Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/utils/unittest/googletest/src/gtest-port.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2008, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
32
#include "gtest/internal/gtest-port.h"
33
34
#include <limits.h>
35
#include <stdlib.h>
36
#include <stdio.h>
37
#include <string.h>
38
#include <fstream>
39
40
#if GTEST_OS_WINDOWS
41
# include <windows.h>
42
# include <io.h>
43
# include <sys/stat.h>
44
# include <map>  // Used in ThreadLocal.
45
#else
46
# include <unistd.h>
47
#endif  // GTEST_OS_WINDOWS
48
49
#if GTEST_OS_MAC
50
# include <mach/mach_init.h>
51
# include <mach/task.h>
52
# include <mach/vm_map.h>
53
#endif  // GTEST_OS_MAC
54
55
#if GTEST_OS_QNX
56
# include <devctl.h>
57
# include <fcntl.h>
58
# include <sys/procfs.h>
59
#endif  // GTEST_OS_QNX
60
61
#if GTEST_OS_AIX
62
# include <procinfo.h>
63
# include <sys/types.h>
64
#endif  // GTEST_OS_AIX
65
66
#include "gtest/gtest-spi.h"
67
#include "gtest/gtest-message.h"
68
#include "gtest/internal/gtest-internal.h"
69
#include "gtest/internal/gtest-string.h"
70
71
// Indicates that this translation unit is part of Google Test's
72
// implementation.  It must come before gtest-internal-inl.h is
73
// included, or there will be a compiler error.  This trick exists to
74
// prevent the accidental inclusion of gtest-internal-inl.h in the
75
// user's code.
76
#define GTEST_IMPLEMENTATION_ 1
77
#include "src/gtest-internal-inl.h"
78
#undef GTEST_IMPLEMENTATION_
79
80
namespace testing {
81
namespace internal {
82
83
#if defined(_MSC_VER) || defined(__BORLANDC__)
84
// MSVC and C++Builder do not provide a definition of STDERR_FILENO.
85
const int kStdOutFileno = 1;
86
const int kStdErrFileno = 2;
87
#else
88
const int kStdOutFileno = STDOUT_FILENO;
89
const int kStdErrFileno = STDERR_FILENO;
90
#endif  // _MSC_VER
91
92
#if GTEST_OS_LINUX
93
94
namespace {
95
template <typename T>
96
0
T ReadProcFileField(const string& filename, int field) {
97
0
  std::string dummy;
98
0
  std::ifstream file(filename.c_str());
99
0
  while (field-- > 0) {
100
0
    file >> dummy;
101
0
  }
102
0
  T output = 0;
103
0
  file >> output;
104
0
  return output;
105
0
}
106
}  // namespace
107
108
// Returns the number of active threads, or 0 when there is an error.
109
0
size_t GetThreadCount() {
110
0
  const string filename =
111
0
      (Message() << "/proc/" << getpid() << "/stat").GetString();
112
0
  return ReadProcFileField<int>(filename, 19);
113
0
}
114
115
#elif GTEST_OS_MAC
116
117
size_t GetThreadCount() {
118
  const task_t task = mach_task_self();
119
  mach_msg_type_number_t thread_count;
120
  thread_act_array_t thread_list;
121
  const kern_return_t status = task_threads(task, &thread_list, &thread_count);
122
  if (status == KERN_SUCCESS) {
123
    // task_threads allocates resources in thread_list and we need to free them
124
    // to avoid leaks.
125
    vm_deallocate(task,
126
                  reinterpret_cast<vm_address_t>(thread_list),
127
                  sizeof(thread_t) * thread_count);
128
    return static_cast<size_t>(thread_count);
129
  } else {
130
    return 0;
131
  }
132
}
133
134
#elif GTEST_OS_QNX
135
136
// Returns the number of threads running in the process, or 0 to indicate that
137
// we cannot detect it.
138
size_t GetThreadCount() {
139
  const int fd = open("/proc/self/as", O_RDONLY);
140
  if (fd < 0) {
141
    return 0;
142
  }
143
  procfs_info process_info;
144
  const int status =
145
      devctl(fd, DCMD_PROC_INFO, &process_info, sizeof(process_info), NULL);
146
  close(fd);
147
  if (status == EOK) {
148
    return static_cast<size_t>(process_info.num_threads);
149
  } else {
150
    return 0;
151
  }
152
}
153
154
#elif GTEST_OS_AIX
155
156
size_t GetThreadCount() {
157
  struct procentry64 entry;
158
  pid_t pid = getpid();
159
  int status = getprocs64(&entry, sizeof(entry), NULL, 0, &pid, 1);
160
  if (status == 1) {
161
    return entry.pi_thcount;
162
  } else {
163
    return 0;
164
  }
165
}
166
167
#else
168
169
size_t GetThreadCount() {
170
  // There's no portable way to detect the number of threads, so we just
171
  // return 0 to indicate that we cannot detect it.
172
  return 0;
173
}
174
175
#endif  // GTEST_OS_LINUX
176
177
#if GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
178
179
void SleepMilliseconds(int n) {
180
  ::Sleep(n);
181
}
182
183
AutoHandle::AutoHandle()
184
    : handle_(INVALID_HANDLE_VALUE) {}
185
186
AutoHandle::AutoHandle(Handle handle)
187
    : handle_(handle) {}
188
189
AutoHandle::~AutoHandle() {
190
  Reset();
191
}
192
193
AutoHandle::Handle AutoHandle::Get() const {
194
  return handle_;
195
}
196
197
void AutoHandle::Reset() {
198
  Reset(INVALID_HANDLE_VALUE);
199
}
200
201
void AutoHandle::Reset(HANDLE handle) {
202
  // Resetting with the same handle we already own is invalid.
203
  if (handle_ != handle) {
204
    if (IsCloseable()) {
205
      ::CloseHandle(handle_);
206
    }
207
    handle_ = handle;
208
  } else {
209
    GTEST_CHECK_(!IsCloseable())
210
        << "Resetting a valid handle to itself is likely a programmer error "
211
            "and thus not allowed.";
212
  }
213
}
214
215
bool AutoHandle::IsCloseable() const {
216
  // Different Windows APIs may use either of these values to represent an
217
  // invalid handle.
218
  return handle_ != NULL && handle_ != INVALID_HANDLE_VALUE;
219
}
220
221
Notification::Notification()
222
    : event_(::CreateEvent(NULL,   // Default security attributes.
223
                           TRUE,   // Do not reset automatically.
224
                           FALSE,  // Initially unset.
225
                           NULL)) {  // Anonymous event.
226
  GTEST_CHECK_(event_.Get() != NULL);
227
}
228
229
void Notification::Notify() {
230
  GTEST_CHECK_(::SetEvent(event_.Get()) != FALSE);
231
}
232
233
void Notification::WaitForNotification() {
234
  GTEST_CHECK_(
235
      ::WaitForSingleObject(event_.Get(), INFINITE) == WAIT_OBJECT_0);
236
}
237
238
Mutex::Mutex()
239
    : owner_thread_id_(0),
240
      type_(kDynamic),
241
      critical_section_init_phase_(0),
242
      critical_section_(new CRITICAL_SECTION) {
243
  ::InitializeCriticalSection(critical_section_);
244
}
245
246
Mutex::~Mutex() {
247
  // Static mutexes are leaked intentionally. It is not thread-safe to try
248
  // to clean them up.
249
  // TODO(yukawa): Switch to Slim Reader/Writer (SRW) Locks, which requires
250
  // nothing to clean it up but is available only on Vista and later.
251
  // http://msdn.microsoft.com/en-us/library/windows/desktop/aa904937.aspx
252
  if (type_ == kDynamic) {
253
    ::DeleteCriticalSection(critical_section_);
254
    delete critical_section_;
255
    critical_section_ = NULL;
256
  }
257
}
258
259
void Mutex::Lock() {
260
  ThreadSafeLazyInit();
261
  ::EnterCriticalSection(critical_section_);
262
  owner_thread_id_ = ::GetCurrentThreadId();
263
}
264
265
void Mutex::Unlock() {
266
  ThreadSafeLazyInit();
267
  // We don't protect writing to owner_thread_id_ here, as it's the
268
  // caller's responsibility to ensure that the current thread holds the
269
  // mutex when this is called.
270
  owner_thread_id_ = 0;
271
  ::LeaveCriticalSection(critical_section_);
272
}
273
274
// Does nothing if the current thread holds the mutex. Otherwise, crashes
275
// with high probability.
276
void Mutex::AssertHeld() {
277
  ThreadSafeLazyInit();
278
  GTEST_CHECK_(owner_thread_id_ == ::GetCurrentThreadId())
279
      << "The current thread is not holding the mutex @" << this;
280
}
281
282
// Initializes owner_thread_id_ and critical_section_ in static mutexes.
283
void Mutex::ThreadSafeLazyInit() {
284
  // Dynamic mutexes are initialized in the constructor.
285
  if (type_ == kStatic) {
286
    switch (
287
        ::InterlockedCompareExchange(&critical_section_init_phase_, 1L, 0L)) {
288
      case 0:
289
        // If critical_section_init_phase_ was 0 before the exchange, we
290
        // are the first to test it and need to perform the initialization.
291
        owner_thread_id_ = 0;
292
        critical_section_ = new CRITICAL_SECTION;
293
        ::InitializeCriticalSection(critical_section_);
294
        // Updates the critical_section_init_phase_ to 2 to signal
295
        // initialization complete.
296
        GTEST_CHECK_(::InterlockedCompareExchange(
297
                          &critical_section_init_phase_, 2L, 1L) ==
298
                      1L);
299
        break;
300
      case 1:
301
        // Somebody else is already initializing the mutex; spin until they
302
        // are done.
303
        while (::InterlockedCompareExchange(&critical_section_init_phase_,
304
                                            2L,
305
                                            2L) != 2L) {
306
          // Possibly yields the rest of the thread's time slice to other
307
          // threads.
308
          ::Sleep(0);
309
        }
310
        break;
311
312
      case 2:
313
        break;  // The mutex is already initialized and ready for use.
314
315
      default:
316
        GTEST_CHECK_(false)
317
            << "Unexpected value of critical_section_init_phase_ "
318
            << "while initializing a static mutex.";
319
    }
320
  }
321
}
322
323
namespace {
324
325
class ThreadWithParamSupport : public ThreadWithParamBase {
326
 public:
327
  static HANDLE CreateThread(Runnable* runnable,
328
                             Notification* thread_can_start) {
329
    ThreadMainParam* param = new ThreadMainParam(runnable, thread_can_start);
330
    DWORD thread_id;
331
    // TODO(yukawa): Consider to use _beginthreadex instead.
332
    HANDLE thread_handle = ::CreateThread(
333
        NULL,    // Default security.
334
        0,       // Default stack size.
335
        &ThreadWithParamSupport::ThreadMain,
336
        param,   // Parameter to ThreadMainStatic
337
        0x0,     // Default creation flags.
338
        &thread_id);  // Need a valid pointer for the call to work under Win98.
339
    GTEST_CHECK_(thread_handle != NULL) << "CreateThread failed with error "
340
                                        << ::GetLastError() << ".";
341
    if (thread_handle == NULL) {
342
      delete param;
343
    }
344
    return thread_handle;
345
  }
346
347
 private:
348
  struct ThreadMainParam {
349
    ThreadMainParam(Runnable* runnable, Notification* thread_can_start)
350
        : runnable_(runnable),
351
          thread_can_start_(thread_can_start) {
352
    }
353
    scoped_ptr<Runnable> runnable_;
354
    // Does not own.
355
    Notification* thread_can_start_;
356
  };
357
358
  static DWORD WINAPI ThreadMain(void* ptr) {
359
    // Transfers ownership.
360
    scoped_ptr<ThreadMainParam> param(static_cast<ThreadMainParam*>(ptr));
361
    if (param->thread_can_start_ != NULL)
362
      param->thread_can_start_->WaitForNotification();
363
    param->runnable_->Run();
364
    return 0;
365
  }
366
367
  // Prohibit instantiation.
368
  ThreadWithParamSupport();
369
370
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ThreadWithParamSupport);
371
};
372
373
}  // namespace
374
375
ThreadWithParamBase::ThreadWithParamBase(Runnable *runnable,
376
                                         Notification* thread_can_start)
377
      : thread_(ThreadWithParamSupport::CreateThread(runnable,
378
                                                     thread_can_start)) {
379
}
380
381
ThreadWithParamBase::~ThreadWithParamBase() {
382
  Join();
383
}
384
385
void ThreadWithParamBase::Join() {
386
  GTEST_CHECK_(::WaitForSingleObject(thread_.Get(), INFINITE) == WAIT_OBJECT_0)
387
      << "Failed to join the thread with error " << ::GetLastError() << ".";
388
}
389
390
// Maps a thread to a set of ThreadIdToThreadLocals that have values
391
// instantiated on that thread and notifies them when the thread exits.  A
392
// ThreadLocal instance is expected to persist until all threads it has
393
// values on have terminated.
394
class ThreadLocalRegistryImpl {
395
 public:
396
  // Registers thread_local_instance as having value on the current thread.
397
  // Returns a value that can be used to identify the thread from other threads.
398
  static ThreadLocalValueHolderBase* GetValueOnCurrentThread(
399
      const ThreadLocalBase* thread_local_instance) {
400
    DWORD current_thread = ::GetCurrentThreadId();
401
    MutexLock lock(&mutex_);
402
    ThreadIdToThreadLocals* const thread_to_thread_locals =
403
        GetThreadLocalsMapLocked();
404
    ThreadIdToThreadLocals::iterator thread_local_pos =
405
        thread_to_thread_locals->find(current_thread);
406
    if (thread_local_pos == thread_to_thread_locals->end()) {
407
      thread_local_pos = thread_to_thread_locals->insert(
408
          std::make_pair(current_thread, ThreadLocalValues())).first;
409
      StartWatcherThreadFor(current_thread);
410
    }
411
    ThreadLocalValues& thread_local_values = thread_local_pos->second;
412
    ThreadLocalValues::iterator value_pos =
413
        thread_local_values.find(thread_local_instance);
414
    if (value_pos == thread_local_values.end()) {
415
      value_pos =
416
          thread_local_values
417
              .insert(std::make_pair(
418
                  thread_local_instance,
419
                  linked_ptr<ThreadLocalValueHolderBase>(
420
                      thread_local_instance->NewValueForCurrentThread())))
421
              .first;
422
    }
423
    return value_pos->second.get();
424
  }
425
426
  static void OnThreadLocalDestroyed(
427
      const ThreadLocalBase* thread_local_instance) {
428
    std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
429
    // Clean up the ThreadLocalValues data structure while holding the lock, but
430
    // defer the destruction of the ThreadLocalValueHolderBases.
431
    {
432
      MutexLock lock(&mutex_);
433
      ThreadIdToThreadLocals* const thread_to_thread_locals =
434
          GetThreadLocalsMapLocked();
435
      for (ThreadIdToThreadLocals::iterator it =
436
          thread_to_thread_locals->begin();
437
          it != thread_to_thread_locals->end();
438
          ++it) {
439
        ThreadLocalValues& thread_local_values = it->second;
440
        ThreadLocalValues::iterator value_pos =
441
            thread_local_values.find(thread_local_instance);
442
        if (value_pos != thread_local_values.end()) {
443
          value_holders.push_back(value_pos->second);
444
          thread_local_values.erase(value_pos);
445
          // This 'if' can only be successful at most once, so theoretically we
446
          // could break out of the loop here, but we don't bother doing so.
447
        }
448
      }
449
    }
450
    // Outside the lock, let the destructor for 'value_holders' deallocate the
451
    // ThreadLocalValueHolderBases.
452
  }
453
454
  static void OnThreadExit(DWORD thread_id) {
455
    GTEST_CHECK_(thread_id != 0) << ::GetLastError();
456
    std::vector<linked_ptr<ThreadLocalValueHolderBase> > value_holders;
457
    // Clean up the ThreadIdToThreadLocals data structure while holding the
458
    // lock, but defer the destruction of the ThreadLocalValueHolderBases.
459
    {
460
      MutexLock lock(&mutex_);
461
      ThreadIdToThreadLocals* const thread_to_thread_locals =
462
          GetThreadLocalsMapLocked();
463
      ThreadIdToThreadLocals::iterator thread_local_pos =
464
          thread_to_thread_locals->find(thread_id);
465
      if (thread_local_pos != thread_to_thread_locals->end()) {
466
        ThreadLocalValues& thread_local_values = thread_local_pos->second;
467
        for (ThreadLocalValues::iterator value_pos =
468
            thread_local_values.begin();
469
            value_pos != thread_local_values.end();
470
            ++value_pos) {
471
          value_holders.push_back(value_pos->second);
472
        }
473
        thread_to_thread_locals->erase(thread_local_pos);
474
      }
475
    }
476
    // Outside the lock, let the destructor for 'value_holders' deallocate the
477
    // ThreadLocalValueHolderBases.
478
  }
479
480
 private:
481
  // In a particular thread, maps a ThreadLocal object to its value.
482
  typedef std::map<const ThreadLocalBase*,
483
                   linked_ptr<ThreadLocalValueHolderBase> > ThreadLocalValues;
484
  // Stores all ThreadIdToThreadLocals having values in a thread, indexed by
485
  // thread's ID.
486
  typedef std::map<DWORD, ThreadLocalValues> ThreadIdToThreadLocals;
487
488
  // Holds the thread id and thread handle that we pass from
489
  // StartWatcherThreadFor to WatcherThreadFunc.
490
  typedef std::pair<DWORD, HANDLE> ThreadIdAndHandle;
491
492
  static void StartWatcherThreadFor(DWORD thread_id) {
493
    // The returned handle will be kept in thread_map and closed by
494
    // watcher_thread in WatcherThreadFunc.
495
    HANDLE thread = ::OpenThread(SYNCHRONIZE | THREAD_QUERY_INFORMATION,
496
                                 FALSE,
497
                                 thread_id);
498
    GTEST_CHECK_(thread != NULL);
499
    // We need to pass a valid thread ID pointer into CreateThread for it
500
    // to work correctly under Win98.
501
    DWORD watcher_thread_id;
502
    HANDLE watcher_thread = ::CreateThread(
503
        NULL,   // Default security.
504
        0,      // Default stack size
505
        &ThreadLocalRegistryImpl::WatcherThreadFunc,
506
        reinterpret_cast<LPVOID>(new ThreadIdAndHandle(thread_id, thread)),
507
        CREATE_SUSPENDED,
508
        &watcher_thread_id);
509
    GTEST_CHECK_(watcher_thread != NULL);
510
    // Give the watcher thread the same priority as ours to avoid being
511
    // blocked by it.
512
    ::SetThreadPriority(watcher_thread,
513
                        ::GetThreadPriority(::GetCurrentThread()));
514
    ::ResumeThread(watcher_thread);
515
    ::CloseHandle(watcher_thread);
516
  }
517
518
  // Monitors exit from a given thread and notifies those
519
  // ThreadIdToThreadLocals about thread termination.
520
  static DWORD WINAPI WatcherThreadFunc(LPVOID param) {
521
    const ThreadIdAndHandle* tah =
522
        reinterpret_cast<const ThreadIdAndHandle*>(param);
523
    GTEST_CHECK_(
524
        ::WaitForSingleObject(tah->second, INFINITE) == WAIT_OBJECT_0);
525
    OnThreadExit(tah->first);
526
    ::CloseHandle(tah->second);
527
    delete tah;
528
    return 0;
529
  }
530
531
  // Returns map of thread local instances.
532
  static ThreadIdToThreadLocals* GetThreadLocalsMapLocked() {
533
    mutex_.AssertHeld();
534
    static ThreadIdToThreadLocals* map = new ThreadIdToThreadLocals;
535
    return map;
536
  }
537
538
  // Protects access to GetThreadLocalsMapLocked() and its return value.
539
  static Mutex mutex_;
540
  // Protects access to GetThreadMapLocked() and its return value.
541
  static Mutex thread_map_mutex_;
542
};
543
544
Mutex ThreadLocalRegistryImpl::mutex_(Mutex::kStaticMutex);
545
Mutex ThreadLocalRegistryImpl::thread_map_mutex_(Mutex::kStaticMutex);
546
547
ThreadLocalValueHolderBase* ThreadLocalRegistry::GetValueOnCurrentThread(
548
      const ThreadLocalBase* thread_local_instance) {
549
  return ThreadLocalRegistryImpl::GetValueOnCurrentThread(
550
      thread_local_instance);
551
}
552
553
void ThreadLocalRegistry::OnThreadLocalDestroyed(
554
      const ThreadLocalBase* thread_local_instance) {
555
  ThreadLocalRegistryImpl::OnThreadLocalDestroyed(thread_local_instance);
556
}
557
558
#endif  // GTEST_IS_THREADSAFE && GTEST_OS_WINDOWS
559
560
#if GTEST_USES_POSIX_RE
561
562
// Implements RE.  Currently only needed for death tests.
563
564
0
RE::~RE() {
565
0
  if (is_valid_) {
566
0
    // regfree'ing an invalid regex might crash because the content
567
0
    // of the regex is undefined. Since the regex's are essentially
568
0
    // the same, one cannot be valid (or invalid) without the other
569
0
    // being so too.
570
0
    regfree(&partial_regex_);
571
0
    regfree(&full_regex_);
572
0
  }
573
0
  free(const_cast<char*>(pattern_));
574
0
}
575
576
// Returns true iff regular expression re matches the entire str.
577
0
bool RE::FullMatch(const char* str, const RE& re) {
578
0
  if (!re.is_valid_) return false;
579
0
580
0
  regmatch_t match;
581
0
  return regexec(&re.full_regex_, str, 1, &match, 0) == 0;
582
0
}
583
584
// Returns true iff regular expression re matches a substring of str
585
// (including str itself).
586
0
bool RE::PartialMatch(const char* str, const RE& re) {
587
0
  if (!re.is_valid_) return false;
588
0
589
0
  regmatch_t match;
590
0
  return regexec(&re.partial_regex_, str, 1, &match, 0) == 0;
591
0
}
592
593
// Initializes an RE from its string representation.
594
0
void RE::Init(const char* regex) {
595
0
  pattern_ = posix::StrDup(regex);
596
0
597
0
  // Reserves enough bytes to hold the regular expression used for a
598
0
  // full match.
599
0
  const size_t full_regex_len = strlen(regex) + 10;
600
0
  char* const full_pattern = new char[full_regex_len];
601
0
602
0
  snprintf(full_pattern, full_regex_len, "^(%s)$", regex);
603
0
  is_valid_ = regcomp(&full_regex_, full_pattern, REG_EXTENDED) == 0;
604
0
  // We want to call regcomp(&partial_regex_, ...) even if the
605
0
  // previous expression returns false.  Otherwise partial_regex_ may
606
0
  // not be properly initialized can may cause trouble when it's
607
0
  // freed.
608
0
  //
609
0
  // Some implementation of POSIX regex (e.g. on at least some
610
0
  // versions of Cygwin) doesn't accept the empty string as a valid
611
0
  // regex.  We change it to an equivalent form "()" to be safe.
612
0
  if (is_valid_) {
613
0
    const char* const partial_regex = (*regex == '\0') ? "()" : regex;
614
0
    is_valid_ = regcomp(&partial_regex_, partial_regex, REG_EXTENDED) == 0;
615
0
  }
616
0
  EXPECT_TRUE(is_valid_)
617
0
      << "Regular expression \"" << regex
618
0
      << "\" is not a valid POSIX Extended regular expression.";
619
0
620
0
  delete[] full_pattern;
621
0
}
622
623
#elif GTEST_USES_SIMPLE_RE
624
625
// Returns true iff ch appears anywhere in str (excluding the
626
// terminating '\0' character).
627
bool IsInSet(char ch, const char* str) {
628
  return ch != '\0' && strchr(str, ch) != NULL;
629
}
630
631
// Returns true iff ch belongs to the given classification.  Unlike
632
// similar functions in <ctype.h>, these aren't affected by the
633
// current locale.
634
bool IsAsciiDigit(char ch) { return '0' <= ch && ch <= '9'; }
635
bool IsAsciiPunct(char ch) {
636
  return IsInSet(ch, "^-!\"#$%&'()*+,./:;<=>?@[\\]_`{|}~");
637
}
638
bool IsRepeat(char ch) { return IsInSet(ch, "?*+"); }
639
bool IsAsciiWhiteSpace(char ch) { return IsInSet(ch, " \f\n\r\t\v"); }
640
bool IsAsciiWordChar(char ch) {
641
  return ('a' <= ch && ch <= 'z') || ('A' <= ch && ch <= 'Z') ||
642
      ('0' <= ch && ch <= '9') || ch == '_';
643
}
644
645
// Returns true iff "\\c" is a supported escape sequence.
646
bool IsValidEscape(char c) {
647
  return (IsAsciiPunct(c) || IsInSet(c, "dDfnrsStvwW"));
648
}
649
650
// Returns true iff the given atom (specified by escaped and pattern)
651
// matches ch.  The result is undefined if the atom is invalid.
652
bool AtomMatchesChar(bool escaped, char pattern_char, char ch) {
653
  if (escaped) {  // "\\p" where p is pattern_char.
654
    switch (pattern_char) {
655
      case 'd': return IsAsciiDigit(ch);
656
      case 'D': return !IsAsciiDigit(ch);
657
      case 'f': return ch == '\f';
658
      case 'n': return ch == '\n';
659
      case 'r': return ch == '\r';
660
      case 's': return IsAsciiWhiteSpace(ch);
661
      case 'S': return !IsAsciiWhiteSpace(ch);
662
      case 't': return ch == '\t';
663
      case 'v': return ch == '\v';
664
      case 'w': return IsAsciiWordChar(ch);
665
      case 'W': return !IsAsciiWordChar(ch);
666
    }
667
    return IsAsciiPunct(pattern_char) && pattern_char == ch;
668
  }
669
670
  return (pattern_char == '.' && ch != '\n') || pattern_char == ch;
671
}
672
673
// Helper function used by ValidateRegex() to format error messages.
674
std::string FormatRegexSyntaxError(const char* regex, int index) {
675
  return (Message() << "Syntax error at index " << index
676
          << " in simple regular expression \"" << regex << "\": ").GetString();
677
}
678
679
// Generates non-fatal failures and returns false if regex is invalid;
680
// otherwise returns true.
681
bool ValidateRegex(const char* regex) {
682
  if (regex == NULL) {
683
    // TODO(wan@google.com): fix the source file location in the
684
    // assertion failures to match where the regex is used in user
685
    // code.
686
    ADD_FAILURE() << "NULL is not a valid simple regular expression.";
687
    return false;
688
  }
689
690
  bool is_valid = true;
691
692
  // True iff ?, *, or + can follow the previous atom.
693
  bool prev_repeatable = false;
694
  for (int i = 0; regex[i]; i++) {
695
    if (regex[i] == '\\') {  // An escape sequence
696
      i++;
697
      if (regex[i] == '\0') {
698
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
699
                      << "'\\' cannot appear at the end.";
700
        return false;
701
      }
702
703
      if (!IsValidEscape(regex[i])) {
704
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i - 1)
705
                      << "invalid escape sequence \"\\" << regex[i] << "\".";
706
        is_valid = false;
707
      }
708
      prev_repeatable = true;
709
    } else {  // Not an escape sequence.
710
      const char ch = regex[i];
711
712
      if (ch == '^' && i > 0) {
713
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
714
                      << "'^' can only appear at the beginning.";
715
        is_valid = false;
716
      } else if (ch == '$' && regex[i + 1] != '\0') {
717
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
718
                      << "'$' can only appear at the end.";
719
        is_valid = false;
720
      } else if (IsInSet(ch, "()[]{}|")) {
721
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
722
                      << "'" << ch << "' is unsupported.";
723
        is_valid = false;
724
      } else if (IsRepeat(ch) && !prev_repeatable) {
725
        ADD_FAILURE() << FormatRegexSyntaxError(regex, i)
726
                      << "'" << ch << "' can only follow a repeatable token.";
727
        is_valid = false;
728
      }
729
730
      prev_repeatable = !IsInSet(ch, "^$?*+");
731
    }
732
  }
733
734
  return is_valid;
735
}
736
737
// Matches a repeated regex atom followed by a valid simple regular
738
// expression.  The regex atom is defined as c if escaped is false,
739
// or \c otherwise.  repeat is the repetition meta character (?, *,
740
// or +).  The behavior is undefined if str contains too many
741
// characters to be indexable by size_t, in which case the test will
742
// probably time out anyway.  We are fine with this limitation as
743
// std::string has it too.
744
bool MatchRepetitionAndRegexAtHead(
745
    bool escaped, char c, char repeat, const char* regex,
746
    const char* str) {
747
  const size_t min_count = (repeat == '+') ? 1 : 0;
748
  const size_t max_count = (repeat == '?') ? 1 :
749
      static_cast<size_t>(-1) - 1;
750
  // We cannot call numeric_limits::max() as it conflicts with the
751
  // max() macro on Windows.
752
753
  for (size_t i = 0; i <= max_count; ++i) {
754
    // We know that the atom matches each of the first i characters in str.
755
    if (i >= min_count && MatchRegexAtHead(regex, str + i)) {
756
      // We have enough matches at the head, and the tail matches too.
757
      // Since we only care about *whether* the pattern matches str
758
      // (as opposed to *how* it matches), there is no need to find a
759
      // greedy match.
760
      return true;
761
    }
762
    if (str[i] == '\0' || !AtomMatchesChar(escaped, c, str[i]))
763
      return false;
764
  }
765
  return false;
766
}
767
768
// Returns true iff regex matches a prefix of str.  regex must be a
769
// valid simple regular expression and not start with "^", or the
770
// result is undefined.
771
bool MatchRegexAtHead(const char* regex, const char* str) {
772
  if (*regex == '\0')  // An empty regex matches a prefix of anything.
773
    return true;
774
775
  // "$" only matches the end of a string.  Note that regex being
776
  // valid guarantees that there's nothing after "$" in it.
777
  if (*regex == '$')
778
    return *str == '\0';
779
780
  // Is the first thing in regex an escape sequence?
781
  const bool escaped = *regex == '\\';
782
  if (escaped)
783
    ++regex;
784
  if (IsRepeat(regex[1])) {
785
    // MatchRepetitionAndRegexAtHead() calls MatchRegexAtHead(), so
786
    // here's an indirect recursion.  It terminates as the regex gets
787
    // shorter in each recursion.
788
    return MatchRepetitionAndRegexAtHead(
789
        escaped, regex[0], regex[1], regex + 2, str);
790
  } else {
791
    // regex isn't empty, isn't "$", and doesn't start with a
792
    // repetition.  We match the first atom of regex with the first
793
    // character of str and recurse.
794
    return (*str != '\0') && AtomMatchesChar(escaped, *regex, *str) &&
795
        MatchRegexAtHead(regex + 1, str + 1);
796
  }
797
}
798
799
// Returns true iff regex matches any substring of str.  regex must be
800
// a valid simple regular expression, or the result is undefined.
801
//
802
// The algorithm is recursive, but the recursion depth doesn't exceed
803
// the regex length, so we won't need to worry about running out of
804
// stack space normally.  In rare cases the time complexity can be
805
// exponential with respect to the regex length + the string length,
806
// but usually it's must faster (often close to linear).
807
bool MatchRegexAnywhere(const char* regex, const char* str) {
808
  if (regex == NULL || str == NULL)
809
    return false;
810
811
  if (*regex == '^')
812
    return MatchRegexAtHead(regex + 1, str);
813
814
  // A successful match can be anywhere in str.
815
  do {
816
    if (MatchRegexAtHead(regex, str))
817
      return true;
818
  } while (*str++ != '\0');
819
  return false;
820
}
821
822
// Implements the RE class.
823
824
RE::~RE() {
825
  free(const_cast<char*>(pattern_));
826
  free(const_cast<char*>(full_pattern_));
827
}
828
829
// Returns true iff regular expression re matches the entire str.
830
bool RE::FullMatch(const char* str, const RE& re) {
831
  return re.is_valid_ && MatchRegexAnywhere(re.full_pattern_, str);
832
}
833
834
// Returns true iff regular expression re matches a substring of str
835
// (including str itself).
836
bool RE::PartialMatch(const char* str, const RE& re) {
837
  return re.is_valid_ && MatchRegexAnywhere(re.pattern_, str);
838
}
839
840
// Initializes an RE from its string representation.
841
void RE::Init(const char* regex) {
842
  pattern_ = full_pattern_ = NULL;
843
  if (regex != NULL) {
844
    pattern_ = posix::StrDup(regex);
845
  }
846
847
  is_valid_ = ValidateRegex(regex);
848
  if (!is_valid_) {
849
    // No need to calculate the full pattern when the regex is invalid.
850
    return;
851
  }
852
853
  const size_t len = strlen(regex);
854
  // Reserves enough bytes to hold the regular expression used for a
855
  // full match: we need space to prepend a '^', append a '$', and
856
  // terminate the string with '\0'.
857
  char* buffer = static_cast<char*>(malloc(len + 3));
858
  full_pattern_ = buffer;
859
860
  if (*regex != '^')
861
    *buffer++ = '^';  // Makes sure full_pattern_ starts with '^'.
862
863
  // We don't use snprintf or strncpy, as they trigger a warning when
864
  // compiled with VC++ 8.0.
865
  memcpy(buffer, regex, len);
866
  buffer += len;
867
868
  if (len == 0 || regex[len - 1] != '$')
869
    *buffer++ = '$';  // Makes sure full_pattern_ ends with '$'.
870
871
  *buffer = '\0';
872
}
873
874
#endif  // GTEST_USES_POSIX_RE
875
876
const char kUnknownFile[] = "unknown file";
877
878
// Formats a source file path and a line number as they would appear
879
// in an error message from the compiler used to compile this code.
880
0
GTEST_API_ ::std::string FormatFileLocation(const char* file, int line) {
881
0
  const std::string file_name(file == NULL ? kUnknownFile : file);
882
0
883
0
  if (line < 0) {
884
0
    return file_name + ":";
885
0
  }
886
#ifdef _MSC_VER
887
  return file_name + "(" + StreamableToString(line) + "):";
888
#else
889
0
  return file_name + ":" + StreamableToString(line) + ":";
890
0
#endif  // _MSC_VER
891
0
}
892
893
// Formats a file location for compiler-independent XML output.
894
// Although this function is not platform dependent, we put it next to
895
// FormatFileLocation in order to contrast the two functions.
896
// Note that FormatCompilerIndependentFileLocation() does NOT append colon
897
// to the file location it produces, unlike FormatFileLocation().
898
GTEST_API_ ::std::string FormatCompilerIndependentFileLocation(
899
0
    const char* file, int line) {
900
0
  const std::string file_name(file == NULL ? kUnknownFile : file);
901
0
902
0
  if (line < 0)
903
0
    return file_name;
904
0
  else
905
0
    return file_name + ":" + StreamableToString(line);
906
0
}
907
908
GTestLog::GTestLog(GTestLogSeverity severity, const char* file, int line)
909
0
    : severity_(severity) {
910
0
  const char* const marker =
911
0
      severity == GTEST_INFO ?    "[  INFO ]" :
912
0
      severity == GTEST_WARNING ? "[WARNING]" :
913
0
      severity == GTEST_ERROR ?   "[ ERROR ]" : "[ FATAL ]";
914
0
  GetStream() << ::std::endl << marker << " "
915
0
              << FormatFileLocation(file, line).c_str() << ": ";
916
0
}
917
918
// Flushes the buffers and, if severity is GTEST_FATAL, aborts the program.
919
0
GTestLog::~GTestLog() {
920
0
  GetStream() << ::std::endl;
921
0
  if (severity_ == GTEST_FATAL) {
922
0
    fflush(stderr);
923
0
    posix::Abort();
924
0
  }
925
0
}
926
// Disable Microsoft deprecation warnings for POSIX functions called from
927
// this class (creat, dup, dup2, and close)
928
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996)
929
930
#if GTEST_HAS_STREAM_REDIRECTION
931
932
// Object that captures an output stream (stdout/stderr).
933
class CapturedStream {
934
 public:
935
  // The ctor redirects the stream to a temporary file.
936
0
  explicit CapturedStream(int fd) : fd_(fd), uncaptured_fd_(dup(fd)) {
937
# if GTEST_OS_WINDOWS
938
    char temp_dir_path[MAX_PATH + 1] = { '\0' };  // NOLINT
939
    char temp_file_path[MAX_PATH + 1] = { '\0' };  // NOLINT
940
941
    ::GetTempPathA(sizeof(temp_dir_path), temp_dir_path);
942
    const UINT success = ::GetTempFileNameA(temp_dir_path,
943
                                            "gtest_redir",
944
                                            0,  // Generate unique file name.
945
                                            temp_file_path);
946
    GTEST_CHECK_(success != 0)
947
        << "Unable to create a temporary file in " << temp_dir_path;
948
    const int captured_fd = creat(temp_file_path, _S_IREAD | _S_IWRITE);
949
    GTEST_CHECK_(captured_fd != -1) << "Unable to open temporary file "
950
                                    << temp_file_path;
951
    filename_ = temp_file_path;
952
# else
953
    // There's no guarantee that a test has write access to the current
954
0
    // directory, so we create the temporary file in the /tmp directory
955
0
    // instead. We use /tmp on most systems, and /sdcard on Android.
956
0
    // That's because Android doesn't have /tmp.
957
#  if GTEST_OS_LINUX_ANDROID
958
    // Note: Android applications are expected to call the framework's
959
    // Context.getExternalStorageDirectory() method through JNI to get
960
    // the location of the world-writable SD Card directory. However,
961
    // this requires a Context handle, which cannot be retrieved
962
    // globally from native code. Doing so also precludes running the
963
    // code as part of a regular standalone executable, which doesn't
964
    // run in a Dalvik process (e.g. when running it through 'adb shell').
965
    //
966
    // The location /sdcard is directly accessible from native code
967
    // and is the only location (unofficially) supported by the Android
968
    // team. It's generally a symlink to the real SD Card mount point
969
    // which can be /mnt/sdcard, /mnt/sdcard0, /system/media/sdcard, or
970
    // other OEM-customized locations. Never rely on these, and always
971
    // use /sdcard.
972
    char name_template[] = "/sdcard/gtest_captured_stream.XXXXXX";
973
#  else
974
    char name_template[] = "/tmp/captured_stream.XXXXXX";
975
0
#  endif  // GTEST_OS_LINUX_ANDROID
976
0
    const int captured_fd = mkstemp(name_template);
977
0
    filename_ = name_template;
978
0
# endif  // GTEST_OS_WINDOWS
979
0
    fflush(NULL);
980
0
    dup2(captured_fd, fd_);
981
0
    close(captured_fd);
982
0
  }
983
984
0
  ~CapturedStream() {
985
0
    remove(filename_.c_str());
986
0
  }
987
988
0
  std::string GetCapturedString() {
989
0
    if (uncaptured_fd_ != -1) {
990
0
      // Restores the original stream.
991
0
      fflush(NULL);
992
0
      dup2(uncaptured_fd_, fd_);
993
0
      close(uncaptured_fd_);
994
0
      uncaptured_fd_ = -1;
995
0
    }
996
0
997
0
    FILE* const file = posix::FOpen(filename_.c_str(), "r");
998
0
    const std::string content = ReadEntireFile(file);
999
0
    posix::FClose(file);
1000
0
    return content;
1001
0
  }
1002
1003
 private:
1004
  const int fd_;  // A stream to capture.
1005
  int uncaptured_fd_;
1006
  // Name of the temporary file holding the stderr output.
1007
  ::std::string filename_;
1008
1009
  GTEST_DISALLOW_COPY_AND_ASSIGN_(CapturedStream);
1010
};
1011
1012
GTEST_DISABLE_MSC_WARNINGS_POP_()
1013
1014
static CapturedStream* g_captured_stderr = NULL;
1015
static CapturedStream* g_captured_stdout = NULL;
1016
1017
// Starts capturing an output stream (stdout/stderr).
1018
0
void CaptureStream(int fd, const char* stream_name, CapturedStream** stream) {
1019
0
  if (*stream != NULL) {
1020
0
    GTEST_LOG_(FATAL) << "Only one " << stream_name
1021
0
                      << " capturer can exist at a time.";
1022
0
  }
1023
0
  *stream = new CapturedStream(fd);
1024
0
}
1025
1026
// Stops capturing the output stream and returns the captured string.
1027
0
std::string GetCapturedStream(CapturedStream** captured_stream) {
1028
0
  const std::string content = (*captured_stream)->GetCapturedString();
1029
0
1030
0
  delete *captured_stream;
1031
0
  *captured_stream = NULL;
1032
0
1033
0
  return content;
1034
0
}
1035
1036
// Starts capturing stdout.
1037
0
void CaptureStdout() {
1038
0
  CaptureStream(kStdOutFileno, "stdout", &g_captured_stdout);
1039
0
}
1040
1041
// Starts capturing stderr.
1042
0
void CaptureStderr() {
1043
0
  CaptureStream(kStdErrFileno, "stderr", &g_captured_stderr);
1044
0
}
1045
1046
// Stops capturing stdout and returns the captured string.
1047
0
std::string GetCapturedStdout() {
1048
0
  return GetCapturedStream(&g_captured_stdout);
1049
0
}
1050
1051
// Stops capturing stderr and returns the captured string.
1052
0
std::string GetCapturedStderr() {
1053
0
  return GetCapturedStream(&g_captured_stderr);
1054
0
}
1055
1056
#endif  // GTEST_HAS_STREAM_REDIRECTION
1057
1058
0
std::string TempDir() {
1059
#if GTEST_OS_WINDOWS_MOBILE
1060
  return "\\temp\\";
1061
#elif GTEST_OS_WINDOWS
1062
  const char* temp_dir = posix::GetEnv("TEMP");
1063
  if (temp_dir == NULL || temp_dir[0] == '\0')
1064
    return "\\temp\\";
1065
  else if (temp_dir[strlen(temp_dir) - 1] == '\\')
1066
    return temp_dir;
1067
  else
1068
    return std::string(temp_dir) + "\\";
1069
#elif GTEST_OS_LINUX_ANDROID
1070
  return "/sdcard/";
1071
#else
1072
  return "/tmp/";
1073
0
#endif  // GTEST_OS_WINDOWS_MOBILE
1074
0
}
1075
1076
0
size_t GetFileSize(FILE* file) {
1077
0
  fseek(file, 0, SEEK_END);
1078
0
  return static_cast<size_t>(ftell(file));
1079
0
}
1080
1081
0
std::string ReadEntireFile(FILE* file) {
1082
0
  const size_t file_size = GetFileSize(file);
1083
0
  char* const buffer = new char[file_size];
1084
0
1085
0
  size_t bytes_last_read = 0;  // # of bytes read in the last fread()
1086
0
  size_t bytes_read = 0;       // # of bytes read so far
1087
0
1088
0
  fseek(file, 0, SEEK_SET);
1089
0
1090
0
  // Keeps reading the file until we cannot read further or the
1091
0
  // pre-determined file size is reached.
1092
0
  do {
1093
0
    bytes_last_read = fread(buffer+bytes_read, 1, file_size-bytes_read, file);
1094
0
    bytes_read += bytes_last_read;
1095
0
  } while (bytes_last_read > 0 && bytes_read < file_size);
1096
0
1097
0
  const std::string content(buffer, bytes_read);
1098
0
  delete[] buffer;
1099
0
1100
0
  return content;
1101
0
}
1102
1103
#if GTEST_HAS_DEATH_TEST
1104
1105
static const ::std::vector<testing::internal::string>* g_injected_test_argvs =
1106
                                        NULL;  // Owned.
1107
1108
0
void SetInjectableArgvs(const ::std::vector<testing::internal::string>* argvs) {
1109
0
  if (g_injected_test_argvs != argvs)
1110
0
    delete g_injected_test_argvs;
1111
0
  g_injected_test_argvs = argvs;
1112
0
}
1113
1114
0
const ::std::vector<testing::internal::string>& GetInjectableArgvs() {
1115
0
  if (g_injected_test_argvs != NULL) {
1116
0
    return *g_injected_test_argvs;
1117
0
  }
1118
0
  return GetArgvs();
1119
0
}
1120
#endif  // GTEST_HAS_DEATH_TEST
1121
1122
#if GTEST_OS_WINDOWS_MOBILE
1123
namespace posix {
1124
void Abort() {
1125
  DebugBreak();
1126
  TerminateProcess(GetCurrentProcess(), 1);
1127
}
1128
}  // namespace posix
1129
#endif  // GTEST_OS_WINDOWS_MOBILE
1130
1131
// Returns the name of the environment variable corresponding to the
1132
// given flag.  For example, FlagToEnvVar("foo") will return
1133
// "GTEST_FOO" in the open-source version.
1134
32
static std::string FlagToEnvVar(const char* flag) {
1135
32
  const std::string full_flag =
1136
32
      (Message() << GTEST_FLAG_PREFIX_ << flag).GetString();
1137
32
1138
32
  Message env_var;
1139
620
  for (size_t i = 0; i != full_flag.length(); i++) {
1140
588
    env_var << ToUpper(full_flag.c_str()[i]);
1141
588
  }
1142
32
1143
32
  return env_var.GetString();
1144
32
}
1145
1146
// Parses 'str' for a 32-bit signed integer.  If successful, writes
1147
// the result to *value and returns true; otherwise leaves *value
1148
// unchanged and returns false.
1149
0
bool ParseInt32(const Message& src_text, const char* str, Int32* value) {
1150
0
  // Parses the environment variable as a decimal integer.
1151
0
  char* end = NULL;
1152
0
  const long long_value = strtol(str, &end, 10);  // NOLINT
1153
0
1154
0
  // Has strtol() consumed all characters in the string?
1155
0
  if (*end != '\0') {
1156
0
    // No - an invalid character was encountered.
1157
0
    Message msg;
1158
0
    msg << "WARNING: " << src_text
1159
0
        << " is expected to be a 32-bit integer, but actually"
1160
0
        << " has value \"" << str << "\".\n";
1161
0
    printf("%s", msg.GetString().c_str());
1162
0
    fflush(stdout);
1163
0
    return false;
1164
0
  }
1165
0
1166
0
  // Is the parsed value in the range of an Int32?
1167
0
  const Int32 result = static_cast<Int32>(long_value);
1168
0
  if (long_value == LONG_MAX || long_value == LONG_MIN ||
1169
0
      // The parsed value overflows as a long.  (strtol() returns
1170
0
      // LONG_MAX or LONG_MIN when the input overflows.)
1171
0
      result != long_value
1172
0
      // The parsed value overflows as an Int32.
1173
0
      ) {
1174
0
    Message msg;
1175
0
    msg << "WARNING: " << src_text
1176
0
        << " is expected to be a 32-bit integer, but actually"
1177
0
        << " has value " << str << ", which overflows.\n";
1178
0
    printf("%s", msg.GetString().c_str());
1179
0
    fflush(stdout);
1180
0
    return false;
1181
0
  }
1182
0
1183
0
  *value = result;
1184
0
  return true;
1185
0
}
1186
1187
// Reads and returns the Boolean environment variable corresponding to
1188
// the given flag; if it's not set, returns default_value.
1189
//
1190
// The value is considered true iff it's not "0".
1191
14
bool BoolFromGTestEnv(const char* flag, bool default_value) {
1192
#if defined(GTEST_GET_BOOL_FROM_ENV_)
1193
  return GTEST_GET_BOOL_FROM_ENV_(flag, default_value);
1194
#endif  // defined(GTEST_GET_BOOL_FROM_ENV_)
1195
  const std::string env_var = FlagToEnvVar(flag);
1196
14
  const char* const string_value = posix::GetEnv(env_var.c_str());
1197
14
  return string_value == NULL ?
1198
14
      default_value : strcmp(string_value, "0") != 0;
1199
14
}
1200
1201
// Reads and returns a 32-bit integer stored in the environment
1202
// variable corresponding to the given flag; if it isn't set or
1203
// doesn't represent a valid 32-bit integer, returns default_value.
1204
6
Int32 Int32FromGTestEnv(const char* flag, Int32 default_value) {
1205
#if defined(GTEST_GET_INT32_FROM_ENV_)
1206
  return GTEST_GET_INT32_FROM_ENV_(flag, default_value);
1207
#endif  // defined(GTEST_GET_INT32_FROM_ENV_)
1208
  const std::string env_var = FlagToEnvVar(flag);
1209
6
  const char* const string_value = posix::GetEnv(env_var.c_str());
1210
6
  if (string_value == NULL) {
1211
6
    // The environment variable is not set.
1212
6
    return default_value;
1213
6
  }
1214
0
1215
0
  Int32 result = default_value;
1216
0
  if (!ParseInt32(Message() << "Environment variable " << env_var,
1217
0
                  string_value, &result)) {
1218
0
    printf("The default value %s is used.\n",
1219
0
           (Message() << default_value).GetString().c_str());
1220
0
    fflush(stdout);
1221
0
    return default_value;
1222
0
  }
1223
0
1224
0
  return result;
1225
0
}
1226
1227
// Reads and returns the string environment variable corresponding to
1228
// the given flag; if it's not set, returns default_value.
1229
12
std::string StringFromGTestEnv(const char* flag, const char* default_value) {
1230
#if defined(GTEST_GET_STRING_FROM_ENV_)
1231
  return GTEST_GET_STRING_FROM_ENV_(flag, default_value);
1232
#endif  // defined(GTEST_GET_STRING_FROM_ENV_)
1233
  const std::string env_var = FlagToEnvVar(flag);
1234
12
  const char* value = posix::GetEnv(env_var.c_str());
1235
12
  if (value != NULL) {
1236
0
    return value;
1237
0
  }
1238
12
1239
12
  // As a special case for the 'output' flag, if GTEST_OUTPUT is not
1240
12
  // set, we look for XML_OUTPUT_FILE, which is set by the Bazel build
1241
12
  // system.  The value of XML_OUTPUT_FILE is a filename without the
1242
12
  // "xml:" prefix of GTEST_OUTPUT.
1243
12
  //
1244
12
  // The net priority order after flag processing is thus:
1245
12
  //   --gtest_output command line flag
1246
12
  //   GTEST_OUTPUT environment variable
1247
12
  //   XML_OUTPUT_FILE environment variable
1248
12
  //   'default_value'
1249
12
  if (strcmp(flag, "output") == 0) {
1250
2
    value = posix::GetEnv("XML_OUTPUT_FILE");
1251
2
    if (value != NULL) {
1252
0
      return std::string("xml:") + value;
1253
0
    }
1254
12
  }
1255
12
  return default_value;
1256
12
}
1257
1258
}  // namespace internal
1259
}  // namespace testing