Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/utils/unittest/googlemock/src/gmock-matchers.cc
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
32
// Google Mock - a framework for writing C++ mock classes.
33
//
34
// This file implements Matcher<const string&>, Matcher<string>, and
35
// utilities for defining matchers.
36
37
#include "gmock/gmock-matchers.h"
38
#include "gmock/gmock-generated-matchers.h"
39
40
#include <string.h>
41
#include <sstream>
42
#include <string>
43
44
namespace testing {
45
46
// Constructs a matcher that matches a const string& whose value is
47
// equal to s.
48
0
Matcher<const internal::string&>::Matcher(const internal::string& s) {
49
0
  *this = Eq(s);
50
0
}
51
52
// Constructs a matcher that matches a const string& whose value is
53
// equal to s.
54
0
Matcher<const internal::string&>::Matcher(const char* s) {
55
0
  *this = Eq(internal::string(s));
56
0
}
57
58
// Constructs a matcher that matches a string whose value is equal to s.
59
0
Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); }
60
61
// Constructs a matcher that matches a string whose value is equal to s.
62
0
Matcher<internal::string>::Matcher(const char* s) {
63
0
  *this = Eq(internal::string(s));
64
0
}
65
66
#if GTEST_HAS_STRING_PIECE_
67
// Constructs a matcher that matches a const StringPiece& whose value is
68
// equal to s.
69
Matcher<const StringPiece&>::Matcher(const internal::string& s) {
70
  *this = Eq(s);
71
}
72
73
// Constructs a matcher that matches a const StringPiece& whose value is
74
// equal to s.
75
Matcher<const StringPiece&>::Matcher(const char* s) {
76
  *this = Eq(internal::string(s));
77
}
78
79
// Constructs a matcher that matches a const StringPiece& whose value is
80
// equal to s.
81
Matcher<const StringPiece&>::Matcher(StringPiece s) {
82
  *this = Eq(s.ToString());
83
}
84
85
// Constructs a matcher that matches a StringPiece whose value is equal to s.
86
Matcher<StringPiece>::Matcher(const internal::string& s) {
87
  *this = Eq(s);
88
}
89
90
// Constructs a matcher that matches a StringPiece whose value is equal to s.
91
Matcher<StringPiece>::Matcher(const char* s) {
92
  *this = Eq(internal::string(s));
93
}
94
95
// Constructs a matcher that matches a StringPiece whose value is equal to s.
96
Matcher<StringPiece>::Matcher(StringPiece s) {
97
  *this = Eq(s.ToString());
98
}
99
#endif  // GTEST_HAS_STRING_PIECE_
100
101
namespace internal {
102
103
// Joins a vector of strings as if they are fields of a tuple; returns
104
// the joined string.
105
0
GTEST_API_ string JoinAsTuple(const Strings& fields) {
106
0
  switch (fields.size()) {
107
0
    case 0:
108
0
      return "";
109
0
    case 1:
110
0
      return fields[0];
111
0
    default:
112
0
      string result = "(" + fields[0];
113
0
      for (size_t i = 1; i < fields.size(); i++) {
114
0
        result += ", ";
115
0
        result += fields[i];
116
0
      }
117
0
      result += ")";
118
0
      return result;
119
0
  }
120
0
}
121
122
// Returns the description for a matcher defined using the MATCHER*()
123
// macro where the user-supplied description string is "", if
124
// 'negation' is false; otherwise returns the description of the
125
// negation of the matcher.  'param_values' contains a list of strings
126
// that are the print-out of the matcher's parameters.
127
GTEST_API_ string FormatMatcherDescription(bool negation,
128
                                           const char* matcher_name,
129
0
                                           const Strings& param_values) {
130
0
  string result = ConvertIdentifierNameToWords(matcher_name);
131
0
  if (param_values.size() >= 1)
132
0
    result += " " + JoinAsTuple(param_values);
133
0
  return negation ? "not (" + result + ")" : result;
134
0
}
135
136
// FindMaxBipartiteMatching and its helper class.
137
//
138
// Uses the well-known Ford-Fulkerson max flow method to find a maximum
139
// bipartite matching. Flow is considered to be from left to right.
140
// There is an implicit source node that is connected to all of the left
141
// nodes, and an implicit sink node that is connected to all of the
142
// right nodes. All edges have unit capacity.
143
//
144
// Neither the flow graph nor the residual flow graph are represented
145
// explicitly. Instead, they are implied by the information in 'graph' and
146
// a vector<int> called 'left_' whose elements are initialized to the
147
// value kUnused. This represents the initial state of the algorithm,
148
// where the flow graph is empty, and the residual flow graph has the
149
// following edges:
150
//   - An edge from source to each left_ node
151
//   - An edge from each right_ node to sink
152
//   - An edge from each left_ node to each right_ node, if the
153
//     corresponding edge exists in 'graph'.
154
//
155
// When the TryAugment() method adds a flow, it sets left_[l] = r for some
156
// nodes l and r. This induces the following changes:
157
//   - The edges (source, l), (l, r), and (r, sink) are added to the
158
//     flow graph.
159
//   - The same three edges are removed from the residual flow graph.
160
//   - The reverse edges (l, source), (r, l), and (sink, r) are added
161
//     to the residual flow graph, which is a directional graph
162
//     representing unused flow capacity.
163
//
164
// When the method augments a flow (moving left_[l] from some r1 to some
165
// other r2), this can be thought of as "undoing" the above steps with
166
// respect to r1 and "redoing" them with respect to r2.
167
//
168
// It bears repeating that the flow graph and residual flow graph are
169
// never represented explicitly, but can be derived by looking at the
170
// information in 'graph' and in left_.
171
//
172
// As an optimization, there is a second vector<int> called right_ which
173
// does not provide any new information. Instead, it enables more
174
// efficient queries about edges entering or leaving the right-side nodes
175
// of the flow or residual flow graphs. The following invariants are
176
// maintained:
177
//
178
// left[l] == kUnused or right[left[l]] == l
179
// right[r] == kUnused or left[right[r]] == r
180
//
181
// . [ source ]                                        .
182
// .   |||                                             .
183
// .   |||                                             .
184
// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
185
// .   ||                   |                    |     .
186
// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
187
// .   |                                        ||     .
188
// .   \----> left[2]=2  ------> right[2]=2  --\||     .
189
// .                                           |||     .
190
// .         elements           matchers       vvv     .
191
// .                                         [ sink ]  .
192
//
193
// See Also:
194
//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
195
//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
196
//   [2] "Ford-Fulkerson algorithm", Wikipedia,
197
//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
198
class MaxBipartiteMatchState {
199
 public:
200
  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
201
      : graph_(&graph),
202
        left_(graph_->LhsSize(), kUnused),
203
0
        right_(graph_->RhsSize(), kUnused) {
204
0
  }
205
206
  // Returns the edges of a maximal match, each in the form {left, right}.
207
0
  ElementMatcherPairs Compute() {
208
0
    // 'seen' is used for path finding { 0: unseen, 1: seen }.
209
0
    ::std::vector<char> seen;
210
0
    // Searches the residual flow graph for a path from each left node to
211
0
    // the sink in the residual flow graph, and if one is found, add flow
212
0
    // to the graph. It's okay to search through the left nodes once. The
213
0
    // edge from the implicit source node to each previously-visited left
214
0
    // node will have flow if that left node has any path to the sink
215
0
    // whatsoever. Subsequent augmentations can only add flow to the
216
0
    // network, and cannot take away that previous flow unit from the source.
217
0
    // Since the source-to-left edge can only carry one flow unit (or,
218
0
    // each element can be matched to only one matcher), there is no need
219
0
    // to visit the left nodes more than once looking for augmented paths.
220
0
    // The flow is known to be possible or impossible by looking at the
221
0
    // node once.
222
0
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
223
0
      // Reset the path-marking vector and try to find a path from
224
0
      // source to sink starting at the left_[ilhs] node.
225
0
      GTEST_CHECK_(left_[ilhs] == kUnused)
226
0
          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
227
0
      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
228
0
      seen.assign(graph_->RhsSize(), 0);
229
0
      TryAugment(ilhs, &seen);
230
0
    }
231
0
    ElementMatcherPairs result;
232
0
    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
233
0
      size_t irhs = left_[ilhs];
234
0
      if (irhs == kUnused) continue;
235
0
      result.push_back(ElementMatcherPair(ilhs, irhs));
236
0
    }
237
0
    return result;
238
0
  }
239
240
 private:
241
  static const size_t kUnused = static_cast<size_t>(-1);
242
243
  // Perform a depth-first search from left node ilhs to the sink.  If a
244
  // path is found, flow is added to the network by linking the left and
245
  // right vector elements corresponding each segment of the path.
246
  // Returns true if a path to sink was found, which means that a unit of
247
  // flow was added to the network. The 'seen' vector elements correspond
248
  // to right nodes and are marked to eliminate cycles from the search.
249
  //
250
  // Left nodes will only be explored at most once because they
251
  // are accessible from at most one right node in the residual flow
252
  // graph.
253
  //
254
  // Note that left_[ilhs] is the only element of left_ that TryAugment will
255
  // potentially transition from kUnused to another value. Any other
256
  // left_ element holding kUnused before TryAugment will be holding it
257
  // when TryAugment returns.
258
  //
259
0
  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
260
0
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
261
0
      if ((*seen)[irhs])
262
0
        continue;
263
0
      if (!graph_->HasEdge(ilhs, irhs))
264
0
        continue;
265
0
      // There's an available edge from ilhs to irhs.
266
0
      (*seen)[irhs] = 1;
267
0
      // Next a search is performed to determine whether
268
0
      // this edge is a dead end or leads to the sink.
269
0
      //
270
0
      // right_[irhs] == kUnused means that there is residual flow from
271
0
      // right node irhs to the sink, so we can use that to finish this
272
0
      // flow path and return success.
273
0
      //
274
0
      // Otherwise there is residual flow to some ilhs. We push flow
275
0
      // along that path and call ourselves recursively to see if this
276
0
      // ultimately leads to sink.
277
0
      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
278
0
        // Add flow from left_[ilhs] to right_[irhs].
279
0
        left_[ilhs] = irhs;
280
0
        right_[irhs] = ilhs;
281
0
        return true;
282
0
      }
283
0
    }
284
0
    return false;
285
0
  }
286
287
  const MatchMatrix* graph_;  // not owned
288
  // Each element of the left_ vector represents a left hand side node
289
  // (i.e. an element) and each element of right_ is a right hand side
290
  // node (i.e. a matcher). The values in the left_ vector indicate
291
  // outflow from that node to a node on the the right_ side. The values
292
  // in the right_ indicate inflow, and specify which left_ node is
293
  // feeding that right_ node, if any. For example, left_[3] == 1 means
294
  // there's a flow from element #3 to matcher #1. Such a flow would also
295
  // be redundantly represented in the right_ vector as right_[1] == 3.
296
  // Elements of left_ and right_ are either kUnused or mutually
297
  // referent. Mutually referent means that left_[right_[i]] = i and
298
  // right_[left_[i]] = i.
299
  ::std::vector<size_t> left_;
300
  ::std::vector<size_t> right_;
301
302
  GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
303
};
304
305
const size_t MaxBipartiteMatchState::kUnused;
306
307
GTEST_API_ ElementMatcherPairs
308
0
FindMaxBipartiteMatching(const MatchMatrix& g) {
309
0
  return MaxBipartiteMatchState(g).Compute();
310
0
}
311
312
static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
313
0
                                     ::std::ostream* stream) {
314
0
  typedef ElementMatcherPairs::const_iterator Iter;
315
0
  ::std::ostream& os = *stream;
316
0
  os << "{";
317
0
  const char *sep = "";
318
0
  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
319
0
    os << sep << "\n  ("
320
0
       << "element #" << it->first << ", "
321
0
       << "matcher #" << it->second << ")";
322
0
    sep = ",";
323
0
  }
324
0
  os << "\n}";
325
0
}
326
327
// Tries to find a pairing, and explains the result.
328
GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
329
0
                            MatchResultListener* listener) {
330
0
  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
331
0
332
0
  size_t max_flow = matches.size();
333
0
  bool result = (max_flow == matrix.RhsSize());
334
0
335
0
  if (!result) {
336
0
    if (listener->IsInterested()) {
337
0
      *listener << "where no permutation of the elements can "
338
0
                   "satisfy all matchers, and the closest match is "
339
0
                << max_flow << " of " << matrix.RhsSize()
340
0
                << " matchers with the pairings:\n";
341
0
      LogElementMatcherPairVec(matches, listener->stream());
342
0
    }
343
0
    return false;
344
0
  }
345
0
346
0
  if (matches.size() > 1) {
347
0
    if (listener->IsInterested()) {
348
0
      const char *sep = "where:\n";
349
0
      for (size_t mi = 0; mi < matches.size(); ++mi) {
350
0
        *listener << sep << " - element #" << matches[mi].first
351
0
                  << " is matched by matcher #" << matches[mi].second;
352
0
        sep = ",\n";
353
0
      }
354
0
    }
355
0
  }
356
0
  return true;
357
0
}
358
359
0
bool MatchMatrix::NextGraph() {
360
0
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
361
0
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
362
0
      char& b = matched_[SpaceIndex(ilhs, irhs)];
363
0
      if (!b) {
364
0
        b = 1;
365
0
        return true;
366
0
      }
367
0
      b = 0;
368
0
    }
369
0
  }
370
0
  return false;
371
0
}
372
373
0
void MatchMatrix::Randomize() {
374
0
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
375
0
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
376
0
      char& b = matched_[SpaceIndex(ilhs, irhs)];
377
0
      b = static_cast<char>(rand() & 1);  // NOLINT
378
0
    }
379
0
  }
380
0
}
381
382
0
string MatchMatrix::DebugString() const {
383
0
  ::std::stringstream ss;
384
0
  const char *sep = "";
385
0
  for (size_t i = 0; i < LhsSize(); ++i) {
386
0
    ss << sep;
387
0
    for (size_t j = 0; j < RhsSize(); ++j) {
388
0
      ss << HasEdge(i, j);
389
0
    }
390
0
    sep = ";";
391
0
  }
392
0
  return ss.str();
393
0
}
394
395
void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
396
0
    ::std::ostream* os) const {
397
0
  if (matcher_describers_.empty()) {
398
0
    *os << "is empty";
399
0
    return;
400
0
  }
401
0
  if (matcher_describers_.size() == 1) {
402
0
    *os << "has " << Elements(1) << " and that element ";
403
0
    matcher_describers_[0]->DescribeTo(os);
404
0
    return;
405
0
  }
406
0
  *os << "has " << Elements(matcher_describers_.size())
407
0
      << " and there exists some permutation of elements such that:\n";
408
0
  const char* sep = "";
409
0
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
410
0
    *os << sep << " - element #" << i << " ";
411
0
    matcher_describers_[i]->DescribeTo(os);
412
0
    sep = ", and\n";
413
0
  }
414
0
}
415
416
void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
417
0
    ::std::ostream* os) const {
418
0
  if (matcher_describers_.empty()) {
419
0
    *os << "isn't empty";
420
0
    return;
421
0
  }
422
0
  if (matcher_describers_.size() == 1) {
423
0
    *os << "doesn't have " << Elements(1)
424
0
        << ", or has " << Elements(1) << " that ";
425
0
    matcher_describers_[0]->DescribeNegationTo(os);
426
0
    return;
427
0
  }
428
0
  *os << "doesn't have " << Elements(matcher_describers_.size())
429
0
      << ", or there exists no permutation of elements such that:\n";
430
0
  const char* sep = "";
431
0
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
432
0
    *os << sep << " - element #" << i << " ";
433
0
    matcher_describers_[i]->DescribeTo(os);
434
0
    sep = ", and\n";
435
0
  }
436
0
}
437
438
// Checks that all matchers match at least one element, and that all
439
// elements match at least one matcher. This enables faster matching
440
// and better error reporting.
441
// Returns false, writing an explanation to 'listener', if and only
442
// if the success criteria are not met.
443
bool UnorderedElementsAreMatcherImplBase::
444
VerifyAllElementsAndMatchersAreMatched(
445
    const ::std::vector<string>& element_printouts,
446
    const MatchMatrix& matrix,
447
0
    MatchResultListener* listener) const {
448
0
  bool result = true;
449
0
  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
450
0
  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
451
0
452
0
  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
453
0
    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
454
0
      char matched = matrix.HasEdge(ilhs, irhs);
455
0
      element_matched[ilhs] |= matched;
456
0
      matcher_matched[irhs] |= matched;
457
0
    }
458
0
  }
459
0
460
0
  {
461
0
    const char* sep =
462
0
        "where the following matchers don't match any elements:\n";
463
0
    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
464
0
      if (matcher_matched[mi])
465
0
        continue;
466
0
      result = false;
467
0
      if (listener->IsInterested()) {
468
0
        *listener << sep << "matcher #" << mi << ": ";
469
0
        matcher_describers_[mi]->DescribeTo(listener->stream());
470
0
        sep = ",\n";
471
0
      }
472
0
    }
473
0
  }
474
0
475
0
  {
476
0
    const char* sep =
477
0
        "where the following elements don't match any matchers:\n";
478
0
    const char* outer_sep = "";
479
0
    if (!result) {
480
0
      outer_sep = "\nand ";
481
0
    }
482
0
    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
483
0
      if (element_matched[ei])
484
0
        continue;
485
0
      result = false;
486
0
      if (listener->IsInterested()) {
487
0
        *listener << outer_sep << sep << "element #" << ei << ": "
488
0
                  << element_printouts[ei];
489
0
        sep = ",\n";
490
0
        outer_sep = "";
491
0
      }
492
0
    }
493
0
  }
494
0
  return result;
495
0
}
496
497
}  // namespace internal
498
}  // namespace testing