Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/utils/unittest/googlemock/include/gmock/gmock-actions.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
32
// Google Mock - a framework for writing C++ mock classes.
33
//
34
// This file implements some commonly used actions.
35
36
// IWYU pragma: private, include "gmock/gmock.h"
37
38
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
39
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
40
41
#ifndef _WIN32_WCE
42
# include <errno.h>
43
#endif
44
45
#include <algorithm>
46
#include <string>
47
48
#include "gmock/internal/gmock-internal-utils.h"
49
#include "gmock/internal/gmock-port.h"
50
51
#if GTEST_HAS_STD_TYPE_TRAITS_  // Defined by gtest-port.h via gmock-port.h.
52
#include <type_traits>
53
#endif
54
55
namespace testing {
56
57
// To implement an action Foo, define:
58
//   1. a class FooAction that implements the ActionInterface interface, and
59
//   2. a factory function that creates an Action object from a
60
//      const FooAction*.
61
//
62
// The two-level delegation design follows that of Matcher, providing
63
// consistency for extension developers.  It also eases ownership
64
// management as Action objects can now be copied like plain values.
65
66
namespace internal {
67
68
template <typename F1, typename F2>
69
class ActionAdaptor;
70
71
// BuiltInDefaultValueGetter<T, true>::Get() returns a
72
// default-constructed T value.  BuiltInDefaultValueGetter<T,
73
// false>::Get() crashes with an error.
74
//
75
// This primary template is used when kDefaultConstructible is true.
76
template <typename T, bool kDefaultConstructible>
77
struct BuiltInDefaultValueGetter {
78
  static T Get() { return T(); }
79
};
80
template <typename T>
81
struct BuiltInDefaultValueGetter<T, false> {
82
  static T Get() {
83
    Assert(false, __FILE__, __LINE__,
84
           "Default action undefined for the function return type.");
85
    return internal::Invalid<T>();
86
    // The above statement will never be reached, but is required in
87
    // order for this function to compile.
88
  }
89
};
90
91
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
92
// for type T, which is NULL when T is a raw pointer type, 0 when T is
93
// a numeric type, false when T is bool, or "" when T is string or
94
// std::string.  In addition, in C++11 and above, it turns a
95
// default-constructed T value if T is default constructible.  For any
96
// other type T, the built-in default T value is undefined, and the
97
// function will abort the process.
98
template <typename T>
99
class BuiltInDefaultValue {
100
 public:
101
#if GTEST_HAS_STD_TYPE_TRAITS_
102
  // This function returns true iff type T has a built-in default value.
103
  static bool Exists() {
104
    return ::std::is_default_constructible<T>::value;
105
  }
106
107
  static T Get() {
108
    return BuiltInDefaultValueGetter<
109
        T, ::std::is_default_constructible<T>::value>::Get();
110
  }
111
112
#else  // GTEST_HAS_STD_TYPE_TRAITS_
113
  // This function returns true iff type T has a built-in default value.
114
  static bool Exists() {
115
    return false;
116
  }
117
118
  static T Get() {
119
    return BuiltInDefaultValueGetter<T, false>::Get();
120
  }
121
122
#endif  // GTEST_HAS_STD_TYPE_TRAITS_
123
};
124
125
// This partial specialization says that we use the same built-in
126
// default value for T and const T.
127
template <typename T>
128
class BuiltInDefaultValue<const T> {
129
 public:
130
  static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
131
  static T Get() { return BuiltInDefaultValue<T>::Get(); }
132
};
133
134
// This partial specialization defines the default values for pointer
135
// types.
136
template <typename T>
137
class BuiltInDefaultValue<T*> {
138
 public:
139
  static bool Exists() { return true; }
140
  static T* Get() { return NULL; }
141
};
142
143
// The following specializations define the default values for
144
// specific types we care about.
145
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
146
  template <> \
147
  class BuiltInDefaultValue<type> { \
148
   public: \
149
0
    static bool Exists() { return true; } \
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIvE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIbE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIhE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIaE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIcE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIwE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueItE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIsE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIjE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIiE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueImE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIlE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIyE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIxE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIfE6ExistsEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIdE6ExistsEv
150
0
    static type Get() { return value; } \
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIvE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEEE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIbE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIhE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIaE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIcE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIwE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueItE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIsE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIjE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIiE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueImE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIlE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIyE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIxE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIfE3GetEv
Unexecuted instantiation: _ZN7testing8internal19BuiltInDefaultValueIdE3GetEv
151
  }
152
153
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, );  // NOLINT
154
#if GTEST_HAS_GLOBAL_STRING
155
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
156
#endif  // GTEST_HAS_GLOBAL_STRING
157
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
158
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
159
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
160
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
161
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
162
163
// There's no need for a default action for signed wchar_t, as that
164
// type is the same as wchar_t for gcc, and invalid for MSVC.
165
//
166
// There's also no need for a default action for unsigned wchar_t, as
167
// that type is the same as unsigned int for gcc, and invalid for
168
// MSVC.
169
#if GMOCK_WCHAR_T_IS_NATIVE_
170
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U);  // NOLINT
171
#endif
172
173
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U);  // NOLINT
174
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0);     // NOLINT
175
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
176
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
177
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL);  // NOLINT
178
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L);     // NOLINT
179
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
180
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
181
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
182
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
183
184
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
185
186
}  // namespace internal
187
188
// When an unexpected function call is encountered, Google Mock will
189
// let it return a default value if the user has specified one for its
190
// return type, or if the return type has a built-in default value;
191
// otherwise Google Mock won't know what value to return and will have
192
// to abort the process.
193
//
194
// The DefaultValue<T> class allows a user to specify the
195
// default value for a type T that is both copyable and publicly
196
// destructible (i.e. anything that can be used as a function return
197
// type).  The usage is:
198
//
199
//   // Sets the default value for type T to be foo.
200
//   DefaultValue<T>::Set(foo);
201
template <typename T>
202
class DefaultValue {
203
 public:
204
  // Sets the default value for type T; requires T to be
205
  // copy-constructable and have a public destructor.
206
  static void Set(T x) {
207
    delete producer_;
208
    producer_ = new FixedValueProducer(x);
209
  }
210
211
  // Provides a factory function to be called to generate the default value.
212
  // This method can be used even if T is only move-constructible, but it is not
213
  // limited to that case.
214
  typedef T (*FactoryFunction)();
215
  static void SetFactory(FactoryFunction factory) {
216
    delete producer_;
217
    producer_ = new FactoryValueProducer(factory);
218
  }
219
220
  // Unsets the default value for type T.
221
  static void Clear() {
222
    delete producer_;
223
    producer_ = NULL;
224
  }
225
226
  // Returns true iff the user has set the default value for type T.
227
  static bool IsSet() { return producer_ != NULL; }
228
229
  // Returns true if T has a default return value set by the user or there
230
  // exists a built-in default value.
231
  static bool Exists() {
232
    return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
233
  }
234
235
  // Returns the default value for type T if the user has set one;
236
  // otherwise returns the built-in default value. Requires that Exists()
237
  // is true, which ensures that the return value is well-defined.
238
  static T Get() {
239
    return producer_ == NULL ?
240
        internal::BuiltInDefaultValue<T>::Get() : producer_->Produce();
241
  }
242
243
 private:
244
  class ValueProducer {
245
   public:
246
    virtual ~ValueProducer() {}
247
    virtual T Produce() = 0;
248
  };
249
250
  class FixedValueProducer : public ValueProducer {
251
   public:
252
    explicit FixedValueProducer(T value) : value_(value) {}
253
    virtual T Produce() { return value_; }
254
255
   private:
256
    const T value_;
257
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
258
  };
259
260
  class FactoryValueProducer : public ValueProducer {
261
   public:
262
    explicit FactoryValueProducer(FactoryFunction factory)
263
        : factory_(factory) {}
264
    virtual T Produce() { return factory_(); }
265
266
   private:
267
    const FactoryFunction factory_;
268
    GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
269
  };
270
271
  static ValueProducer* producer_;
272
};
273
274
// This partial specialization allows a user to set default values for
275
// reference types.
276
template <typename T>
277
class DefaultValue<T&> {
278
 public:
279
  // Sets the default value for type T&.
280
  static void Set(T& x) {  // NOLINT
281
    address_ = &x;
282
  }
283
284
  // Unsets the default value for type T&.
285
  static void Clear() {
286
    address_ = NULL;
287
  }
288
289
  // Returns true iff the user has set the default value for type T&.
290
  static bool IsSet() { return address_ != NULL; }
291
292
  // Returns true if T has a default return value set by the user or there
293
  // exists a built-in default value.
294
  static bool Exists() {
295
    return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
296
  }
297
298
  // Returns the default value for type T& if the user has set one;
299
  // otherwise returns the built-in default value if there is one;
300
  // otherwise aborts the process.
301
  static T& Get() {
302
    return address_ == NULL ?
303
        internal::BuiltInDefaultValue<T&>::Get() : *address_;
304
  }
305
306
 private:
307
  static T* address_;
308
};
309
310
// This specialization allows DefaultValue<void>::Get() to
311
// compile.
312
template <>
313
class DefaultValue<void> {
314
 public:
315
0
  static bool Exists() { return true; }
316
0
  static void Get() {}
317
};
318
319
// Points to the user-set default value for type T.
320
template <typename T>
321
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL;
322
323
// Points to the user-set default value for type T&.
324
template <typename T>
325
T* DefaultValue<T&>::address_ = NULL;
326
327
// Implement this interface to define an action for function type F.
328
template <typename F>
329
class ActionInterface {
330
 public:
331
  typedef typename internal::Function<F>::Result Result;
332
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
333
334
  ActionInterface() {}
335
  virtual ~ActionInterface() {}
336
337
  // Performs the action.  This method is not const, as in general an
338
  // action can have side effects and be stateful.  For example, a
339
  // get-the-next-element-from-the-collection action will need to
340
  // remember the current element.
341
  virtual Result Perform(const ArgumentTuple& args) = 0;
342
343
 private:
344
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
345
};
346
347
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
348
// object that represents an action to be taken when a mock function
349
// of type F is called.  The implementation of Action<T> is just a
350
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
351
// Don't inherit from Action!
352
//
353
// You can view an object implementing ActionInterface<F> as a
354
// concrete action (including its current state), and an Action<F>
355
// object as a handle to it.
356
template <typename F>
357
class Action {
358
 public:
359
  typedef typename internal::Function<F>::Result Result;
360
  typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
361
362
  // Constructs a null Action.  Needed for storing Action objects in
363
  // STL containers.
364
  Action() : impl_(NULL) {}
365
366
  // Constructs an Action from its implementation.  A NULL impl is
367
  // used to represent the "do-default" action.
368
  explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
369
370
  // Copy constructor.
371
  Action(const Action &action) = default;
372
  Action &operator=(const Action &action) = default;
373
374
  // This constructor allows us to turn an Action<Func> object into an
375
  // Action<F>, as long as F's arguments can be implicitly converted
376
  // to Func's and Func's return type can be implicitly converted to
377
  // F's.
378
  template <typename Func>
379
  explicit Action(const Action<Func>& action);
380
381
  // Returns true iff this is the DoDefault() action.
382
  bool IsDoDefault() const { return impl_.get() == NULL; }
383
384
  // Performs the action.  Note that this method is const even though
385
  // the corresponding method in ActionInterface is not.  The reason
386
  // is that a const Action<F> means that it cannot be re-bound to
387
  // another concrete action, not that the concrete action it binds to
388
  // cannot change state.  (Think of the difference between a const
389
  // pointer and a pointer to const.)
390
  Result Perform(const ArgumentTuple& args) const {
391
    internal::Assert(
392
        !IsDoDefault(), __FILE__, __LINE__,
393
        "You are using DoDefault() inside a composite action like "
394
        "DoAll() or WithArgs().  This is not supported for technical "
395
        "reasons.  Please instead spell out the default action, or "
396
        "assign the default action to an Action variable and use "
397
        "the variable in various places.");
398
    return impl_->Perform(args);
399
  }
400
401
 private:
402
  template <typename F1, typename F2>
403
  friend class internal::ActionAdaptor;
404
405
  internal::linked_ptr<ActionInterface<F> > impl_;
406
};
407
408
// The PolymorphicAction class template makes it easy to implement a
409
// polymorphic action (i.e. an action that can be used in mock
410
// functions of than one type, e.g. Return()).
411
//
412
// To define a polymorphic action, a user first provides a COPYABLE
413
// implementation class that has a Perform() method template:
414
//
415
//   class FooAction {
416
//    public:
417
//     template <typename Result, typename ArgumentTuple>
418
//     Result Perform(const ArgumentTuple& args) const {
419
//       // Processes the arguments and returns a result, using
420
//       // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
421
//     }
422
//     ...
423
//   };
424
//
425
// Then the user creates the polymorphic action using
426
// MakePolymorphicAction(object) where object has type FooAction.  See
427
// the definition of Return(void) and SetArgumentPointee<N>(value) for
428
// complete examples.
429
template <typename Impl>
430
class PolymorphicAction {
431
 public:
432
  explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
433
434
  template <typename F>
435
  operator Action<F>() const {
436
    return Action<F>(new MonomorphicImpl<F>(impl_));
437
  }
438
439
 private:
440
  template <typename F>
441
  class MonomorphicImpl : public ActionInterface<F> {
442
   public:
443
    typedef typename internal::Function<F>::Result Result;
444
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
445
446
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
447
448
    virtual Result Perform(const ArgumentTuple& args) {
449
      return impl_.template Perform<Result>(args);
450
    }
451
452
   private:
453
    Impl impl_;
454
455
    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
456
  };
457
458
  Impl impl_;
459
460
  GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
461
};
462
463
// Creates an Action from its implementation and returns it.  The
464
// created Action object owns the implementation.
465
template <typename F>
466
Action<F> MakeAction(ActionInterface<F>* impl) {
467
  return Action<F>(impl);
468
}
469
470
// Creates a polymorphic action from its implementation.  This is
471
// easier to use than the PolymorphicAction<Impl> constructor as it
472
// doesn't require you to explicitly write the template argument, e.g.
473
//
474
//   MakePolymorphicAction(foo);
475
// vs
476
//   PolymorphicAction<TypeOfFoo>(foo);
477
template <typename Impl>
478
0
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
479
0
  return PolymorphicAction<Impl>(impl);
480
0
}
Unexecuted instantiation: _ZN7testing21MakePolymorphicActionINS_8internal16ReturnNullActionEEENS_17PolymorphicActionIT_EERKS4_
Unexecuted instantiation: _ZN7testing21MakePolymorphicActionINS_8internal16ReturnVoidActionEEENS_17PolymorphicActionIT_EERKS4_
481
482
namespace internal {
483
484
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
485
// and F1 are compatible.
486
template <typename F1, typename F2>
487
class ActionAdaptor : public ActionInterface<F1> {
488
 public:
489
  typedef typename internal::Function<F1>::Result Result;
490
  typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
491
492
  explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
493
494
  virtual Result Perform(const ArgumentTuple& args) {
495
    return impl_->Perform(args);
496
  }
497
498
 private:
499
  const internal::linked_ptr<ActionInterface<F2> > impl_;
500
501
  GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
502
};
503
504
// Helper struct to specialize ReturnAction to execute a move instead of a copy
505
// on return. Useful for move-only types, but could be used on any type.
506
template <typename T>
507
struct ByMoveWrapper {
508
  explicit ByMoveWrapper(T value) : payload(internal::move(value)) {}
509
  T payload;
510
};
511
512
// Implements the polymorphic Return(x) action, which can be used in
513
// any function that returns the type of x, regardless of the argument
514
// types.
515
//
516
// Note: The value passed into Return must be converted into
517
// Function<F>::Result when this action is cast to Action<F> rather than
518
// when that action is performed. This is important in scenarios like
519
//
520
// MOCK_METHOD1(Method, T(U));
521
// ...
522
// {
523
//   Foo foo;
524
//   X x(&foo);
525
//   EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
526
// }
527
//
528
// In the example above the variable x holds reference to foo which leaves
529
// scope and gets destroyed.  If copying X just copies a reference to foo,
530
// that copy will be left with a hanging reference.  If conversion to T
531
// makes a copy of foo, the above code is safe. To support that scenario, we
532
// need to make sure that the type conversion happens inside the EXPECT_CALL
533
// statement, and conversion of the result of Return to Action<T(U)> is a
534
// good place for that.
535
//
536
template <typename R>
537
class ReturnAction {
538
 public:
539
  // Constructs a ReturnAction object from the value to be returned.
540
  // 'value' is passed by value instead of by const reference in order
541
  // to allow Return("string literal") to compile.
542
  explicit ReturnAction(R value) : value_(new R(internal::move(value))) {}
543
544
  // This template type conversion operator allows Return(x) to be
545
  // used in ANY function that returns x's type.
546
  template <typename F>
547
  operator Action<F>() const {
548
    // Assert statement belongs here because this is the best place to verify
549
    // conditions on F. It produces the clearest error messages
550
    // in most compilers.
551
    // Impl really belongs in this scope as a local class but can't
552
    // because MSVC produces duplicate symbols in different translation units
553
    // in this case. Until MS fixes that bug we put Impl into the class scope
554
    // and put the typedef both here (for use in assert statement) and
555
    // in the Impl class. But both definitions must be the same.
556
    typedef typename Function<F>::Result Result;
557
    GTEST_COMPILE_ASSERT_(
558
        !is_reference<Result>::value,
559
        use_ReturnRef_instead_of_Return_to_return_a_reference);
560
    return Action<F>(new Impl<R, F>(value_));
561
  }
562
563
 private:
564
  // Implements the Return(x) action for a particular function type F.
565
  template <typename R_, typename F>
566
  class Impl : public ActionInterface<F> {
567
   public:
568
    typedef typename Function<F>::Result Result;
569
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
570
571
    // The implicit cast is necessary when Result has more than one
572
    // single-argument constructor (e.g. Result is std::vector<int>) and R
573
    // has a type conversion operator template.  In that case, value_(value)
574
    // won't compile as the compiler doesn't known which constructor of
575
    // Result to call.  ImplicitCast_ forces the compiler to convert R to
576
    // Result without considering explicit constructors, thus resolving the
577
    // ambiguity. value_ is then initialized using its copy constructor.
578
    explicit Impl(const linked_ptr<R>& value)
579
        : value_before_cast_(*value),
580
          value_(ImplicitCast_<Result>(value_before_cast_)) {}
581
582
    virtual Result Perform(const ArgumentTuple&) { return value_; }
583
584
   private:
585
    GTEST_COMPILE_ASSERT_(!is_reference<Result>::value,
586
                          Result_cannot_be_a_reference_type);
587
    // We save the value before casting just in case it is being cast to a
588
    // wrapper type.
589
    R value_before_cast_;
590
    Result value_;
591
592
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
593
  };
594
595
  // Partially specialize for ByMoveWrapper. This version of ReturnAction will
596
  // move its contents instead.
597
  template <typename R_, typename F>
598
  class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
599
   public:
600
    typedef typename Function<F>::Result Result;
601
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
602
603
    explicit Impl(const linked_ptr<R>& wrapper)
604
        : performed_(false), wrapper_(wrapper) {}
605
606
    virtual Result Perform(const ArgumentTuple&) {
607
      GTEST_CHECK_(!performed_)
608
          << "A ByMove() action should only be performed once.";
609
      performed_ = true;
610
      return internal::move(wrapper_->payload);
611
    }
612
613
   private:
614
    bool performed_;
615
    const linked_ptr<R> wrapper_;
616
617
    GTEST_DISALLOW_ASSIGN_(Impl);
618
  };
619
620
  const linked_ptr<R> value_;
621
622
  GTEST_DISALLOW_ASSIGN_(ReturnAction);
623
};
624
625
// Implements the ReturnNull() action.
626
class ReturnNullAction {
627
 public:
628
  // Allows ReturnNull() to be used in any pointer-returning function. In C++11
629
  // this is enforced by returning nullptr, and in non-C++11 by asserting a
630
  // pointer type on compile time.
631
  template <typename Result, typename ArgumentTuple>
632
  static Result Perform(const ArgumentTuple&) {
633
#if GTEST_LANG_CXX11
634
    return nullptr;
635
#else
636
    GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
637
                          ReturnNull_can_be_used_to_return_a_pointer_only);
638
    return NULL;
639
#endif  // GTEST_LANG_CXX11
640
  }
641
};
642
643
// Implements the Return() action.
644
class ReturnVoidAction {
645
 public:
646
  // Allows Return() to be used in any void-returning function.
647
  template <typename Result, typename ArgumentTuple>
648
  static void Perform(const ArgumentTuple&) {
649
    CompileAssertTypesEqual<void, Result>();
650
  }
651
};
652
653
// Implements the polymorphic ReturnRef(x) action, which can be used
654
// in any function that returns a reference to the type of x,
655
// regardless of the argument types.
656
template <typename T>
657
class ReturnRefAction {
658
 public:
659
  // Constructs a ReturnRefAction object from the reference to be returned.
660
  explicit ReturnRefAction(T& ref) : ref_(ref) {}  // NOLINT
661
662
  // This template type conversion operator allows ReturnRef(x) to be
663
  // used in ANY function that returns a reference to x's type.
664
  template <typename F>
665
  operator Action<F>() const {
666
    typedef typename Function<F>::Result Result;
667
    // Asserts that the function return type is a reference.  This
668
    // catches the user error of using ReturnRef(x) when Return(x)
669
    // should be used, and generates some helpful error message.
670
    GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
671
                          use_Return_instead_of_ReturnRef_to_return_a_value);
672
    return Action<F>(new Impl<F>(ref_));
673
  }
674
675
 private:
676
  // Implements the ReturnRef(x) action for a particular function type F.
677
  template <typename F>
678
  class Impl : public ActionInterface<F> {
679
   public:
680
    typedef typename Function<F>::Result Result;
681
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
682
683
    explicit Impl(T& ref) : ref_(ref) {}  // NOLINT
684
685
    virtual Result Perform(const ArgumentTuple&) {
686
      return ref_;
687
    }
688
689
   private:
690
    T& ref_;
691
692
    GTEST_DISALLOW_ASSIGN_(Impl);
693
  };
694
695
  T& ref_;
696
697
  GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
698
};
699
700
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
701
// used in any function that returns a reference to the type of x,
702
// regardless of the argument types.
703
template <typename T>
704
class ReturnRefOfCopyAction {
705
 public:
706
  // Constructs a ReturnRefOfCopyAction object from the reference to
707
  // be returned.
708
  explicit ReturnRefOfCopyAction(const T& value) : value_(value) {}  // NOLINT
709
710
  // This template type conversion operator allows ReturnRefOfCopy(x) to be
711
  // used in ANY function that returns a reference to x's type.
712
  template <typename F>
713
  operator Action<F>() const {
714
    typedef typename Function<F>::Result Result;
715
    // Asserts that the function return type is a reference.  This
716
    // catches the user error of using ReturnRefOfCopy(x) when Return(x)
717
    // should be used, and generates some helpful error message.
718
    GTEST_COMPILE_ASSERT_(
719
        internal::is_reference<Result>::value,
720
        use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
721
    return Action<F>(new Impl<F>(value_));
722
  }
723
724
 private:
725
  // Implements the ReturnRefOfCopy(x) action for a particular function type F.
726
  template <typename F>
727
  class Impl : public ActionInterface<F> {
728
   public:
729
    typedef typename Function<F>::Result Result;
730
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
731
732
    explicit Impl(const T& value) : value_(value) {}  // NOLINT
733
734
    virtual Result Perform(const ArgumentTuple&) {
735
      return value_;
736
    }
737
738
   private:
739
    T value_;
740
741
    GTEST_DISALLOW_ASSIGN_(Impl);
742
  };
743
744
  const T value_;
745
746
  GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
747
};
748
749
// Implements the polymorphic DoDefault() action.
750
class DoDefaultAction {
751
 public:
752
  // This template type conversion operator allows DoDefault() to be
753
  // used in any function.
754
  template <typename F>
755
  operator Action<F>() const { return Action<F>(NULL); }
756
};
757
758
// Implements the Assign action to set a given pointer referent to a
759
// particular value.
760
template <typename T1, typename T2>
761
class AssignAction {
762
 public:
763
  AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
764
765
  template <typename Result, typename ArgumentTuple>
766
  void Perform(const ArgumentTuple& /* args */) const {
767
    *ptr_ = value_;
768
  }
769
770
 private:
771
  T1* const ptr_;
772
  const T2 value_;
773
774
  GTEST_DISALLOW_ASSIGN_(AssignAction);
775
};
776
777
#if !GTEST_OS_WINDOWS_MOBILE
778
779
// Implements the SetErrnoAndReturn action to simulate return from
780
// various system calls and libc functions.
781
template <typename T>
782
class SetErrnoAndReturnAction {
783
 public:
784
  SetErrnoAndReturnAction(int errno_value, T result)
785
      : errno_(errno_value),
786
        result_(result) {}
787
  template <typename Result, typename ArgumentTuple>
788
  Result Perform(const ArgumentTuple& /* args */) const {
789
    errno = errno_;
790
    return result_;
791
  }
792
793
 private:
794
  const int errno_;
795
  const T result_;
796
797
  GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
798
};
799
800
#endif  // !GTEST_OS_WINDOWS_MOBILE
801
802
// Implements the SetArgumentPointee<N>(x) action for any function
803
// whose N-th argument (0-based) is a pointer to x's type.  The
804
// template parameter kIsProto is true iff type A is ProtocolMessage,
805
// proto2::Message, or a sub-class of those.
806
template <size_t N, typename A, bool kIsProto>
807
class SetArgumentPointeeAction {
808
 public:
809
  // Constructs an action that sets the variable pointed to by the
810
  // N-th function argument to 'value'.
811
  explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
812
813
  template <typename Result, typename ArgumentTuple>
814
  void Perform(const ArgumentTuple& args) const {
815
    CompileAssertTypesEqual<void, Result>();
816
    *::testing::get<N>(args) = value_;
817
  }
818
819
 private:
820
  const A value_;
821
822
  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
823
};
824
825
template <size_t N, typename Proto>
826
class SetArgumentPointeeAction<N, Proto, true> {
827
 public:
828
  // Constructs an action that sets the variable pointed to by the
829
  // N-th function argument to 'proto'.  Both ProtocolMessage and
830
  // proto2::Message have the CopyFrom() method, so the same
831
  // implementation works for both.
832
  explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
833
    proto_->CopyFrom(proto);
834
  }
835
836
  template <typename Result, typename ArgumentTuple>
837
  void Perform(const ArgumentTuple& args) const {
838
    CompileAssertTypesEqual<void, Result>();
839
    ::testing::get<N>(args)->CopyFrom(*proto_);
840
  }
841
842
 private:
843
  const internal::linked_ptr<Proto> proto_;
844
845
  GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
846
};
847
848
// Implements the InvokeWithoutArgs(f) action.  The template argument
849
// FunctionImpl is the implementation type of f, which can be either a
850
// function pointer or a functor.  InvokeWithoutArgs(f) can be used as an
851
// Action<F> as long as f's type is compatible with F (i.e. f can be
852
// assigned to a tr1::function<F>).
853
template <typename FunctionImpl>
854
class InvokeWithoutArgsAction {
855
 public:
856
  // The c'tor makes a copy of function_impl (either a function
857
  // pointer or a functor).
858
  explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
859
      : function_impl_(function_impl) {}
860
861
  // Allows InvokeWithoutArgs(f) to be used as any action whose type is
862
  // compatible with f.
863
  template <typename Result, typename ArgumentTuple>
864
  Result Perform(const ArgumentTuple&) { return function_impl_(); }
865
866
 private:
867
  FunctionImpl function_impl_;
868
869
  GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
870
};
871
872
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
873
template <class Class, typename MethodPtr>
874
class InvokeMethodWithoutArgsAction {
875
 public:
876
  InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
877
      : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
878
879
  template <typename Result, typename ArgumentTuple>
880
  Result Perform(const ArgumentTuple&) const {
881
    return (obj_ptr_->*method_ptr_)();
882
  }
883
884
 private:
885
  Class* const obj_ptr_;
886
  const MethodPtr method_ptr_;
887
888
  GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
889
};
890
891
// Implements the IgnoreResult(action) action.
892
template <typename A>
893
class IgnoreResultAction {
894
 public:
895
  explicit IgnoreResultAction(const A& action) : action_(action) {}
896
897
  template <typename F>
898
  operator Action<F>() const {
899
    // Assert statement belongs here because this is the best place to verify
900
    // conditions on F. It produces the clearest error messages
901
    // in most compilers.
902
    // Impl really belongs in this scope as a local class but can't
903
    // because MSVC produces duplicate symbols in different translation units
904
    // in this case. Until MS fixes that bug we put Impl into the class scope
905
    // and put the typedef both here (for use in assert statement) and
906
    // in the Impl class. But both definitions must be the same.
907
    typedef typename internal::Function<F>::Result Result;
908
909
    // Asserts at compile time that F returns void.
910
    CompileAssertTypesEqual<void, Result>();
911
912
    return Action<F>(new Impl<F>(action_));
913
  }
914
915
 private:
916
  template <typename F>
917
  class Impl : public ActionInterface<F> {
918
   public:
919
    typedef typename internal::Function<F>::Result Result;
920
    typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
921
922
    explicit Impl(const A& action) : action_(action) {}
923
924
    virtual void Perform(const ArgumentTuple& args) {
925
      // Performs the action and ignores its result.
926
      action_.Perform(args);
927
    }
928
929
   private:
930
    // Type OriginalFunction is the same as F except that its return
931
    // type is IgnoredValue.
932
    typedef typename internal::Function<F>::MakeResultIgnoredValue
933
        OriginalFunction;
934
935
    const Action<OriginalFunction> action_;
936
937
    GTEST_DISALLOW_ASSIGN_(Impl);
938
  };
939
940
  const A action_;
941
942
  GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
943
};
944
945
// A ReferenceWrapper<T> object represents a reference to type T,
946
// which can be either const or not.  It can be explicitly converted
947
// from, and implicitly converted to, a T&.  Unlike a reference,
948
// ReferenceWrapper<T> can be copied and can survive template type
949
// inference.  This is used to support by-reference arguments in the
950
// InvokeArgument<N>(...) action.  The idea was from "reference
951
// wrappers" in tr1, which we don't have in our source tree yet.
952
template <typename T>
953
class ReferenceWrapper {
954
 public:
955
  // Constructs a ReferenceWrapper<T> object from a T&.
956
  explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {}  // NOLINT
957
958
  // Allows a ReferenceWrapper<T> object to be implicitly converted to
959
  // a T&.
960
  operator T&() const { return *pointer_; }
961
 private:
962
  T* pointer_;
963
};
964
965
// Allows the expression ByRef(x) to be printed as a reference to x.
966
template <typename T>
967
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
968
  T& value = ref;
969
  UniversalPrinter<T&>::Print(value, os);
970
}
971
972
// Does two actions sequentially.  Used for implementing the DoAll(a1,
973
// a2, ...) action.
974
template <typename Action1, typename Action2>
975
class DoBothAction {
976
 public:
977
  DoBothAction(Action1 action1, Action2 action2)
978
      : action1_(action1), action2_(action2) {}
979
980
  // This template type conversion operator allows DoAll(a1, ..., a_n)
981
  // to be used in ANY function of compatible type.
982
  template <typename F>
983
  operator Action<F>() const {
984
    return Action<F>(new Impl<F>(action1_, action2_));
985
  }
986
987
 private:
988
  // Implements the DoAll(...) action for a particular function type F.
989
  template <typename F>
990
  class Impl : public ActionInterface<F> {
991
   public:
992
    typedef typename Function<F>::Result Result;
993
    typedef typename Function<F>::ArgumentTuple ArgumentTuple;
994
    typedef typename Function<F>::MakeResultVoid VoidResult;
995
996
    Impl(const Action<VoidResult>& action1, const Action<F>& action2)
997
        : action1_(action1), action2_(action2) {}
998
999
    virtual Result Perform(const ArgumentTuple& args) {
1000
      action1_.Perform(args);
1001
      return action2_.Perform(args);
1002
    }
1003
1004
   private:
1005
    const Action<VoidResult> action1_;
1006
    const Action<F> action2_;
1007
1008
    GTEST_DISALLOW_ASSIGN_(Impl);
1009
  };
1010
1011
  Action1 action1_;
1012
  Action2 action2_;
1013
1014
  GTEST_DISALLOW_ASSIGN_(DoBothAction);
1015
};
1016
1017
}  // namespace internal
1018
1019
// An Unused object can be implicitly constructed from ANY value.
1020
// This is handy when defining actions that ignore some or all of the
1021
// mock function arguments.  For example, given
1022
//
1023
//   MOCK_METHOD3(Foo, double(const string& label, double x, double y));
1024
//   MOCK_METHOD3(Bar, double(int index, double x, double y));
1025
//
1026
// instead of
1027
//
1028
//   double DistanceToOriginWithLabel(const string& label, double x, double y) {
1029
//     return sqrt(x*x + y*y);
1030
//   }
1031
//   double DistanceToOriginWithIndex(int index, double x, double y) {
1032
//     return sqrt(x*x + y*y);
1033
//   }
1034
//   ...
1035
//   EXEPCT_CALL(mock, Foo("abc", _, _))
1036
//       .WillOnce(Invoke(DistanceToOriginWithLabel));
1037
//   EXEPCT_CALL(mock, Bar(5, _, _))
1038
//       .WillOnce(Invoke(DistanceToOriginWithIndex));
1039
//
1040
// you could write
1041
//
1042
//   // We can declare any uninteresting argument as Unused.
1043
//   double DistanceToOrigin(Unused, double x, double y) {
1044
//     return sqrt(x*x + y*y);
1045
//   }
1046
//   ...
1047
//   EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
1048
//   EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
1049
typedef internal::IgnoredValue Unused;
1050
1051
// This constructor allows us to turn an Action<From> object into an
1052
// Action<To>, as long as To's arguments can be implicitly converted
1053
// to From's and From's return type cann be implicitly converted to
1054
// To's.
1055
template <typename To>
1056
template <typename From>
1057
Action<To>::Action(const Action<From>& from)
1058
    : impl_(new internal::ActionAdaptor<To, From>(from)) {}
1059
1060
// Creates an action that returns 'value'.  'value' is passed by value
1061
// instead of const reference - otherwise Return("string literal")
1062
// will trigger a compiler error about using array as initializer.
1063
template <typename R>
1064
internal::ReturnAction<R> Return(R value) {
1065
  return internal::ReturnAction<R>(internal::move(value));
1066
}
1067
1068
// Creates an action that returns NULL.
1069
0
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
1070
0
  return MakePolymorphicAction(internal::ReturnNullAction());
1071
0
}
1072
1073
// Creates an action that returns from a void function.
1074
0
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
1075
0
  return MakePolymorphicAction(internal::ReturnVoidAction());
1076
0
}
1077
1078
// Creates an action that returns the reference to a variable.
1079
template <typename R>
1080
inline internal::ReturnRefAction<R> ReturnRef(R& x) {  // NOLINT
1081
  return internal::ReturnRefAction<R>(x);
1082
}
1083
1084
// Creates an action that returns the reference to a copy of the
1085
// argument.  The copy is created when the action is constructed and
1086
// lives as long as the action.
1087
template <typename R>
1088
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
1089
  return internal::ReturnRefOfCopyAction<R>(x);
1090
}
1091
1092
// Modifies the parent action (a Return() action) to perform a move of the
1093
// argument instead of a copy.
1094
// Return(ByMove()) actions can only be executed once and will assert this
1095
// invariant.
1096
template <typename R>
1097
internal::ByMoveWrapper<R> ByMove(R x) {
1098
  return internal::ByMoveWrapper<R>(internal::move(x));
1099
}
1100
1101
// Creates an action that does the default action for the give mock function.
1102
0
inline internal::DoDefaultAction DoDefault() {
1103
0
  return internal::DoDefaultAction();
1104
0
}
1105
1106
// Creates an action that sets the variable pointed by the N-th
1107
// (0-based) function argument to 'value'.
1108
template <size_t N, typename T>
1109
PolymorphicAction<
1110
  internal::SetArgumentPointeeAction<
1111
    N, T, internal::IsAProtocolMessage<T>::value> >
1112
SetArgPointee(const T& x) {
1113
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1114
      N, T, internal::IsAProtocolMessage<T>::value>(x));
1115
}
1116
1117
#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
1118
// This overload allows SetArgPointee() to accept a string literal.
1119
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
1120
// this overload from the templated version and emit a compile error.
1121
template <size_t N>
1122
PolymorphicAction<
1123
  internal::SetArgumentPointeeAction<N, const char*, false> >
1124
SetArgPointee(const char* p) {
1125
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1126
      N, const char*, false>(p));
1127
}
1128
1129
template <size_t N>
1130
PolymorphicAction<
1131
  internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
1132
SetArgPointee(const wchar_t* p) {
1133
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1134
      N, const wchar_t*, false>(p));
1135
}
1136
#endif
1137
1138
// The following version is DEPRECATED.
1139
template <size_t N, typename T>
1140
PolymorphicAction<
1141
  internal::SetArgumentPointeeAction<
1142
    N, T, internal::IsAProtocolMessage<T>::value> >
1143
SetArgumentPointee(const T& x) {
1144
  return MakePolymorphicAction(internal::SetArgumentPointeeAction<
1145
      N, T, internal::IsAProtocolMessage<T>::value>(x));
1146
}
1147
1148
// Creates an action that sets a pointer referent to a given value.
1149
template <typename T1, typename T2>
1150
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
1151
  return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
1152
}
1153
1154
#if !GTEST_OS_WINDOWS_MOBILE
1155
1156
// Creates an action that sets errno and returns the appropriate error.
1157
template <typename T>
1158
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
1159
SetErrnoAndReturn(int errval, T result) {
1160
  return MakePolymorphicAction(
1161
      internal::SetErrnoAndReturnAction<T>(errval, result));
1162
}
1163
1164
#endif  // !GTEST_OS_WINDOWS_MOBILE
1165
1166
// Various overloads for InvokeWithoutArgs().
1167
1168
// Creates an action that invokes 'function_impl' with no argument.
1169
template <typename FunctionImpl>
1170
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
1171
InvokeWithoutArgs(FunctionImpl function_impl) {
1172
  return MakePolymorphicAction(
1173
      internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
1174
}
1175
1176
// Creates an action that invokes the given method on the given object
1177
// with no argument.
1178
template <class Class, typename MethodPtr>
1179
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
1180
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
1181
  return MakePolymorphicAction(
1182
      internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
1183
          obj_ptr, method_ptr));
1184
}
1185
1186
// Creates an action that performs an_action and throws away its
1187
// result.  In other words, it changes the return type of an_action to
1188
// void.  an_action MUST NOT return void, or the code won't compile.
1189
template <typename A>
1190
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
1191
  return internal::IgnoreResultAction<A>(an_action);
1192
}
1193
1194
// Creates a reference wrapper for the given L-value.  If necessary,
1195
// you can explicitly specify the type of the reference.  For example,
1196
// suppose 'derived' is an object of type Derived, ByRef(derived)
1197
// would wrap a Derived&.  If you want to wrap a const Base& instead,
1198
// where Base is a base class of Derived, just write:
1199
//
1200
//   ByRef<const Base>(derived)
1201
template <typename T>
1202
inline internal::ReferenceWrapper<T> ByRef(T& l_value) {  // NOLINT
1203
  return internal::ReferenceWrapper<T>(l_value);
1204
}
1205
1206
}  // namespace testing
1207
1208
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_