/home/arjun/llvm-project/llvm/utils/unittest/googlemock/src/gmock-matchers.cc
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright 2007, Google Inc. |
2 | | // All rights reserved. |
3 | | // |
4 | | // Redistribution and use in source and binary forms, with or without |
5 | | // modification, are permitted provided that the following conditions are |
6 | | // met: |
7 | | // |
8 | | // * Redistributions of source code must retain the above copyright |
9 | | // notice, this list of conditions and the following disclaimer. |
10 | | // * Redistributions in binary form must reproduce the above |
11 | | // copyright notice, this list of conditions and the following disclaimer |
12 | | // in the documentation and/or other materials provided with the |
13 | | // distribution. |
14 | | // * Neither the name of Google Inc. nor the names of its |
15 | | // contributors may be used to endorse or promote products derived from |
16 | | // this software without specific prior written permission. |
17 | | // |
18 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | | // |
30 | | // Author: wan@google.com (Zhanyong Wan) |
31 | | |
32 | | // Google Mock - a framework for writing C++ mock classes. |
33 | | // |
34 | | // This file implements Matcher<const string&>, Matcher<string>, and |
35 | | // utilities for defining matchers. |
36 | | |
37 | | #include "gmock/gmock-matchers.h" |
38 | | #include "gmock/gmock-generated-matchers.h" |
39 | | |
40 | | #include <string.h> |
41 | | #include <sstream> |
42 | | #include <string> |
43 | | |
44 | | namespace testing { |
45 | | |
46 | | // Constructs a matcher that matches a const string& whose value is |
47 | | // equal to s. |
48 | 0 | Matcher<const internal::string&>::Matcher(const internal::string& s) { |
49 | 0 | *this = Eq(s); |
50 | 0 | } |
51 | | |
52 | | // Constructs a matcher that matches a const string& whose value is |
53 | | // equal to s. |
54 | 0 | Matcher<const internal::string&>::Matcher(const char* s) { |
55 | 0 | *this = Eq(internal::string(s)); |
56 | 0 | } |
57 | | |
58 | | // Constructs a matcher that matches a string whose value is equal to s. |
59 | 0 | Matcher<internal::string>::Matcher(const internal::string& s) { *this = Eq(s); } |
60 | | |
61 | | // Constructs a matcher that matches a string whose value is equal to s. |
62 | 0 | Matcher<internal::string>::Matcher(const char* s) { |
63 | 0 | *this = Eq(internal::string(s)); |
64 | 0 | } |
65 | | |
66 | | #if GTEST_HAS_STRING_PIECE_ |
67 | | // Constructs a matcher that matches a const StringPiece& whose value is |
68 | | // equal to s. |
69 | | Matcher<const StringPiece&>::Matcher(const internal::string& s) { |
70 | | *this = Eq(s); |
71 | | } |
72 | | |
73 | | // Constructs a matcher that matches a const StringPiece& whose value is |
74 | | // equal to s. |
75 | | Matcher<const StringPiece&>::Matcher(const char* s) { |
76 | | *this = Eq(internal::string(s)); |
77 | | } |
78 | | |
79 | | // Constructs a matcher that matches a const StringPiece& whose value is |
80 | | // equal to s. |
81 | | Matcher<const StringPiece&>::Matcher(StringPiece s) { |
82 | | *this = Eq(s.ToString()); |
83 | | } |
84 | | |
85 | | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
86 | | Matcher<StringPiece>::Matcher(const internal::string& s) { |
87 | | *this = Eq(s); |
88 | | } |
89 | | |
90 | | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
91 | | Matcher<StringPiece>::Matcher(const char* s) { |
92 | | *this = Eq(internal::string(s)); |
93 | | } |
94 | | |
95 | | // Constructs a matcher that matches a StringPiece whose value is equal to s. |
96 | | Matcher<StringPiece>::Matcher(StringPiece s) { |
97 | | *this = Eq(s.ToString()); |
98 | | } |
99 | | #endif // GTEST_HAS_STRING_PIECE_ |
100 | | |
101 | | namespace internal { |
102 | | |
103 | | // Joins a vector of strings as if they are fields of a tuple; returns |
104 | | // the joined string. |
105 | 0 | GTEST_API_ string JoinAsTuple(const Strings& fields) { |
106 | 0 | switch (fields.size()) { |
107 | 0 | case 0: |
108 | 0 | return ""; |
109 | 0 | case 1: |
110 | 0 | return fields[0]; |
111 | 0 | default: |
112 | 0 | string result = "(" + fields[0]; |
113 | 0 | for (size_t i = 1; i < fields.size(); i++) { |
114 | 0 | result += ", "; |
115 | 0 | result += fields[i]; |
116 | 0 | } |
117 | 0 | result += ")"; |
118 | 0 | return result; |
119 | 0 | } |
120 | 0 | } |
121 | | |
122 | | // Returns the description for a matcher defined using the MATCHER*() |
123 | | // macro where the user-supplied description string is "", if |
124 | | // 'negation' is false; otherwise returns the description of the |
125 | | // negation of the matcher. 'param_values' contains a list of strings |
126 | | // that are the print-out of the matcher's parameters. |
127 | | GTEST_API_ string FormatMatcherDescription(bool negation, |
128 | | const char* matcher_name, |
129 | 0 | const Strings& param_values) { |
130 | 0 | string result = ConvertIdentifierNameToWords(matcher_name); |
131 | 0 | if (param_values.size() >= 1) |
132 | 0 | result += " " + JoinAsTuple(param_values); |
133 | 0 | return negation ? "not (" + result + ")" : result; |
134 | 0 | } |
135 | | |
136 | | // FindMaxBipartiteMatching and its helper class. |
137 | | // |
138 | | // Uses the well-known Ford-Fulkerson max flow method to find a maximum |
139 | | // bipartite matching. Flow is considered to be from left to right. |
140 | | // There is an implicit source node that is connected to all of the left |
141 | | // nodes, and an implicit sink node that is connected to all of the |
142 | | // right nodes. All edges have unit capacity. |
143 | | // |
144 | | // Neither the flow graph nor the residual flow graph are represented |
145 | | // explicitly. Instead, they are implied by the information in 'graph' and |
146 | | // a vector<int> called 'left_' whose elements are initialized to the |
147 | | // value kUnused. This represents the initial state of the algorithm, |
148 | | // where the flow graph is empty, and the residual flow graph has the |
149 | | // following edges: |
150 | | // - An edge from source to each left_ node |
151 | | // - An edge from each right_ node to sink |
152 | | // - An edge from each left_ node to each right_ node, if the |
153 | | // corresponding edge exists in 'graph'. |
154 | | // |
155 | | // When the TryAugment() method adds a flow, it sets left_[l] = r for some |
156 | | // nodes l and r. This induces the following changes: |
157 | | // - The edges (source, l), (l, r), and (r, sink) are added to the |
158 | | // flow graph. |
159 | | // - The same three edges are removed from the residual flow graph. |
160 | | // - The reverse edges (l, source), (r, l), and (sink, r) are added |
161 | | // to the residual flow graph, which is a directional graph |
162 | | // representing unused flow capacity. |
163 | | // |
164 | | // When the method augments a flow (moving left_[l] from some r1 to some |
165 | | // other r2), this can be thought of as "undoing" the above steps with |
166 | | // respect to r1 and "redoing" them with respect to r2. |
167 | | // |
168 | | // It bears repeating that the flow graph and residual flow graph are |
169 | | // never represented explicitly, but can be derived by looking at the |
170 | | // information in 'graph' and in left_. |
171 | | // |
172 | | // As an optimization, there is a second vector<int> called right_ which |
173 | | // does not provide any new information. Instead, it enables more |
174 | | // efficient queries about edges entering or leaving the right-side nodes |
175 | | // of the flow or residual flow graphs. The following invariants are |
176 | | // maintained: |
177 | | // |
178 | | // left[l] == kUnused or right[left[l]] == l |
179 | | // right[r] == kUnused or left[right[r]] == r |
180 | | // |
181 | | // . [ source ] . |
182 | | // . ||| . |
183 | | // . ||| . |
184 | | // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . |
185 | | // . || | | . |
186 | | // . |\---> left[1]=-1 \--> right[1]=0 ---\| . |
187 | | // . | || . |
188 | | // . \----> left[2]=2 ------> right[2]=2 --\|| . |
189 | | // . ||| . |
190 | | // . elements matchers vvv . |
191 | | // . [ sink ] . |
192 | | // |
193 | | // See Also: |
194 | | // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". |
195 | | // "Introduction to Algorithms (Second ed.)", pp. 651-664. |
196 | | // [2] "Ford-Fulkerson algorithm", Wikipedia, |
197 | | // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' |
198 | | class MaxBipartiteMatchState { |
199 | | public: |
200 | | explicit MaxBipartiteMatchState(const MatchMatrix& graph) |
201 | | : graph_(&graph), |
202 | | left_(graph_->LhsSize(), kUnused), |
203 | 0 | right_(graph_->RhsSize(), kUnused) { |
204 | 0 | } |
205 | | |
206 | | // Returns the edges of a maximal match, each in the form {left, right}. |
207 | 0 | ElementMatcherPairs Compute() { |
208 | 0 | // 'seen' is used for path finding { 0: unseen, 1: seen }. |
209 | 0 | ::std::vector<char> seen; |
210 | 0 | // Searches the residual flow graph for a path from each left node to |
211 | 0 | // the sink in the residual flow graph, and if one is found, add flow |
212 | 0 | // to the graph. It's okay to search through the left nodes once. The |
213 | 0 | // edge from the implicit source node to each previously-visited left |
214 | 0 | // node will have flow if that left node has any path to the sink |
215 | 0 | // whatsoever. Subsequent augmentations can only add flow to the |
216 | 0 | // network, and cannot take away that previous flow unit from the source. |
217 | 0 | // Since the source-to-left edge can only carry one flow unit (or, |
218 | 0 | // each element can be matched to only one matcher), there is no need |
219 | 0 | // to visit the left nodes more than once looking for augmented paths. |
220 | 0 | // The flow is known to be possible or impossible by looking at the |
221 | 0 | // node once. |
222 | 0 | for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { |
223 | 0 | // Reset the path-marking vector and try to find a path from |
224 | 0 | // source to sink starting at the left_[ilhs] node. |
225 | 0 | GTEST_CHECK_(left_[ilhs] == kUnused) |
226 | 0 | << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; |
227 | 0 | // 'seen' initialized to 'graph_->RhsSize()' copies of 0. |
228 | 0 | seen.assign(graph_->RhsSize(), 0); |
229 | 0 | TryAugment(ilhs, &seen); |
230 | 0 | } |
231 | 0 | ElementMatcherPairs result; |
232 | 0 | for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { |
233 | 0 | size_t irhs = left_[ilhs]; |
234 | 0 | if (irhs == kUnused) continue; |
235 | 0 | result.push_back(ElementMatcherPair(ilhs, irhs)); |
236 | 0 | } |
237 | 0 | return result; |
238 | 0 | } |
239 | | |
240 | | private: |
241 | | static const size_t kUnused = static_cast<size_t>(-1); |
242 | | |
243 | | // Perform a depth-first search from left node ilhs to the sink. If a |
244 | | // path is found, flow is added to the network by linking the left and |
245 | | // right vector elements corresponding each segment of the path. |
246 | | // Returns true if a path to sink was found, which means that a unit of |
247 | | // flow was added to the network. The 'seen' vector elements correspond |
248 | | // to right nodes and are marked to eliminate cycles from the search. |
249 | | // |
250 | | // Left nodes will only be explored at most once because they |
251 | | // are accessible from at most one right node in the residual flow |
252 | | // graph. |
253 | | // |
254 | | // Note that left_[ilhs] is the only element of left_ that TryAugment will |
255 | | // potentially transition from kUnused to another value. Any other |
256 | | // left_ element holding kUnused before TryAugment will be holding it |
257 | | // when TryAugment returns. |
258 | | // |
259 | 0 | bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { |
260 | 0 | for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { |
261 | 0 | if ((*seen)[irhs]) |
262 | 0 | continue; |
263 | 0 | if (!graph_->HasEdge(ilhs, irhs)) |
264 | 0 | continue; |
265 | 0 | // There's an available edge from ilhs to irhs. |
266 | 0 | (*seen)[irhs] = 1; |
267 | 0 | // Next a search is performed to determine whether |
268 | 0 | // this edge is a dead end or leads to the sink. |
269 | 0 | // |
270 | 0 | // right_[irhs] == kUnused means that there is residual flow from |
271 | 0 | // right node irhs to the sink, so we can use that to finish this |
272 | 0 | // flow path and return success. |
273 | 0 | // |
274 | 0 | // Otherwise there is residual flow to some ilhs. We push flow |
275 | 0 | // along that path and call ourselves recursively to see if this |
276 | 0 | // ultimately leads to sink. |
277 | 0 | if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { |
278 | 0 | // Add flow from left_[ilhs] to right_[irhs]. |
279 | 0 | left_[ilhs] = irhs; |
280 | 0 | right_[irhs] = ilhs; |
281 | 0 | return true; |
282 | 0 | } |
283 | 0 | } |
284 | 0 | return false; |
285 | 0 | } |
286 | | |
287 | | const MatchMatrix* graph_; // not owned |
288 | | // Each element of the left_ vector represents a left hand side node |
289 | | // (i.e. an element) and each element of right_ is a right hand side |
290 | | // node (i.e. a matcher). The values in the left_ vector indicate |
291 | | // outflow from that node to a node on the the right_ side. The values |
292 | | // in the right_ indicate inflow, and specify which left_ node is |
293 | | // feeding that right_ node, if any. For example, left_[3] == 1 means |
294 | | // there's a flow from element #3 to matcher #1. Such a flow would also |
295 | | // be redundantly represented in the right_ vector as right_[1] == 3. |
296 | | // Elements of left_ and right_ are either kUnused or mutually |
297 | | // referent. Mutually referent means that left_[right_[i]] = i and |
298 | | // right_[left_[i]] = i. |
299 | | ::std::vector<size_t> left_; |
300 | | ::std::vector<size_t> right_; |
301 | | |
302 | | GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); |
303 | | }; |
304 | | |
305 | | const size_t MaxBipartiteMatchState::kUnused; |
306 | | |
307 | | GTEST_API_ ElementMatcherPairs |
308 | 0 | FindMaxBipartiteMatching(const MatchMatrix& g) { |
309 | 0 | return MaxBipartiteMatchState(g).Compute(); |
310 | 0 | } |
311 | | |
312 | | static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, |
313 | 0 | ::std::ostream* stream) { |
314 | 0 | typedef ElementMatcherPairs::const_iterator Iter; |
315 | 0 | ::std::ostream& os = *stream; |
316 | 0 | os << "{"; |
317 | 0 | const char *sep = ""; |
318 | 0 | for (Iter it = pairs.begin(); it != pairs.end(); ++it) { |
319 | 0 | os << sep << "\n (" |
320 | 0 | << "element #" << it->first << ", " |
321 | 0 | << "matcher #" << it->second << ")"; |
322 | 0 | sep = ","; |
323 | 0 | } |
324 | 0 | os << "\n}"; |
325 | 0 | } |
326 | | |
327 | | // Tries to find a pairing, and explains the result. |
328 | | GTEST_API_ bool FindPairing(const MatchMatrix& matrix, |
329 | 0 | MatchResultListener* listener) { |
330 | 0 | ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); |
331 | 0 |
|
332 | 0 | size_t max_flow = matches.size(); |
333 | 0 | bool result = (max_flow == matrix.RhsSize()); |
334 | 0 |
|
335 | 0 | if (!result) { |
336 | 0 | if (listener->IsInterested()) { |
337 | 0 | *listener << "where no permutation of the elements can " |
338 | 0 | "satisfy all matchers, and the closest match is " |
339 | 0 | << max_flow << " of " << matrix.RhsSize() |
340 | 0 | << " matchers with the pairings:\n"; |
341 | 0 | LogElementMatcherPairVec(matches, listener->stream()); |
342 | 0 | } |
343 | 0 | return false; |
344 | 0 | } |
345 | 0 |
|
346 | 0 | if (matches.size() > 1) { |
347 | 0 | if (listener->IsInterested()) { |
348 | 0 | const char *sep = "where:\n"; |
349 | 0 | for (size_t mi = 0; mi < matches.size(); ++mi) { |
350 | 0 | *listener << sep << " - element #" << matches[mi].first |
351 | 0 | << " is matched by matcher #" << matches[mi].second; |
352 | 0 | sep = ",\n"; |
353 | 0 | } |
354 | 0 | } |
355 | 0 | } |
356 | 0 | return true; |
357 | 0 | } |
358 | | |
359 | 0 | bool MatchMatrix::NextGraph() { |
360 | 0 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
361 | 0 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
362 | 0 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
363 | 0 | if (!b) { |
364 | 0 | b = 1; |
365 | 0 | return true; |
366 | 0 | } |
367 | 0 | b = 0; |
368 | 0 | } |
369 | 0 | } |
370 | 0 | return false; |
371 | 0 | } |
372 | | |
373 | 0 | void MatchMatrix::Randomize() { |
374 | 0 | for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { |
375 | 0 | for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { |
376 | 0 | char& b = matched_[SpaceIndex(ilhs, irhs)]; |
377 | 0 | b = static_cast<char>(rand() & 1); // NOLINT |
378 | 0 | } |
379 | 0 | } |
380 | 0 | } |
381 | | |
382 | 0 | string MatchMatrix::DebugString() const { |
383 | 0 | ::std::stringstream ss; |
384 | 0 | const char *sep = ""; |
385 | 0 | for (size_t i = 0; i < LhsSize(); ++i) { |
386 | 0 | ss << sep; |
387 | 0 | for (size_t j = 0; j < RhsSize(); ++j) { |
388 | 0 | ss << HasEdge(i, j); |
389 | 0 | } |
390 | 0 | sep = ";"; |
391 | 0 | } |
392 | 0 | return ss.str(); |
393 | 0 | } |
394 | | |
395 | | void UnorderedElementsAreMatcherImplBase::DescribeToImpl( |
396 | 0 | ::std::ostream* os) const { |
397 | 0 | if (matcher_describers_.empty()) { |
398 | 0 | *os << "is empty"; |
399 | 0 | return; |
400 | 0 | } |
401 | 0 | if (matcher_describers_.size() == 1) { |
402 | 0 | *os << "has " << Elements(1) << " and that element "; |
403 | 0 | matcher_describers_[0]->DescribeTo(os); |
404 | 0 | return; |
405 | 0 | } |
406 | 0 | *os << "has " << Elements(matcher_describers_.size()) |
407 | 0 | << " and there exists some permutation of elements such that:\n"; |
408 | 0 | const char* sep = ""; |
409 | 0 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
410 | 0 | *os << sep << " - element #" << i << " "; |
411 | 0 | matcher_describers_[i]->DescribeTo(os); |
412 | 0 | sep = ", and\n"; |
413 | 0 | } |
414 | 0 | } |
415 | | |
416 | | void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( |
417 | 0 | ::std::ostream* os) const { |
418 | 0 | if (matcher_describers_.empty()) { |
419 | 0 | *os << "isn't empty"; |
420 | 0 | return; |
421 | 0 | } |
422 | 0 | if (matcher_describers_.size() == 1) { |
423 | 0 | *os << "doesn't have " << Elements(1) |
424 | 0 | << ", or has " << Elements(1) << " that "; |
425 | 0 | matcher_describers_[0]->DescribeNegationTo(os); |
426 | 0 | return; |
427 | 0 | } |
428 | 0 | *os << "doesn't have " << Elements(matcher_describers_.size()) |
429 | 0 | << ", or there exists no permutation of elements such that:\n"; |
430 | 0 | const char* sep = ""; |
431 | 0 | for (size_t i = 0; i != matcher_describers_.size(); ++i) { |
432 | 0 | *os << sep << " - element #" << i << " "; |
433 | 0 | matcher_describers_[i]->DescribeTo(os); |
434 | 0 | sep = ", and\n"; |
435 | 0 | } |
436 | 0 | } |
437 | | |
438 | | // Checks that all matchers match at least one element, and that all |
439 | | // elements match at least one matcher. This enables faster matching |
440 | | // and better error reporting. |
441 | | // Returns false, writing an explanation to 'listener', if and only |
442 | | // if the success criteria are not met. |
443 | | bool UnorderedElementsAreMatcherImplBase:: |
444 | | VerifyAllElementsAndMatchersAreMatched( |
445 | | const ::std::vector<string>& element_printouts, |
446 | | const MatchMatrix& matrix, |
447 | 0 | MatchResultListener* listener) const { |
448 | 0 | bool result = true; |
449 | 0 | ::std::vector<char> element_matched(matrix.LhsSize(), 0); |
450 | 0 | ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); |
451 | 0 |
|
452 | 0 | for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { |
453 | 0 | for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { |
454 | 0 | char matched = matrix.HasEdge(ilhs, irhs); |
455 | 0 | element_matched[ilhs] |= matched; |
456 | 0 | matcher_matched[irhs] |= matched; |
457 | 0 | } |
458 | 0 | } |
459 | 0 |
|
460 | 0 | { |
461 | 0 | const char* sep = |
462 | 0 | "where the following matchers don't match any elements:\n"; |
463 | 0 | for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { |
464 | 0 | if (matcher_matched[mi]) |
465 | 0 | continue; |
466 | 0 | result = false; |
467 | 0 | if (listener->IsInterested()) { |
468 | 0 | *listener << sep << "matcher #" << mi << ": "; |
469 | 0 | matcher_describers_[mi]->DescribeTo(listener->stream()); |
470 | 0 | sep = ",\n"; |
471 | 0 | } |
472 | 0 | } |
473 | 0 | } |
474 | 0 |
|
475 | 0 | { |
476 | 0 | const char* sep = |
477 | 0 | "where the following elements don't match any matchers:\n"; |
478 | 0 | const char* outer_sep = ""; |
479 | 0 | if (!result) { |
480 | 0 | outer_sep = "\nand "; |
481 | 0 | } |
482 | 0 | for (size_t ei = 0; ei < element_matched.size(); ++ei) { |
483 | 0 | if (element_matched[ei]) |
484 | 0 | continue; |
485 | 0 | result = false; |
486 | 0 | if (listener->IsInterested()) { |
487 | 0 | *listener << outer_sep << sep << "element #" << ei << ": " |
488 | 0 | << element_printouts[ei]; |
489 | 0 | sep = ",\n"; |
490 | 0 | outer_sep = ""; |
491 | 0 | } |
492 | 0 | } |
493 | 0 | } |
494 | 0 | return result; |
495 | 0 | } |
496 | | |
497 | | } // namespace internal |
498 | | } // namespace testing |