redunIneq[r] = true; |
2318 | 0 | continue; |
2319 | 0 | } |
2320 | 0 | |
2321 | 0 | // Among constraints that only differ in the constant term part, mark |
2322 | 0 | // everything other than the one with the smallest constant term redundant. |
2323 | 0 | // (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the |
2324 | 0 | // former two are redundant). |
2325 | 0 | int64_t constTerm = atIneq(r, getNumCols() - 1); |
2326 | 0 | auto rowWithoutConstTerm = ArrayRef<int64_t>(rowStart, getNumCols() - 1); |
2327 | 0 | const auto &ret = |
2328 | 0 | rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}}); |
2329 | 0 | if (!ret.second) { |
2330 | 0 | // Check if the other constraint has a higher constant term. |
2331 | 0 | auto &val = ret.first->second; |
2332 | 0 | if (val.second > constTerm) { |
2333 | 0 | // The stored row is redundant. Mark it so, and update with this one. |
2334 | 0 | redunIneq[val.first] = true; |
2335 | 0 | val = {r, constTerm}; |
2336 | 0 | } else { |
2337 | 0 | // The one stored makes this one redundant. |
2338 | 0 | redunIneq[r] = true; |
2339 | 0 | } |
2340 | 0 | } |
2341 | 0 | } |
2342 | 0 |
|
2343 | 0 | auto copyRow = [&](unsigned src, unsigned dest) { |
2344 | 0 | if (src == dest) |
2345 | 0 | return; |
2346 | 0 | for (unsigned c = 0, e = getNumCols(); c < e; c++) { |
2347 | 0 | atIneq(dest, c) = atIneq(src, c); |
2348 | 0 | } |
2349 | 0 | }; |
2350 | 0 |
|
2351 | 0 | // Scan to get rid of all rows marked redundant, in-place. |
2352 | 0 | unsigned pos = 0; |
2353 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
2354 | 0 | if (!redunIneq[r]) |
2355 | 0 | copyRow(r, pos++); |
2356 | 0 | } |
2357 | 0 | inequalities.resize(numReservedCols * pos); |
2358 | 0 |
|
2359 | 0 | // TODO(bondhugula): consider doing this for equalities as well, but probably |
2360 | 0 | // not worth the savings. |
2361 | 0 | } |
2362 | | |
2363 | | void FlatAffineConstraints::clearAndCopyFrom( |
2364 | 0 | const FlatAffineConstraints &other) { |
2365 | 0 | FlatAffineConstraints copy(other); |
2366 | 0 | std::swap(*this, copy); |
2367 | 0 | assert(copy.getNumIds() == copy.getIds().size()); |
2368 | 0 | } |
2369 | | |
2370 | 0 | void FlatAffineConstraints::removeId(unsigned pos) { |
2371 | 0 | removeIdRange(pos, pos + 1); |
2372 | 0 | } |
2373 | | |
2374 | | static std::pair<unsigned, unsigned> |
2375 | 0 | getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) { |
2376 | 0 | unsigned numDims = cst.getNumDimIds(); |
2377 | 0 | unsigned numSymbols = cst.getNumSymbolIds(); |
2378 | 0 | unsigned newNumDims, newNumSymbols; |
2379 | 0 | if (pos < numDims) { |
2380 | 0 | newNumDims = numDims - 1; |
2381 | 0 | newNumSymbols = numSymbols; |
2382 | 0 | } else if (pos < numDims + numSymbols) { |
2383 | 0 | assert(numSymbols >= 1); |
2384 | 0 | newNumDims = numDims; |
2385 | 0 | newNumSymbols = numSymbols - 1; |
2386 | 0 | } else { |
2387 | 0 | newNumDims = numDims; |
2388 | 0 | newNumSymbols = numSymbols; |
2389 | 0 | } |
2390 | 0 | return {newNumDims, newNumSymbols}; |
2391 | 0 | } |
2392 | | |
2393 | | #undef DEBUG_TYPE |
2394 | | #define DEBUG_TYPE "fm" |
2395 | | |
2396 | | /// Eliminates identifier at the specified position using Fourier-Motzkin |
2397 | | /// variable elimination. This technique is exact for rational spaces but |
2398 | | /// conservative (in "rare" cases) for integer spaces. The operation corresponds |
2399 | | /// to a projection operation yielding the (convex) set of integer points |
2400 | | /// contained in the rational shadow of the set. An emptiness test that relies |
2401 | | /// on this method will guarantee emptiness, i.e., it disproves the existence of |
2402 | | /// a solution if it says it's empty. |
2403 | | /// If a non-null isResultIntegerExact is passed, it is set to true if the |
2404 | | /// result is also integer exact. If it's set to false, the obtained solution |
2405 | | /// *may* not be exact, i.e., it may contain integer points that do not have an |
2406 | | /// integer pre-image in the original set. |
2407 | | /// |
2408 | | /// Eg: |
2409 | | /// j >= 0, j <= i + 1 |
2410 | | /// i >= 0, i <= N + 1 |
2411 | | /// Eliminating i yields, |
2412 | | /// j >= 0, 0 <= N + 1, j - 1 <= N + 1 |
2413 | | /// |
2414 | | /// If darkShadow = true, this method computes the dark shadow on elimination; |
2415 | | /// the dark shadow is a convex integer subset of the exact integer shadow. A |
2416 | | /// non-empty dark shadow proves the existence of an integer solution. The |
2417 | | /// elimination in such a case could however be an under-approximation, and thus |
2418 | | /// should not be used for scanning sets or used by itself for dependence |
2419 | | /// checking. |
2420 | | /// |
2421 | | /// Eg: 2-d set, * represents grid points, 'o' represents a point in the set. |
2422 | | /// ^ |
2423 | | /// | |
2424 | | /// | * * * * o o |
2425 | | /// i | * * o o o o |
2426 | | /// | o * * * * * |
2427 | | /// ---------------> |
2428 | | /// j -> |
2429 | | /// |
2430 | | /// Eliminating i from this system (projecting on the j dimension): |
2431 | | /// rational shadow / integer light shadow: 1 <= j <= 6 |
2432 | | /// dark shadow: 3 <= j <= 6 |
2433 | | /// exact integer shadow: j = 1 \union 3 <= j <= 6 |
2434 | | /// holes/splinters: j = 2 |
2435 | | /// |
2436 | | /// darkShadow = false, isResultIntegerExact = nullptr are default values. |
2437 | | // TODO(bondhugula): a slight modification to yield dark shadow version of FM |
2438 | | // (tightened), which can prove the existence of a solution if there is one. |
2439 | | void FlatAffineConstraints::FourierMotzkinEliminate( |
2440 | 0 | unsigned pos, bool darkShadow, bool *isResultIntegerExact) { |
2441 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n"); |
2442 | 0 | LLVM_DEBUG(dump()); |
2443 | 0 | assert(pos < getNumIds() && "invalid position"); |
2444 | 0 | assert(hasConsistentState()); |
2445 | 0 |
|
2446 | 0 | // Check if this identifier can be eliminated through a substitution. |
2447 | 0 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
2448 | 0 | if (atEq(r, pos) != 0) { |
2449 | 0 | // Use Gaussian elimination here (since we have an equality). |
2450 | 0 | LogicalResult ret = gaussianEliminateId(pos); |
2451 | 0 | (void)ret; |
2452 | 0 | assert(succeeded(ret) && "Gaussian elimination guaranteed to succeed"); |
2453 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n"); |
2454 | 0 | LLVM_DEBUG(dump()); |
2455 | 0 | return; |
2456 | 0 | } |
2457 | 0 | } |
2458 | 0 |
|
2459 | 0 | // A fast linear time tightening. |
2460 | 0 | GCDTightenInequalities(); |
2461 | 0 |
|
2462 | 0 | // Check if the identifier appears at all in any of the inequalities. |
2463 | 0 | unsigned r, e; |
2464 | 0 | for (r = 0, e = getNumInequalities(); r < e; r++) { |
2465 | 0 | if (atIneq(r, pos) != 0) |
2466 | 0 | break; |
2467 | 0 | } |
2468 | 0 | if (r == getNumInequalities()) { |
2469 | 0 | // If it doesn't appear, just remove the column and return. |
2470 | 0 | // TODO(andydavis,bondhugula): refactor removeColumns to use it from here. |
2471 | 0 | removeId(pos); |
2472 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); |
2473 | 0 | LLVM_DEBUG(dump()); |
2474 | 0 | return; |
2475 | 0 | } |
2476 | 0 |
|
2477 | 0 | // Positions of constraints that are lower bounds on the variable. |
2478 | 0 | SmallVector<unsigned, 4> lbIndices; |
2479 | 0 | // Positions of constraints that are lower bounds on the variable. |
2480 | 0 | SmallVector<unsigned, 4> ubIndices; |
2481 | 0 | // Positions of constraints that do not involve the variable. |
2482 | 0 | std::vector<unsigned> nbIndices; |
2483 | 0 | nbIndices.reserve(getNumInequalities()); |
2484 | 0 |
|
2485 | 0 | // Gather all lower bounds and upper bounds of the variable. Since the |
2486 | 0 | // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower |
2487 | 0 | // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1. |
2488 | 0 | for (unsigned r = 0, e = getNumInequalities(); r < e; r++) { |
2489 | 0 | if (atIneq(r, pos) == 0) { |
2490 | 0 | // Id does not appear in bound. |
2491 | 0 | nbIndices.push_back(r); |
2492 | 0 | } else if (atIneq(r, pos) >= 1) { |
2493 | 0 | // Lower bound. |
2494 | 0 | lbIndices.push_back(r); |
2495 | 0 | } else { |
2496 | 0 | // Upper bound. |
2497 | 0 | ubIndices.push_back(r); |
2498 | 0 | } |
2499 | 0 | } |
2500 | 0 |
|
2501 | 0 | // Set the number of dimensions, symbols in the resulting system. |
2502 | 0 | const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this); |
2503 | 0 | unsigned newNumDims = dimsSymbols.first; |
2504 | 0 | unsigned newNumSymbols = dimsSymbols.second; |
2505 | 0 |
|
2506 | 0 | SmallVector<Optional<Value>, 8> newIds; |
2507 | 0 | newIds.reserve(numIds - 1); |
2508 | 0 | newIds.append(ids.begin(), ids.begin() + pos); |
2509 | 0 | newIds.append(ids.begin() + pos + 1, ids.end()); |
2510 | 0 |
|
2511 | 0 | /// Create the new system which has one identifier less. |
2512 | 0 | FlatAffineConstraints newFac( |
2513 | 0 | lbIndices.size() * ubIndices.size() + nbIndices.size(), |
2514 | 0 | getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols, |
2515 | 0 | /*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds); |
2516 | 0 |
|
2517 | 0 | assert(newFac.getIds().size() == newFac.getNumIds()); |
2518 | 0 |
|
2519 | 0 | // This will be used to check if the elimination was integer exact. |
2520 | 0 | unsigned lcmProducts = 1; |
2521 | 0 |
|
2522 | 0 | // Let x be the variable we are eliminating. |
2523 | 0 | // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note |
2524 | 0 | // that c_l, c_u >= 1) we have: |
2525 | 0 | // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u |
2526 | 0 | // We thus generate a constraint: |
2527 | 0 | // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub. |
2528 | 0 | // Note if c_l = c_u = 1, all integer points captured by the resulting |
2529 | 0 | // constraint correspond to integer points in the original system (i.e., they |
2530 | 0 | // have integer pre-images). Hence, if the lcm's are all 1, the elimination is |
2531 | 0 | // integer exact. |
2532 | 0 | for (auto ubPos : ubIndices) { |
2533 | 0 | for (auto lbPos : lbIndices) { |
2534 | 0 | SmallVector<int64_t, 4> ineq; |
2535 | 0 | ineq.reserve(newFac.getNumCols()); |
2536 | 0 | int64_t lbCoeff = atIneq(lbPos, pos); |
2537 | 0 | // Note that in the comments above, ubCoeff is the negation of the |
2538 | 0 | // coefficient in the canonical form as the view taken here is that of the |
2539 | 0 | // term being moved to the other size of '>='. |
2540 | 0 | int64_t ubCoeff = -atIneq(ubPos, pos); |
2541 | 0 | // TODO(bondhugula): refactor this loop to avoid all branches inside. |
2542 | 0 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2543 | 0 | if (l == pos) |
2544 | 0 | continue; |
2545 | 0 | assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified"); |
2546 | 0 | int64_t lcm = mlir::lcm(lbCoeff, ubCoeff); |
2547 | 0 | ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) + |
2548 | 0 | atIneq(lbPos, l) * (lcm / lbCoeff)); |
2549 | 0 | lcmProducts *= lcm; |
2550 | 0 | } |
2551 | 0 | if (darkShadow) { |
2552 | 0 | // The dark shadow is a convex subset of the exact integer shadow. If |
2553 | 0 | // there is a point here, it proves the existence of a solution. |
2554 | 0 | ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1; |
2555 | 0 | } |
2556 | 0 | // TODO: we need to have a way to add inequalities in-place in |
2557 | 0 | // FlatAffineConstraints instead of creating and copying over. |
2558 | 0 | newFac.addInequality(ineq); |
2559 | 0 | } |
2560 | 0 | } |
2561 | 0 |
|
2562 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << (lcmProducts == 1) |
2563 | 0 | << "\n"); |
2564 | 0 | if (lcmProducts == 1 && isResultIntegerExact) |
2565 | 0 | *isResultIntegerExact = true; |
2566 | 0 |
|
2567 | 0 | // Copy over the constraints not involving this variable. |
2568 | 0 | for (auto nbPos : nbIndices) { |
2569 | 0 | SmallVector<int64_t, 4> ineq; |
2570 | 0 | ineq.reserve(getNumCols() - 1); |
2571 | 0 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2572 | 0 | if (l == pos) |
2573 | 0 | continue; |
2574 | 0 | ineq.push_back(atIneq(nbPos, l)); |
2575 | 0 | } |
2576 | 0 | newFac.addInequality(ineq); |
2577 | 0 | } |
2578 | 0 |
|
2579 | 0 | assert(newFac.getNumConstraints() == |
2580 | 0 | lbIndices.size() * ubIndices.size() + nbIndices.size()); |
2581 | 0 |
|
2582 | 0 | // Copy over the equalities. |
2583 | 0 | for (unsigned r = 0, e = getNumEqualities(); r < e; r++) { |
2584 | 0 | SmallVector<int64_t, 4> eq; |
2585 | 0 | eq.reserve(newFac.getNumCols()); |
2586 | 0 | for (unsigned l = 0, e = getNumCols(); l < e; l++) { |
2587 | 0 | if (l == pos) |
2588 | 0 | continue; |
2589 | 0 | eq.push_back(atEq(r, l)); |
2590 | 0 | } |
2591 | 0 | newFac.addEquality(eq); |
2592 | 0 | } |
2593 | 0 |
|
2594 | 0 | // GCD tightening and normalization allows detection of more trivially |
2595 | 0 | // redundant constraints. |
2596 | 0 | newFac.GCDTightenInequalities(); |
2597 | 0 | newFac.normalizeConstraintsByGCD(); |
2598 | 0 | newFac.removeTrivialRedundancy(); |
2599 | 0 | clearAndCopyFrom(newFac); |
2600 | 0 | LLVM_DEBUG(llvm::dbgs() << "FM output:\n"); |
2601 | 0 | LLVM_DEBUG(dump()); |
2602 | 0 | } |
2603 | | |
2604 | | #undef DEBUG_TYPE |
2605 | | #define DEBUG_TYPE "affine-structures" |
2606 | | |
2607 | 0 | void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) { |
2608 | 0 | if (num == 0) |
2609 | 0 | return; |
2610 | 0 | |
2611 | 0 | // 'pos' can be at most getNumCols() - 2 if num > 0. |
2612 | 0 | assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position"); |
2613 | 0 | assert(pos + num < getNumCols() && "invalid range"); |
2614 | 0 |
|
2615 | 0 | // Eliminate as many identifiers as possible using Gaussian elimination. |
2616 | 0 | unsigned currentPos = pos; |
2617 | 0 | unsigned numToEliminate = num; |
2618 | 0 | unsigned numGaussianEliminated = 0; |
2619 | 0 |
|
2620 | 0 | while (currentPos < getNumIds()) { |
2621 | 0 | unsigned curNumEliminated = |
2622 | 0 | gaussianEliminateIds(currentPos, currentPos + numToEliminate); |
2623 | 0 | ++currentPos; |
2624 | 0 | numToEliminate -= curNumEliminated + 1; |
2625 | 0 | numGaussianEliminated += curNumEliminated; |
2626 | 0 | } |
2627 | 0 |
|
2628 | 0 | // Eliminate the remaining using Fourier-Motzkin. |
2629 | 0 | for (unsigned i = 0; i < num - numGaussianEliminated; i++) { |
2630 | 0 | unsigned numToEliminate = num - numGaussianEliminated - i; |
2631 | 0 | FourierMotzkinEliminate( |
2632 | 0 | getBestIdToEliminate(*this, pos, pos + numToEliminate)); |
2633 | 0 | } |
2634 | 0 |
|
2635 | 0 | // Fast/trivial simplifications. |
2636 | 0 | GCDTightenInequalities(); |
2637 | 0 | // Normalize constraints after tightening since the latter impacts this, but |
2638 | 0 | // not the other way round. |
2639 | 0 | normalizeConstraintsByGCD(); |
2640 | 0 | } |
2641 | | |
2642 | 0 | void FlatAffineConstraints::projectOut(Value id) { |
2643 | 0 | unsigned pos; |
2644 | 0 | bool ret = findId(id, &pos); |
2645 | 0 | assert(ret); |
2646 | 0 | (void)ret; |
2647 | 0 | FourierMotzkinEliminate(pos); |
2648 | 0 | } |
2649 | | |
2650 | 0 | void FlatAffineConstraints::clearConstraints() { |
2651 | 0 | equalities.clear(); |
2652 | 0 | inequalities.clear(); |
2653 | 0 | } |
2654 | | |
2655 | | namespace { |
2656 | | |
2657 | | enum BoundCmpResult { Greater, Less, Equal, Unknown }; |
2658 | | |
2659 | | /// Compares two affine bounds whose coefficients are provided in 'first' and |
2660 | | /// 'second'. The last coefficient is the constant term. |
2661 | 0 | static BoundCmpResult compareBounds(ArrayRef<int64_t> a, ArrayRef<int64_t> b) { |
2662 | 0 | assert(a.size() == b.size()); |
2663 | 0 |
|
2664 | 0 | // For the bounds to be comparable, their corresponding identifier |
2665 | 0 | // coefficients should be equal; the constant terms are then compared to |
2666 | 0 | // determine less/greater/equal. |
2667 | 0 |
|
2668 | 0 | if (!std::equal(a.begin(), a.end() - 1, b.begin())) |
2669 | 0 | return Unknown; |
2670 | 0 | |
2671 | 0 | if (a.back() == b.back()) |
2672 | 0 | return Equal; |
2673 | 0 | |
2674 | 0 | return a.back() < b.back() ? Less : Greater; |
2675 | 0 | } |
2676 | | } // namespace |
2677 | | |
2678 | | // Returns constraints that are common to both A & B. |
2679 | | static void getCommonConstraints(const FlatAffineConstraints &A, |
2680 | | const FlatAffineConstraints &B, |
2681 | 0 | FlatAffineConstraints &C) { |
2682 | 0 | C.reset(A.getNumDimIds(), A.getNumSymbolIds(), A.getNumLocalIds()); |
2683 | 0 | // A naive O(n^2) check should be enough here given the input sizes. |
2684 | 0 | for (unsigned r = 0, e = A.getNumInequalities(); r < e; ++r) { |
2685 | 0 | for (unsigned s = 0, f = B.getNumInequalities(); s < f; ++s) { |
2686 | 0 | if (A.getInequality(r) == B.getInequality(s)) { |
2687 | 0 | C.addInequality(A.getInequality(r)); |
2688 | 0 | break; |
2689 | 0 | } |
2690 | 0 | } |
2691 | 0 | } |
2692 | 0 | for (unsigned r = 0, e = A.getNumEqualities(); r < e; ++r) { |
2693 | 0 | for (unsigned s = 0, f = B.getNumEqualities(); s < f; ++s) { |
2694 | 0 | if (A.getEquality(r) == B.getEquality(s)) { |
2695 | 0 | C.addEquality(A.getEquality(r)); |
2696 | 0 | break; |
2697 | 0 | } |
2698 | 0 | } |
2699 | 0 | } |
2700 | 0 | } |
2701 | | |
2702 | | // Computes the bounding box with respect to 'other' by finding the min of the |
2703 | | // lower bounds and the max of the upper bounds along each of the dimensions. |
2704 | | LogicalResult |
2705 | 0 | FlatAffineConstraints::unionBoundingBox(const FlatAffineConstraints &otherCst) { |
2706 | 0 | assert(otherCst.getNumDimIds() == numDims && "dims mismatch"); |
2707 | 0 | assert(otherCst.getIds() |
2708 | 0 | .slice(0, getNumDimIds()) |
2709 | 0 | .equals(getIds().slice(0, getNumDimIds())) && |
2710 | 0 | "dim values mismatch"); |
2711 | 0 | assert(otherCst.getNumLocalIds() == 0 && "local ids not supported here"); |
2712 | 0 | assert(getNumLocalIds() == 0 && "local ids not supported yet here"); |
2713 | 0 |
|
2714 | 0 | // Align `other` to this. |
2715 | 0 | Optional<FlatAffineConstraints> otherCopy; |
2716 | 0 | if (!areIdsAligned(*this, otherCst)) { |
2717 | 0 | otherCopy.emplace(FlatAffineConstraints(otherCst)); |
2718 | 0 | mergeAndAlignIds(/*offset=*/numDims, this, &otherCopy.getValue()); |
2719 | 0 | } |
2720 | 0 |
|
2721 | 0 | const auto &otherAligned = otherCopy ? *otherCopy : otherCst; |
2722 | 0 |
|
2723 | 0 | // Get the constraints common to both systems; these will be added as is to |
2724 | 0 | // the union. |
2725 | 0 | FlatAffineConstraints commonCst; |
2726 | 0 | getCommonConstraints(*this, otherAligned, commonCst); |
2727 | 0 |
|
2728 | 0 | std::vector<SmallVector<int64_t, 8>> boundingLbs; |
2729 | 0 | std::vector<SmallVector<int64_t, 8>> boundingUbs; |
2730 | 0 | boundingLbs.reserve(2 * getNumDimIds()); |
2731 | 0 | boundingUbs.reserve(2 * getNumDimIds()); |
2732 | 0 |
|
2733 | 0 | // To hold lower and upper bounds for each dimension. |
2734 | 0 | SmallVector<int64_t, 4> lb, otherLb, ub, otherUb; |
2735 | 0 | // To compute min of lower bounds and max of upper bounds for each dimension. |
2736 | 0 | SmallVector<int64_t, 4> minLb(getNumSymbolIds() + 1); |
2737 | 0 | SmallVector<int64_t, 4> maxUb(getNumSymbolIds() + 1); |
2738 | 0 | // To compute final new lower and upper bounds for the union. |
2739 | 0 | SmallVector<int64_t, 8> newLb(getNumCols()), newUb(getNumCols()); |
2740 | 0 |
|
2741 | 0 | int64_t lbFloorDivisor, otherLbFloorDivisor; |
2742 | 0 | for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { |
2743 | 0 | auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub); |
2744 | 0 | if (!extent.hasValue()) |
2745 | 0 | // TODO(bondhugula): symbolic extents when necessary. |
2746 | 0 | // TODO(bondhugula): handle union if a dimension is unbounded. |
2747 | 0 | return failure(); |
2748 | 0 | |
2749 | 0 | auto otherExtent = otherAligned.getConstantBoundOnDimSize( |
2750 | 0 | d, &otherLb, &otherLbFloorDivisor, &otherUb); |
2751 | 0 | if (!otherExtent.hasValue() || lbFloorDivisor != otherLbFloorDivisor) |
2752 | 0 | // TODO(bondhugula): symbolic extents when necessary. |
2753 | 0 | return failure(); |
2754 | 0 | |
2755 | 0 | assert(lbFloorDivisor > 0 && "divisor always expected to be positive"); |
2756 | 0 |
|
2757 | 0 | auto res = compareBounds(lb, otherLb); |
2758 | 0 | // Identify min. |
2759 | 0 | if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) { |
2760 | 0 | minLb = lb; |
2761 | 0 | // Since the divisor is for a floordiv, we need to convert to ceildiv, |
2762 | 0 | // i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=> |
2763 | 0 | // div * i >= expr - div + 1. |
2764 | 0 | minLb.back() -= lbFloorDivisor - 1; |
2765 | 0 | } else if (res == BoundCmpResult::Greater) { |
2766 | 0 | minLb = otherLb; |
2767 | 0 | minLb.back() -= otherLbFloorDivisor - 1; |
2768 | 0 | } else { |
2769 | 0 | // Uncomparable - check for constant lower/upper bounds. |
2770 | 0 | auto constLb = getConstantLowerBound(d); |
2771 | 0 | auto constOtherLb = otherAligned.getConstantLowerBound(d); |
2772 | 0 | if (!constLb.hasValue() || !constOtherLb.hasValue()) |
2773 | 0 | return failure(); |
2774 | 0 | std::fill(minLb.begin(), minLb.end(), 0); |
2775 | 0 | minLb.back() = std::min(constLb.getValue(), constOtherLb.getValue()); |
2776 | 0 | } |
2777 | 0 |
|
2778 | 0 | // Do the same for ub's but max of upper bounds. Identify max. |
2779 | 0 | auto uRes = compareBounds(ub, otherUb); |
2780 | 0 | if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) { |
2781 | 0 | maxUb = ub; |
2782 | 0 | } else if (uRes == BoundCmpResult::Less) { |
2783 | 0 | maxUb = otherUb; |
2784 | 0 | } else { |
2785 | 0 | // Uncomparable - check for constant lower/upper bounds. |
2786 | 0 | auto constUb = getConstantUpperBound(d); |
2787 | 0 | auto constOtherUb = otherAligned.getConstantUpperBound(d); |
2788 | 0 | if (!constUb.hasValue() || !constOtherUb.hasValue()) |
2789 | 0 | return failure(); |
2790 | 0 | std::fill(maxUb.begin(), maxUb.end(), 0); |
2791 | 0 | maxUb.back() = std::max(constUb.getValue(), constOtherUb.getValue()); |
2792 | 0 | } |
2793 | 0 |
|
2794 | 0 | std::fill(newLb.begin(), newLb.end(), 0); |
2795 | 0 | std::fill(newUb.begin(), newUb.end(), 0); |
2796 | 0 |
|
2797 | 0 | // The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor, |
2798 | 0 | // and so it's the divisor for newLb and newUb as well. |
2799 | 0 | newLb[d] = lbFloorDivisor; |
2800 | 0 | newUb[d] = -lbFloorDivisor; |
2801 | 0 | // Copy over the symbolic part + constant term. |
2802 | 0 | std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimIds()); |
2803 | 0 | std::transform(newLb.begin() + getNumDimIds(), newLb.end(), |
2804 | 0 | newLb.begin() + getNumDimIds(), std::negate<int64_t>()); |
2805 | 0 | std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimIds()); |
2806 | 0 |
|
2807 | 0 | boundingLbs.push_back(newLb); |
2808 | 0 | boundingUbs.push_back(newUb); |
2809 | 0 | } |
2810 | 0 |
|
2811 | 0 | // Clear all constraints and add the lower/upper bounds for the bounding box. |
2812 | 0 | clearConstraints(); |
2813 | 0 | for (unsigned d = 0, e = getNumDimIds(); d < e; ++d) { |
2814 | 0 | addInequality(boundingLbs[d]); |
2815 | 0 | addInequality(boundingUbs[d]); |
2816 | 0 | } |
2817 | 0 |
|
2818 | 0 | // Add the constraints that were common to both systems. |
2819 | 0 | append(commonCst); |
2820 | 0 | removeTrivialRedundancy(); |
2821 | 0 |
|
2822 | 0 | // TODO(mlir-team): copy over pure symbolic constraints from this and 'other' |
2823 | 0 | // over to the union (since the above are just the union along dimensions); we |
2824 | 0 | // shouldn't be discarding any other constraints on the symbols. |
2825 | 0 |
|
2826 | 0 | return success(); |
2827 | 0 | } |
2828 | | |
2829 | | /// Compute an explicit representation for local vars. For all systems coming |
2830 | | /// from MLIR integer sets, maps, or expressions where local vars were |
2831 | | /// introduced to model floordivs and mods, this always succeeds. |
2832 | | static LogicalResult computeLocalVars(const FlatAffineConstraints &cst, |
2833 | | SmallVectorImpl<AffineExpr> &memo, |
2834 | 0 | MLIRContext *context) { |
2835 | 0 | unsigned numDims = cst.getNumDimIds(); |
2836 | 0 | unsigned numSyms = cst.getNumSymbolIds(); |
2837 | 0 |
|
2838 | 0 | // Initialize dimensional and symbolic identifiers. |
2839 | 0 | for (unsigned i = 0; i < numDims; i++) |
2840 | 0 | memo[i] = getAffineDimExpr(i, context); |
2841 | 0 | for (unsigned i = numDims, e = numDims + numSyms; i < e; i++) |
2842 | 0 | memo[i] = getAffineSymbolExpr(i - numDims, context); |
2843 | 0 |
|
2844 | 0 | bool changed; |
2845 | 0 | do { |
2846 | 0 | // Each time `changed` is true at the end of this iteration, one or more |
2847 | 0 | // local vars would have been detected as floordivs and set in memo; so the |
2848 | 0 | // number of null entries in memo[...] strictly reduces; so this converges. |
2849 | 0 | changed = false; |
2850 | 0 | for (unsigned i = 0, e = cst.getNumLocalIds(); i < e; ++i) |
2851 | 0 | if (!memo[numDims + numSyms + i] && |
2852 | 0 | detectAsFloorDiv(cst, /*pos=*/numDims + numSyms + i, context, memo)) |
2853 | 0 | changed = true; |
2854 | 0 | } while (changed); |
2855 | 0 |
|
2856 | 0 | ArrayRef<AffineExpr> localExprs = |
2857 | 0 | ArrayRef<AffineExpr>(memo).take_back(cst.getNumLocalIds()); |
2858 | 0 | return success( |
2859 | 0 | llvm::all_of(localExprs, [](AffineExpr expr) { return expr; })); |
2860 | 0 | } |
2861 | | |
2862 | | void FlatAffineConstraints::getIneqAsAffineValueMap( |
2863 | | unsigned pos, unsigned ineqPos, AffineValueMap &vmap, |
2864 | | MLIRContext *context) const { |
2865 | | unsigned numDims = getNumDimIds(); |
2866 | | unsigned numSyms = getNumSymbolIds(); |
2867 | | |
2868 | | assert(pos < numDims && "invalid position"); |
2869 | | assert(ineqPos < getNumInequalities() && "invalid inequality position"); |
2870 | | |
2871 | | // Get expressions for local vars. |
2872 | | SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr()); |
2873 | | if (failed(computeLocalVars(*this, memo, context))) |
2874 | | assert(false && |
2875 | | "one or more local exprs do not have an explicit representation"); |
2876 | | auto localExprs = ArrayRef<AffineExpr>(memo).take_back(getNumLocalIds()); |
2877 | | |
2878 | | // Compute the AffineExpr lower/upper bound for this inequality. |
2879 | | ArrayRef<int64_t> inequality = getInequality(ineqPos); |
2880 | | SmallVector<int64_t, 8> bound; |
2881 | | bound.reserve(getNumCols() - 1); |
2882 | | // Everything other than the coefficient at `pos`. |
2883 | | bound.append(inequality.begin(), inequality.begin() + pos); |
2884 | | bound.append(inequality.begin() + pos + 1, inequality.end()); |
2885 | | |
2886 | | if (inequality[pos] > 0) |
2887 | | // Lower bound. |
2888 | | std::transform(bound.begin(), bound.end(), bound.begin(), |
2889 | | std::negate<int64_t>()); |
2890 | | else |
2891 | | // Upper bound (which is exclusive). |
2892 | | bound.back() += 1; |
2893 | | |
2894 | | // Convert to AffineExpr (tree) form. |
2895 | | auto boundExpr = getAffineExprFromFlatForm(bound, numDims - 1, numSyms, |
2896 | | localExprs, context); |
2897 | | |
2898 | | // Get the values to bind to this affine expr (all dims and symbols). |
2899 | | SmallVector<Value, 4> operands; |
2900 | | getIdValues(0, pos, &operands); |
2901 | | SmallVector<Value, 4> trailingOperands; |
2902 | | getIdValues(pos + 1, getNumDimAndSymbolIds(), &trailingOperands); |
2903 | | operands.append(trailingOperands.begin(), trailingOperands.end()); |
2904 | | vmap.reset(AffineMap::get(numDims - 1, numSyms, boundExpr), operands); |
2905 | | } |
2906 | | |
2907 | | /// Returns true if the pos^th column is all zero for both inequalities and |
2908 | | /// equalities.. |
2909 | 0 | static bool isColZero(const FlatAffineConstraints &cst, unsigned pos) { |
2910 | 0 | unsigned rowPos; |
2911 | 0 | return !findConstraintWithNonZeroAt(cst, pos, /*isEq=*/false, &rowPos) && |
2912 | 0 | !findConstraintWithNonZeroAt(cst, pos, /*isEq=*/true, &rowPos); |
2913 | 0 | } |
2914 | | |
2915 | 0 | IntegerSet FlatAffineConstraints::getAsIntegerSet(MLIRContext *context) const { |
2916 | 0 | if (getNumConstraints() == 0) |
2917 | 0 | // Return universal set (always true): 0 == 0. |
2918 | 0 | return IntegerSet::get(getNumDimIds(), getNumSymbolIds(), |
2919 | 0 | getAffineConstantExpr(/*constant=*/0, context), |
2920 | 0 | /*eqFlags=*/true); |
2921 | 0 | |
2922 | 0 | // Construct local references. |
2923 | 0 | SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr()); |
2924 | 0 |
|
2925 | 0 | if (failed(computeLocalVars(*this, memo, context))) { |
2926 | 0 | // Check if the local variables without an explicit representation have |
2927 | 0 | // zero coefficients everywhere. |
2928 | 0 | for (unsigned i = getNumDimAndSymbolIds(), e = getNumIds(); i < e; ++i) { |
2929 | 0 | if (!memo[i] && !isColZero(*this, /*pos=*/i)) { |
2930 | 0 | LLVM_DEBUG(llvm::dbgs() << "one or more local exprs do not have an " |
2931 | 0 | "explicit representation"); |
2932 | 0 | return IntegerSet(); |
2933 | 0 | } |
2934 | 0 | } |
2935 | 0 | } |
2936 | 0 |
|
2937 | 0 | ArrayRef<AffineExpr> localExprs = |
2938 | 0 | ArrayRef<AffineExpr>(memo).take_back(getNumLocalIds()); |
2939 | 0 |
|
2940 | 0 | // Construct the IntegerSet from the equalities/inequalities. |
2941 | 0 | unsigned numDims = getNumDimIds(); |
2942 | 0 | unsigned numSyms = getNumSymbolIds(); |
2943 | 0 |
|
2944 | 0 | SmallVector<bool, 16> eqFlags(getNumConstraints()); |
2945 | 0 | std::fill(eqFlags.begin(), eqFlags.begin() + getNumEqualities(), true); |
2946 | 0 | std::fill(eqFlags.begin() + getNumEqualities(), eqFlags.end(), false); |
2947 | 0 |
|
2948 | 0 | SmallVector<AffineExpr, 8> exprs; |
2949 | 0 | exprs.reserve(getNumConstraints()); |
2950 | 0 |
|
2951 | 0 | for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) |
2952 | 0 | exprs.push_back(getAffineExprFromFlatForm(getEquality(i), numDims, numSyms, |
2953 | 0 | localExprs, context)); |
2954 | 0 | for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) |
2955 | 0 | exprs.push_back(getAffineExprFromFlatForm(getInequality(i), numDims, |
2956 | 0 | numSyms, localExprs, context)); |
2957 | 0 | return IntegerSet::get(numDims, numSyms, exprs, eqFlags); |
2958 | 0 | } |
2959 | | |
2960 | | /// Find positions of inequalities and equalities that do not have a coefficient |
2961 | | /// for [pos, pos + num) identifiers. |
2962 | | static void getIndependentConstraints(const FlatAffineConstraints &cst, |
2963 | | unsigned pos, unsigned num, |
2964 | | SmallVectorImpl<unsigned> &nbIneqIndices, |
2965 | 0 | SmallVectorImpl<unsigned> &nbEqIndices) { |
2966 | 0 | assert(pos < cst.getNumIds() && "invalid start position"); |
2967 | 0 | assert(pos + num <= cst.getNumIds() && "invalid limit"); |
2968 | 0 |
|
2969 | 0 | for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) { |
2970 | 0 | // The bounds are to be independent of [offset, offset + num) columns. |
2971 | 0 | unsigned c; |
2972 | 0 | for (c = pos; c < pos + num; ++c) { |
2973 | 0 | if (cst.atIneq(r, c) != 0) |
2974 | 0 | break; |
2975 | 0 | } |
2976 | 0 | if (c == pos + num) |
2977 | 0 | nbIneqIndices.push_back(r); |
2978 | 0 | } |
2979 | 0 |
|
2980 | 0 | for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) { |
2981 | 0 | // The bounds are to be independent of [offset, offset + num) columns. |
2982 | 0 | unsigned c; |
2983 | 0 | for (c = pos; c < pos + num; ++c) { |
2984 | 0 | if (cst.atEq(r, c) != 0) |
2985 | 0 | break; |
2986 | 0 | } |
2987 | 0 | if (c == pos + num) |
2988 | 0 | nbEqIndices.push_back(r); |
2989 | 0 | } |
2990 | 0 | } |
2991 | | |
2992 | | void FlatAffineConstraints::removeIndependentConstraints(unsigned pos, |
2993 | 0 | unsigned num) { |
2994 | 0 | assert(pos + num <= getNumIds() && "invalid range"); |
2995 | 0 |
|
2996 | 0 | // Remove constraints that are independent of these identifiers. |
2997 | 0 | SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices; |
2998 | 0 | getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices); |
2999 | 0 |
|
3000 | 0 | // Iterate in reverse so that indices don't have to be updated. |
3001 | 0 | // TODO: This method can be made more efficient (because removal of each |
3002 | 0 | // inequality leads to much shifting/copying in the underlying buffer). |
3003 | 0 | for (auto nbIndex : llvm::reverse(nbIneqIndices)) |
3004 | 0 | removeInequality(nbIndex); |
3005 | 0 | for (auto nbIndex : llvm::reverse(nbEqIndices)) |
3006 | 0 | removeEquality(nbIndex); |
3007 | 0 | } |