Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/lib/Support/YAMLParser.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file implements a YAML parser.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Support/YAMLParser.h"
14
#include "llvm/ADT/AllocatorList.h"
15
#include "llvm/ADT/ArrayRef.h"
16
#include "llvm/ADT/None.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/SmallString.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/StringExtras.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/ADT/Twine.h"
23
#include "llvm/Support/Compiler.h"
24
#include "llvm/Support/ErrorHandling.h"
25
#include "llvm/Support/MemoryBuffer.h"
26
#include "llvm/Support/SMLoc.h"
27
#include "llvm/Support/SourceMgr.h"
28
#include "llvm/Support/Unicode.h"
29
#include "llvm/Support/raw_ostream.h"
30
#include <algorithm>
31
#include <cassert>
32
#include <cstddef>
33
#include <cstdint>
34
#include <map>
35
#include <memory>
36
#include <string>
37
#include <system_error>
38
#include <utility>
39
40
using namespace llvm;
41
using namespace yaml;
42
43
enum UnicodeEncodingForm {
44
  UEF_UTF32_LE, ///< UTF-32 Little Endian
45
  UEF_UTF32_BE, ///< UTF-32 Big Endian
46
  UEF_UTF16_LE, ///< UTF-16 Little Endian
47
  UEF_UTF16_BE, ///< UTF-16 Big Endian
48
  UEF_UTF8,     ///< UTF-8 or ascii.
49
  UEF_Unknown   ///< Not a valid Unicode encoding.
50
};
51
52
/// EncodingInfo - Holds the encoding type and length of the byte order mark if
53
///                it exists. Length is in {0, 2, 3, 4}.
54
using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
55
56
/// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
57
///                      encoding form of \a Input.
58
///
59
/// @param Input A string of length 0 or more.
60
/// @returns An EncodingInfo indicating the Unicode encoding form of the input
61
///          and how long the byte order mark is if one exists.
62
0
static EncodingInfo getUnicodeEncoding(StringRef Input) {
63
0
  if (Input.empty())
64
0
    return std::make_pair(UEF_Unknown, 0);
65
0
66
0
  switch (uint8_t(Input[0])) {
67
0
  case 0x00:
68
0
    if (Input.size() >= 4) {
69
0
      if (  Input[1] == 0
70
0
         && uint8_t(Input[2]) == 0xFE
71
0
         && uint8_t(Input[3]) == 0xFF)
72
0
        return std::make_pair(UEF_UTF32_BE, 4);
73
0
      if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
74
0
        return std::make_pair(UEF_UTF32_BE, 0);
75
0
    }
76
0
77
0
    if (Input.size() >= 2 && Input[1] != 0)
78
0
      return std::make_pair(UEF_UTF16_BE, 0);
79
0
    return std::make_pair(UEF_Unknown, 0);
80
0
  case 0xFF:
81
0
    if (  Input.size() >= 4
82
0
       && uint8_t(Input[1]) == 0xFE
83
0
       && Input[2] == 0
84
0
       && Input[3] == 0)
85
0
      return std::make_pair(UEF_UTF32_LE, 4);
86
0
87
0
    if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
88
0
      return std::make_pair(UEF_UTF16_LE, 2);
89
0
    return std::make_pair(UEF_Unknown, 0);
90
0
  case 0xFE:
91
0
    if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
92
0
      return std::make_pair(UEF_UTF16_BE, 2);
93
0
    return std::make_pair(UEF_Unknown, 0);
94
0
  case 0xEF:
95
0
    if (  Input.size() >= 3
96
0
       && uint8_t(Input[1]) == 0xBB
97
0
       && uint8_t(Input[2]) == 0xBF)
98
0
      return std::make_pair(UEF_UTF8, 3);
99
0
    return std::make_pair(UEF_Unknown, 0);
100
0
  }
101
0
102
0
  // It could still be utf-32 or utf-16.
103
0
  if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
104
0
    return std::make_pair(UEF_UTF32_LE, 0);
105
0
106
0
  if (Input.size() >= 2 && Input[1] == 0)
107
0
    return std::make_pair(UEF_UTF16_LE, 0);
108
0
109
0
  return std::make_pair(UEF_UTF8, 0);
110
0
}
111
112
/// Pin the vtables to this file.
113
0
void Node::anchor() {}
114
0
void NullNode::anchor() {}
115
0
void ScalarNode::anchor() {}
116
0
void BlockScalarNode::anchor() {}
117
0
void KeyValueNode::anchor() {}
118
0
void MappingNode::anchor() {}
119
0
void SequenceNode::anchor() {}
120
0
void AliasNode::anchor() {}
121
122
namespace llvm {
123
namespace yaml {
124
125
/// Token - A single YAML token.
126
struct Token {
127
  enum TokenKind {
128
    TK_Error, // Uninitialized token.
129
    TK_StreamStart,
130
    TK_StreamEnd,
131
    TK_VersionDirective,
132
    TK_TagDirective,
133
    TK_DocumentStart,
134
    TK_DocumentEnd,
135
    TK_BlockEntry,
136
    TK_BlockEnd,
137
    TK_BlockSequenceStart,
138
    TK_BlockMappingStart,
139
    TK_FlowEntry,
140
    TK_FlowSequenceStart,
141
    TK_FlowSequenceEnd,
142
    TK_FlowMappingStart,
143
    TK_FlowMappingEnd,
144
    TK_Key,
145
    TK_Value,
146
    TK_Scalar,
147
    TK_BlockScalar,
148
    TK_Alias,
149
    TK_Anchor,
150
    TK_Tag
151
  } Kind = TK_Error;
152
153
  /// A string of length 0 or more whose begin() points to the logical location
154
  /// of the token in the input.
155
  StringRef Range;
156
157
  /// The value of a block scalar node.
158
  std::string Value;
159
160
0
  Token() = default;
161
};
162
163
} // end namespace yaml
164
} // end namespace llvm
165
166
using TokenQueueT = BumpPtrList<Token>;
167
168
namespace {
169
170
/// This struct is used to track simple keys.
171
///
172
/// Simple keys are handled by creating an entry in SimpleKeys for each Token
173
/// which could legally be the start of a simple key. When peekNext is called,
174
/// if the Token To be returned is referenced by a SimpleKey, we continue
175
/// tokenizing until that potential simple key has either been found to not be
176
/// a simple key (we moved on to the next line or went further than 1024 chars).
177
/// Or when we run into a Value, and then insert a Key token (and possibly
178
/// others) before the SimpleKey's Tok.
179
struct SimpleKey {
180
  TokenQueueT::iterator Tok;
181
  unsigned Column = 0;
182
  unsigned Line = 0;
183
  unsigned FlowLevel = 0;
184
  bool IsRequired = false;
185
186
0
  bool operator ==(const SimpleKey &Other) {
187
0
    return Tok == Other.Tok;
188
0
  }
189
};
190
191
} // end anonymous namespace
192
193
/// The Unicode scalar value of a UTF-8 minimal well-formed code unit
194
///        subsequence and the subsequence's length in code units (uint8_t).
195
///        A length of 0 represents an error.
196
using UTF8Decoded = std::pair<uint32_t, unsigned>;
197
198
0
static UTF8Decoded decodeUTF8(StringRef Range) {
199
0
  StringRef::iterator Position= Range.begin();
200
0
  StringRef::iterator End = Range.end();
201
0
  // 1 byte: [0x00, 0x7f]
202
0
  // Bit pattern: 0xxxxxxx
203
0
  if ((*Position & 0x80) == 0) {
204
0
     return std::make_pair(*Position, 1);
205
0
  }
206
0
  // 2 bytes: [0x80, 0x7ff]
207
0
  // Bit pattern: 110xxxxx 10xxxxxx
208
0
  if (Position + 1 != End &&
209
0
      ((*Position & 0xE0) == 0xC0) &&
210
0
      ((*(Position + 1) & 0xC0) == 0x80)) {
211
0
    uint32_t codepoint = ((*Position & 0x1F) << 6) |
212
0
                          (*(Position + 1) & 0x3F);
213
0
    if (codepoint >= 0x80)
214
0
      return std::make_pair(codepoint, 2);
215
0
  }
216
0
  // 3 bytes: [0x8000, 0xffff]
217
0
  // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
218
0
  if (Position + 2 != End &&
219
0
      ((*Position & 0xF0) == 0xE0) &&
220
0
      ((*(Position + 1) & 0xC0) == 0x80) &&
221
0
      ((*(Position + 2) & 0xC0) == 0x80)) {
222
0
    uint32_t codepoint = ((*Position & 0x0F) << 12) |
223
0
                         ((*(Position + 1) & 0x3F) << 6) |
224
0
                          (*(Position + 2) & 0x3F);
225
0
    // Codepoints between 0xD800 and 0xDFFF are invalid, as
226
0
    // they are high / low surrogate halves used by UTF-16.
227
0
    if (codepoint >= 0x800 &&
228
0
        (codepoint < 0xD800 || codepoint > 0xDFFF))
229
0
      return std::make_pair(codepoint, 3);
230
0
  }
231
0
  // 4 bytes: [0x10000, 0x10FFFF]
232
0
  // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
233
0
  if (Position + 3 != End &&
234
0
      ((*Position & 0xF8) == 0xF0) &&
235
0
      ((*(Position + 1) & 0xC0) == 0x80) &&
236
0
      ((*(Position + 2) & 0xC0) == 0x80) &&
237
0
      ((*(Position + 3) & 0xC0) == 0x80)) {
238
0
    uint32_t codepoint = ((*Position & 0x07) << 18) |
239
0
                         ((*(Position + 1) & 0x3F) << 12) |
240
0
                         ((*(Position + 2) & 0x3F) << 6) |
241
0
                          (*(Position + 3) & 0x3F);
242
0
    if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
243
0
      return std::make_pair(codepoint, 4);
244
0
  }
245
0
  return std::make_pair(0, 0);
246
0
}
247
248
namespace llvm {
249
namespace yaml {
250
251
/// Scans YAML tokens from a MemoryBuffer.
252
class Scanner {
253
public:
254
  Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
255
          std::error_code *EC = nullptr);
256
  Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
257
          std::error_code *EC = nullptr);
258
259
  /// Parse the next token and return it without popping it.
260
  Token &peekNext();
261
262
  /// Parse the next token and pop it from the queue.
263
  Token getNext();
264
265
  void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
266
0
                  ArrayRef<SMRange> Ranges = None) {
267
0
    SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
268
0
  }
269
270
0
  void setError(const Twine &Message, StringRef::iterator Position) {
271
0
    if (Position >= End)
272
0
      Position = End - 1;
273
0
274
0
    // propagate the error if possible
275
0
    if (EC)
276
0
      *EC = make_error_code(std::errc::invalid_argument);
277
0
278
0
    // Don't print out more errors after the first one we encounter. The rest
279
0
    // are just the result of the first, and have no meaning.
280
0
    if (!Failed)
281
0
      printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
282
0
    Failed = true;
283
0
  }
284
285
  /// Returns true if an error occurred while parsing.
286
0
  bool failed() {
287
0
    return Failed;
288
0
  }
289
290
private:
291
  void init(MemoryBufferRef Buffer);
292
293
0
  StringRef currentInput() {
294
0
    return StringRef(Current, End - Current);
295
0
  }
296
297
  /// Decode a UTF-8 minimal well-formed code unit subsequence starting
298
  ///        at \a Position.
299
  ///
300
  /// If the UTF-8 code units starting at Position do not form a well-formed
301
  /// code unit subsequence, then the Unicode scalar value is 0, and the length
302
  /// is 0.
303
0
  UTF8Decoded decodeUTF8(StringRef::iterator Position) {
304
0
    return ::decodeUTF8(StringRef(Position, End - Position));
305
0
  }
306
307
  // The following functions are based on the gramar rules in the YAML spec. The
308
  // style of the function names it meant to closely match how they are written
309
  // in the spec. The number within the [] is the number of the grammar rule in
310
  // the spec.
311
  //
312
  // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
313
  //
314
  // c-
315
  //   A production starting and ending with a special character.
316
  // b-
317
  //   A production matching a single line break.
318
  // nb-
319
  //   A production starting and ending with a non-break character.
320
  // s-
321
  //   A production starting and ending with a white space character.
322
  // ns-
323
  //   A production starting and ending with a non-space character.
324
  // l-
325
  //   A production matching complete line(s).
326
327
  /// Skip a single nb-char[27] starting at Position.
328
  ///
329
  /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
330
  ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
331
  ///
332
  /// @returns The code unit after the nb-char, or Position if it's not an
333
  ///          nb-char.
334
  StringRef::iterator skip_nb_char(StringRef::iterator Position);
335
336
  /// Skip a single b-break[28] starting at Position.
337
  ///
338
  /// A b-break is 0xD 0xA | 0xD | 0xA
339
  ///
340
  /// @returns The code unit after the b-break, or Position if it's not a
341
  ///          b-break.
342
  StringRef::iterator skip_b_break(StringRef::iterator Position);
343
344
  /// Skip a single s-space[31] starting at Position.
345
  ///
346
  /// An s-space is 0x20
347
  ///
348
  /// @returns The code unit after the s-space, or Position if it's not a
349
  ///          s-space.
350
  StringRef::iterator skip_s_space(StringRef::iterator Position);
351
352
  /// Skip a single s-white[33] starting at Position.
353
  ///
354
  /// A s-white is 0x20 | 0x9
355
  ///
356
  /// @returns The code unit after the s-white, or Position if it's not a
357
  ///          s-white.
358
  StringRef::iterator skip_s_white(StringRef::iterator Position);
359
360
  /// Skip a single ns-char[34] starting at Position.
361
  ///
362
  /// A ns-char is nb-char - s-white
363
  ///
364
  /// @returns The code unit after the ns-char, or Position if it's not a
365
  ///          ns-char.
366
  StringRef::iterator skip_ns_char(StringRef::iterator Position);
367
368
  using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
369
370
  /// Skip minimal well-formed code unit subsequences until Func
371
  ///        returns its input.
372
  ///
373
  /// @returns The code unit after the last minimal well-formed code unit
374
  ///          subsequence that Func accepted.
375
  StringRef::iterator skip_while( SkipWhileFunc Func
376
                                , StringRef::iterator Position);
377
378
  /// Skip minimal well-formed code unit subsequences until Func returns its
379
  /// input.
380
  void advanceWhile(SkipWhileFunc Func);
381
382
  /// Scan ns-uri-char[39]s starting at Cur.
383
  ///
384
  /// This updates Cur and Column while scanning.
385
  void scan_ns_uri_char();
386
387
  /// Consume a minimal well-formed code unit subsequence starting at
388
  ///        \a Cur. Return false if it is not the same Unicode scalar value as
389
  ///        \a Expected. This updates \a Column.
390
  bool consume(uint32_t Expected);
391
392
  /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
393
  void skip(uint32_t Distance);
394
395
  /// Return true if the minimal well-formed code unit subsequence at
396
  ///        Pos is whitespace or a new line
397
  bool isBlankOrBreak(StringRef::iterator Position);
398
399
  /// Consume a single b-break[28] if it's present at the current position.
400
  ///
401
  /// Return false if the code unit at the current position isn't a line break.
402
  bool consumeLineBreakIfPresent();
403
404
  /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
405
  void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
406
                             , unsigned AtColumn
407
                             , bool IsRequired);
408
409
  /// Remove simple keys that can no longer be valid simple keys.
410
  ///
411
  /// Invalid simple keys are not on the current line or are further than 1024
412
  /// columns back.
413
  void removeStaleSimpleKeyCandidates();
414
415
  /// Remove all simple keys on FlowLevel \a Level.
416
  void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
417
418
  /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
419
  ///        tokens if needed.
420
  bool unrollIndent(int ToColumn);
421
422
  /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
423
  ///        if needed.
424
  bool rollIndent( int ToColumn
425
                 , Token::TokenKind Kind
426
                 , TokenQueueT::iterator InsertPoint);
427
428
  /// Skip a single-line comment when the comment starts at the current
429
  /// position of the scanner.
430
  void skipComment();
431
432
  /// Skip whitespace and comments until the start of the next token.
433
  void scanToNextToken();
434
435
  /// Must be the first token generated.
436
  bool scanStreamStart();
437
438
  /// Generate tokens needed to close out the stream.
439
  bool scanStreamEnd();
440
441
  /// Scan a %BLAH directive.
442
  bool scanDirective();
443
444
  /// Scan a ... or ---.
445
  bool scanDocumentIndicator(bool IsStart);
446
447
  /// Scan a [ or { and generate the proper flow collection start token.
448
  bool scanFlowCollectionStart(bool IsSequence);
449
450
  /// Scan a ] or } and generate the proper flow collection end token.
451
  bool scanFlowCollectionEnd(bool IsSequence);
452
453
  /// Scan the , that separates entries in a flow collection.
454
  bool scanFlowEntry();
455
456
  /// Scan the - that starts block sequence entries.
457
  bool scanBlockEntry();
458
459
  /// Scan an explicit ? indicating a key.
460
  bool scanKey();
461
462
  /// Scan an explicit : indicating a value.
463
  bool scanValue();
464
465
  /// Scan a quoted scalar.
466
  bool scanFlowScalar(bool IsDoubleQuoted);
467
468
  /// Scan an unquoted scalar.
469
  bool scanPlainScalar();
470
471
  /// Scan an Alias or Anchor starting with * or &.
472
  bool scanAliasOrAnchor(bool IsAlias);
473
474
  /// Scan a block scalar starting with | or >.
475
  bool scanBlockScalar(bool IsLiteral);
476
477
  /// Scan a chomping indicator in a block scalar header.
478
  char scanBlockChompingIndicator();
479
480
  /// Scan an indentation indicator in a block scalar header.
481
  unsigned scanBlockIndentationIndicator();
482
483
  /// Scan a block scalar header.
484
  ///
485
  /// Return false if an error occurred.
486
  bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
487
                             bool &IsDone);
488
489
  /// Look for the indentation level of a block scalar.
490
  ///
491
  /// Return false if an error occurred.
492
  bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
493
                             unsigned &LineBreaks, bool &IsDone);
494
495
  /// Scan the indentation of a text line in a block scalar.
496
  ///
497
  /// Return false if an error occurred.
498
  bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
499
                             bool &IsDone);
500
501
  /// Scan a tag of the form !stuff.
502
  bool scanTag();
503
504
  /// Dispatch to the next scanning function based on \a *Cur.
505
  bool fetchMoreTokens();
506
507
  /// The SourceMgr used for diagnostics and buffer management.
508
  SourceMgr &SM;
509
510
  /// The original input.
511
  MemoryBufferRef InputBuffer;
512
513
  /// The current position of the scanner.
514
  StringRef::iterator Current;
515
516
  /// The end of the input (one past the last character).
517
  StringRef::iterator End;
518
519
  /// Current YAML indentation level in spaces.
520
  int Indent;
521
522
  /// Current column number in Unicode code points.
523
  unsigned Column;
524
525
  /// Current line number.
526
  unsigned Line;
527
528
  /// How deep we are in flow style containers. 0 Means at block level.
529
  unsigned FlowLevel;
530
531
  /// Are we at the start of the stream?
532
  bool IsStartOfStream;
533
534
  /// Can the next token be the start of a simple key?
535
  bool IsSimpleKeyAllowed;
536
537
  /// True if an error has occurred.
538
  bool Failed;
539
540
  /// Should colors be used when printing out the diagnostic messages?
541
  bool ShowColors;
542
543
  /// Queue of tokens. This is required to queue up tokens while looking
544
  ///        for the end of a simple key. And for cases where a single character
545
  ///        can produce multiple tokens (e.g. BlockEnd).
546
  TokenQueueT TokenQueue;
547
548
  /// Indentation levels.
549
  SmallVector<int, 4> Indents;
550
551
  /// Potential simple keys.
552
  SmallVector<SimpleKey, 4> SimpleKeys;
553
554
  std::error_code *EC;
555
};
556
557
} // end namespace yaml
558
} // end namespace llvm
559
560
/// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
561
static void encodeUTF8( uint32_t UnicodeScalarValue
562
0
                      , SmallVectorImpl<char> &Result) {
563
0
  if (UnicodeScalarValue <= 0x7F) {
564
0
    Result.push_back(UnicodeScalarValue & 0x7F);
565
0
  } else if (UnicodeScalarValue <= 0x7FF) {
566
0
    uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
567
0
    uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
568
0
    Result.push_back(FirstByte);
569
0
    Result.push_back(SecondByte);
570
0
  } else if (UnicodeScalarValue <= 0xFFFF) {
571
0
    uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
572
0
    uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
573
0
    uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
574
0
    Result.push_back(FirstByte);
575
0
    Result.push_back(SecondByte);
576
0
    Result.push_back(ThirdByte);
577
0
  } else if (UnicodeScalarValue <= 0x10FFFF) {
578
0
    uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
579
0
    uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
580
0
    uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
581
0
    uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
582
0
    Result.push_back(FirstByte);
583
0
    Result.push_back(SecondByte);
584
0
    Result.push_back(ThirdByte);
585
0
    Result.push_back(FourthByte);
586
0
  }
587
0
}
588
589
0
bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
590
0
  SourceMgr SM;
591
0
  Scanner scanner(Input, SM);
592
0
  while (true) {
593
0
    Token T = scanner.getNext();
594
0
    switch (T.Kind) {
595
0
    case Token::TK_StreamStart:
596
0
      OS << "Stream-Start: ";
597
0
      break;
598
0
    case Token::TK_StreamEnd:
599
0
      OS << "Stream-End: ";
600
0
      break;
601
0
    case Token::TK_VersionDirective:
602
0
      OS << "Version-Directive: ";
603
0
      break;
604
0
    case Token::TK_TagDirective:
605
0
      OS << "Tag-Directive: ";
606
0
      break;
607
0
    case Token::TK_DocumentStart:
608
0
      OS << "Document-Start: ";
609
0
      break;
610
0
    case Token::TK_DocumentEnd:
611
0
      OS << "Document-End: ";
612
0
      break;
613
0
    case Token::TK_BlockEntry:
614
0
      OS << "Block-Entry: ";
615
0
      break;
616
0
    case Token::TK_BlockEnd:
617
0
      OS << "Block-End: ";
618
0
      break;
619
0
    case Token::TK_BlockSequenceStart:
620
0
      OS << "Block-Sequence-Start: ";
621
0
      break;
622
0
    case Token::TK_BlockMappingStart:
623
0
      OS << "Block-Mapping-Start: ";
624
0
      break;
625
0
    case Token::TK_FlowEntry:
626
0
      OS << "Flow-Entry: ";
627
0
      break;
628
0
    case Token::TK_FlowSequenceStart:
629
0
      OS << "Flow-Sequence-Start: ";
630
0
      break;
631
0
    case Token::TK_FlowSequenceEnd:
632
0
      OS << "Flow-Sequence-End: ";
633
0
      break;
634
0
    case Token::TK_FlowMappingStart:
635
0
      OS << "Flow-Mapping-Start: ";
636
0
      break;
637
0
    case Token::TK_FlowMappingEnd:
638
0
      OS << "Flow-Mapping-End: ";
639
0
      break;
640
0
    case Token::TK_Key:
641
0
      OS << "Key: ";
642
0
      break;
643
0
    case Token::TK_Value:
644
0
      OS << "Value: ";
645
0
      break;
646
0
    case Token::TK_Scalar:
647
0
      OS << "Scalar: ";
648
0
      break;
649
0
    case Token::TK_BlockScalar:
650
0
      OS << "Block Scalar: ";
651
0
      break;
652
0
    case Token::TK_Alias:
653
0
      OS << "Alias: ";
654
0
      break;
655
0
    case Token::TK_Anchor:
656
0
      OS << "Anchor: ";
657
0
      break;
658
0
    case Token::TK_Tag:
659
0
      OS << "Tag: ";
660
0
      break;
661
0
    case Token::TK_Error:
662
0
      break;
663
0
    }
664
0
    OS << T.Range << "\n";
665
0
    if (T.Kind == Token::TK_StreamEnd)
666
0
      break;
667
0
    else if (T.Kind == Token::TK_Error)
668
0
      return false;
669
0
  }
670
0
  return true;
671
0
}
672
673
0
bool yaml::scanTokens(StringRef Input) {
674
0
  SourceMgr SM;
675
0
  Scanner scanner(Input, SM);
676
0
  while (true) {
677
0
    Token T = scanner.getNext();
678
0
    if (T.Kind == Token::TK_StreamEnd)
679
0
      break;
680
0
    else if (T.Kind == Token::TK_Error)
681
0
      return false;
682
0
  }
683
0
  return true;
684
0
}
685
686
0
std::string yaml::escape(StringRef Input, bool EscapePrintable) {
687
0
  std::string EscapedInput;
688
0
  for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
689
0
    if (*i == '\\')
690
0
      EscapedInput += "\\\\";
691
0
    else if (*i == '"')
692
0
      EscapedInput += "\\\"";
693
0
    else if (*i == 0)
694
0
      EscapedInput += "\\0";
695
0
    else if (*i == 0x07)
696
0
      EscapedInput += "\\a";
697
0
    else if (*i == 0x08)
698
0
      EscapedInput += "\\b";
699
0
    else if (*i == 0x09)
700
0
      EscapedInput += "\\t";
701
0
    else if (*i == 0x0A)
702
0
      EscapedInput += "\\n";
703
0
    else if (*i == 0x0B)
704
0
      EscapedInput += "\\v";
705
0
    else if (*i == 0x0C)
706
0
      EscapedInput += "\\f";
707
0
    else if (*i == 0x0D)
708
0
      EscapedInput += "\\r";
709
0
    else if (*i == 0x1B)
710
0
      EscapedInput += "\\e";
711
0
    else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
712
0
      std::string HexStr = utohexstr(*i);
713
0
      EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
714
0
    } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
715
0
      UTF8Decoded UnicodeScalarValue
716
0
        = decodeUTF8(StringRef(i, Input.end() - i));
717
0
      if (UnicodeScalarValue.second == 0) {
718
0
        // Found invalid char.
719
0
        SmallString<4> Val;
720
0
        encodeUTF8(0xFFFD, Val);
721
0
        EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
722
0
        // FIXME: Error reporting.
723
0
        return EscapedInput;
724
0
      }
725
0
      if (UnicodeScalarValue.first == 0x85)
726
0
        EscapedInput += "\\N";
727
0
      else if (UnicodeScalarValue.first == 0xA0)
728
0
        EscapedInput += "\\_";
729
0
      else if (UnicodeScalarValue.first == 0x2028)
730
0
        EscapedInput += "\\L";
731
0
      else if (UnicodeScalarValue.first == 0x2029)
732
0
        EscapedInput += "\\P";
733
0
      else if (!EscapePrintable &&
734
0
               sys::unicode::isPrintable(UnicodeScalarValue.first))
735
0
        EscapedInput += StringRef(i, UnicodeScalarValue.second);
736
0
      else {
737
0
        std::string HexStr = utohexstr(UnicodeScalarValue.first);
738
0
        if (HexStr.size() <= 2)
739
0
          EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
740
0
        else if (HexStr.size() <= 4)
741
0
          EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
742
0
        else if (HexStr.size() <= 8)
743
0
          EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
744
0
      }
745
0
      i += UnicodeScalarValue.second - 1;
746
0
    } else
747
0
      EscapedInput.push_back(*i);
748
0
  }
749
0
  return EscapedInput;
750
0
}
751
752
Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
753
                 std::error_code *EC)
754
0
    : SM(sm), ShowColors(ShowColors), EC(EC) {
755
0
  init(MemoryBufferRef(Input, "YAML"));
756
0
}
757
758
Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
759
                 std::error_code *EC)
760
0
    : SM(SM_), ShowColors(ShowColors), EC(EC) {
761
0
  init(Buffer);
762
0
}
763
764
0
void Scanner::init(MemoryBufferRef Buffer) {
765
0
  InputBuffer = Buffer;
766
0
  Current = InputBuffer.getBufferStart();
767
0
  End = InputBuffer.getBufferEnd();
768
0
  Indent = -1;
769
0
  Column = 0;
770
0
  Line = 0;
771
0
  FlowLevel = 0;
772
0
  IsStartOfStream = true;
773
0
  IsSimpleKeyAllowed = true;
774
0
  Failed = false;
775
0
  std::unique_ptr<MemoryBuffer> InputBufferOwner =
776
0
      MemoryBuffer::getMemBuffer(Buffer);
777
0
  SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
778
0
}
779
780
0
Token &Scanner::peekNext() {
781
0
  // If the current token is a possible simple key, keep parsing until we
782
0
  // can confirm.
783
0
  bool NeedMore = false;
784
0
  while (true) {
785
0
    if (TokenQueue.empty() || NeedMore) {
786
0
      if (!fetchMoreTokens()) {
787
0
        TokenQueue.clear();
788
0
        SimpleKeys.clear();
789
0
        TokenQueue.push_back(Token());
790
0
        return TokenQueue.front();
791
0
      }
792
0
    }
793
0
    assert(!TokenQueue.empty() &&
794
0
            "fetchMoreTokens lied about getting tokens!");
795
0
796
0
    removeStaleSimpleKeyCandidates();
797
0
    SimpleKey SK;
798
0
    SK.Tok = TokenQueue.begin();
799
0
    if (!is_contained(SimpleKeys, SK))
800
0
      break;
801
0
    else
802
0
      NeedMore = true;
803
0
  }
804
0
  return TokenQueue.front();
805
0
}
806
807
0
Token Scanner::getNext() {
808
0
  Token Ret = peekNext();
809
0
  // TokenQueue can be empty if there was an error getting the next token.
810
0
  if (!TokenQueue.empty())
811
0
    TokenQueue.pop_front();
812
0
813
0
  // There cannot be any referenced Token's if the TokenQueue is empty. So do a
814
0
  // quick deallocation of them all.
815
0
  if (TokenQueue.empty())
816
0
    TokenQueue.resetAlloc();
817
0
818
0
  return Ret;
819
0
}
820
821
0
StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
822
0
  if (Position == End)
823
0
    return Position;
824
0
  // Check 7 bit c-printable - b-char.
825
0
  if (   *Position == 0x09
826
0
      || (*Position >= 0x20 && *Position <= 0x7E))
827
0
    return Position + 1;
828
0
829
0
  // Check for valid UTF-8.
830
0
  if (uint8_t(*Position) & 0x80) {
831
0
    UTF8Decoded u8d = decodeUTF8(Position);
832
0
    if (   u8d.second != 0
833
0
        && u8d.first != 0xFEFF
834
0
        && ( u8d.first == 0x85
835
0
          || ( u8d.first >= 0xA0
836
0
            && u8d.first <= 0xD7FF)
837
0
          || ( u8d.first >= 0xE000
838
0
            && u8d.first <= 0xFFFD)
839
0
          || ( u8d.first >= 0x10000
840
0
            && u8d.first <= 0x10FFFF)))
841
0
      return Position + u8d.second;
842
0
  }
843
0
  return Position;
844
0
}
845
846
0
StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
847
0
  if (Position == End)
848
0
    return Position;
849
0
  if (*Position == 0x0D) {
850
0
    if (Position + 1 != End && *(Position + 1) == 0x0A)
851
0
      return Position + 2;
852
0
    return Position + 1;
853
0
  }
854
0
855
0
  if (*Position == 0x0A)
856
0
    return Position + 1;
857
0
  return Position;
858
0
}
859
860
0
StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
861
0
  if (Position == End)
862
0
    return Position;
863
0
  if (*Position == ' ')
864
0
    return Position + 1;
865
0
  return Position;
866
0
}
867
868
0
StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
869
0
  if (Position == End)
870
0
    return Position;
871
0
  if (*Position == ' ' || *Position == '\t')
872
0
    return Position + 1;
873
0
  return Position;
874
0
}
875
876
0
StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
877
0
  if (Position == End)
878
0
    return Position;
879
0
  if (*Position == ' ' || *Position == '\t')
880
0
    return Position;
881
0
  return skip_nb_char(Position);
882
0
}
883
884
StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
885
0
                                       , StringRef::iterator Position) {
886
0
  while (true) {
887
0
    StringRef::iterator i = (this->*Func)(Position);
888
0
    if (i == Position)
889
0
      break;
890
0
    Position = i;
891
0
  }
892
0
  return Position;
893
0
}
894
895
0
void Scanner::advanceWhile(SkipWhileFunc Func) {
896
0
  auto Final = skip_while(Func, Current);
897
0
  Column += Final - Current;
898
0
  Current = Final;
899
0
}
900
901
0
static bool is_ns_hex_digit(const char C) {
902
0
  return    (C >= '0' && C <= '9')
903
0
         || (C >= 'a' && C <= 'z')
904
0
         || (C >= 'A' && C <= 'Z');
905
0
}
906
907
0
static bool is_ns_word_char(const char C) {
908
0
  return    C == '-'
909
0
         || (C >= 'a' && C <= 'z')
910
0
         || (C >= 'A' && C <= 'Z');
911
0
}
912
913
0
void Scanner::scan_ns_uri_char() {
914
0
  while (true) {
915
0
    if (Current == End)
916
0
      break;
917
0
    if ((   *Current == '%'
918
0
          && Current + 2 < End
919
0
          && is_ns_hex_digit(*(Current + 1))
920
0
          && is_ns_hex_digit(*(Current + 2)))
921
0
        || is_ns_word_char(*Current)
922
0
        || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
923
0
          != StringRef::npos) {
924
0
      ++Current;
925
0
      ++Column;
926
0
    } else
927
0
      break;
928
0
  }
929
0
}
930
931
0
bool Scanner::consume(uint32_t Expected) {
932
0
  if (Expected >= 0x80) {
933
0
    setError("Cannot consume non-ascii characters", Current);
934
0
    return false;
935
0
  }
936
0
  if (Current == End)
937
0
    return false;
938
0
  if (uint8_t(*Current) >= 0x80) {
939
0
    setError("Cannot consume non-ascii characters", Current);
940
0
    return false;
941
0
  }
942
0
  if (uint8_t(*Current) == Expected) {
943
0
    ++Current;
944
0
    ++Column;
945
0
    return true;
946
0
  }
947
0
  return false;
948
0
}
949
950
0
void Scanner::skip(uint32_t Distance) {
951
0
  Current += Distance;
952
0
  Column += Distance;
953
0
  assert(Current <= End && "Skipped past the end");
954
0
}
955
956
0
bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
957
0
  if (Position == End)
958
0
    return false;
959
0
  return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
960
0
         *Position == '\n';
961
0
}
962
963
0
bool Scanner::consumeLineBreakIfPresent() {
964
0
  auto Next = skip_b_break(Current);
965
0
  if (Next == Current)
966
0
    return false;
967
0
  Column = 0;
968
0
  ++Line;
969
0
  Current = Next;
970
0
  return true;
971
0
}
972
973
void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
974
                                    , unsigned AtColumn
975
0
                                    , bool IsRequired) {
976
0
  if (IsSimpleKeyAllowed) {
977
0
    SimpleKey SK;
978
0
    SK.Tok = Tok;
979
0
    SK.Line = Line;
980
0
    SK.Column = AtColumn;
981
0
    SK.IsRequired = IsRequired;
982
0
    SK.FlowLevel = FlowLevel;
983
0
    SimpleKeys.push_back(SK);
984
0
  }
985
0
}
986
987
0
void Scanner::removeStaleSimpleKeyCandidates() {
988
0
  for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
989
0
                                            i != SimpleKeys.end();) {
990
0
    if (i->Line != Line || i->Column + 1024 < Column) {
991
0
      if (i->IsRequired)
992
0
        setError( "Could not find expected : for simple key"
993
0
                , i->Tok->Range.begin());
994
0
      i = SimpleKeys.erase(i);
995
0
    } else
996
0
      ++i;
997
0
  }
998
0
}
999
1000
0
void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1001
0
  if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1002
0
    SimpleKeys.pop_back();
1003
0
}
1004
1005
0
bool Scanner::unrollIndent(int ToColumn) {
1006
0
  Token T;
1007
0
  // Indentation is ignored in flow.
1008
0
  if (FlowLevel != 0)
1009
0
    return true;
1010
0
1011
0
  while (Indent > ToColumn) {
1012
0
    T.Kind = Token::TK_BlockEnd;
1013
0
    T.Range = StringRef(Current, 1);
1014
0
    TokenQueue.push_back(T);
1015
0
    Indent = Indents.pop_back_val();
1016
0
  }
1017
0
1018
0
  return true;
1019
0
}
1020
1021
bool Scanner::rollIndent( int ToColumn
1022
                        , Token::TokenKind Kind
1023
0
                        , TokenQueueT::iterator InsertPoint) {
1024
0
  if (FlowLevel)
1025
0
    return true;
1026
0
  if (Indent < ToColumn) {
1027
0
    Indents.push_back(Indent);
1028
0
    Indent = ToColumn;
1029
0
1030
0
    Token T;
1031
0
    T.Kind = Kind;
1032
0
    T.Range = StringRef(Current, 0);
1033
0
    TokenQueue.insert(InsertPoint, T);
1034
0
  }
1035
0
  return true;
1036
0
}
1037
1038
0
void Scanner::skipComment() {
1039
0
  if (*Current != '#')
1040
0
    return;
1041
0
  while (true) {
1042
0
    // This may skip more than one byte, thus Column is only incremented
1043
0
    // for code points.
1044
0
    StringRef::iterator I = skip_nb_char(Current);
1045
0
    if (I == Current)
1046
0
      break;
1047
0
    Current = I;
1048
0
    ++Column;
1049
0
  }
1050
0
}
1051
1052
0
void Scanner::scanToNextToken() {
1053
0
  while (true) {
1054
0
    while (*Current == ' ' || *Current == '\t') {
1055
0
      skip(1);
1056
0
    }
1057
0
1058
0
    skipComment();
1059
0
1060
0
    // Skip EOL.
1061
0
    StringRef::iterator i = skip_b_break(Current);
1062
0
    if (i == Current)
1063
0
      break;
1064
0
    Current = i;
1065
0
    ++Line;
1066
0
    Column = 0;
1067
0
    // New lines may start a simple key.
1068
0
    if (!FlowLevel)
1069
0
      IsSimpleKeyAllowed = true;
1070
0
  }
1071
0
}
1072
1073
0
bool Scanner::scanStreamStart() {
1074
0
  IsStartOfStream = false;
1075
0
1076
0
  EncodingInfo EI = getUnicodeEncoding(currentInput());
1077
0
1078
0
  Token T;
1079
0
  T.Kind = Token::TK_StreamStart;
1080
0
  T.Range = StringRef(Current, EI.second);
1081
0
  TokenQueue.push_back(T);
1082
0
  Current += EI.second;
1083
0
  return true;
1084
0
}
1085
1086
0
bool Scanner::scanStreamEnd() {
1087
0
  // Force an ending new line if one isn't present.
1088
0
  if (Column != 0) {
1089
0
    Column = 0;
1090
0
    ++Line;
1091
0
  }
1092
0
1093
0
  unrollIndent(-1);
1094
0
  SimpleKeys.clear();
1095
0
  IsSimpleKeyAllowed = false;
1096
0
1097
0
  Token T;
1098
0
  T.Kind = Token::TK_StreamEnd;
1099
0
  T.Range = StringRef(Current, 0);
1100
0
  TokenQueue.push_back(T);
1101
0
  return true;
1102
0
}
1103
1104
0
bool Scanner::scanDirective() {
1105
0
  // Reset the indentation level.
1106
0
  unrollIndent(-1);
1107
0
  SimpleKeys.clear();
1108
0
  IsSimpleKeyAllowed = false;
1109
0
1110
0
  StringRef::iterator Start = Current;
1111
0
  consume('%');
1112
0
  StringRef::iterator NameStart = Current;
1113
0
  Current = skip_while(&Scanner::skip_ns_char, Current);
1114
0
  StringRef Name(NameStart, Current - NameStart);
1115
0
  Current = skip_while(&Scanner::skip_s_white, Current);
1116
0
1117
0
  Token T;
1118
0
  if (Name == "YAML") {
1119
0
    Current = skip_while(&Scanner::skip_ns_char, Current);
1120
0
    T.Kind = Token::TK_VersionDirective;
1121
0
    T.Range = StringRef(Start, Current - Start);
1122
0
    TokenQueue.push_back(T);
1123
0
    return true;
1124
0
  } else if(Name == "TAG") {
1125
0
    Current = skip_while(&Scanner::skip_ns_char, Current);
1126
0
    Current = skip_while(&Scanner::skip_s_white, Current);
1127
0
    Current = skip_while(&Scanner::skip_ns_char, Current);
1128
0
    T.Kind = Token::TK_TagDirective;
1129
0
    T.Range = StringRef(Start, Current - Start);
1130
0
    TokenQueue.push_back(T);
1131
0
    return true;
1132
0
  }
1133
0
  return false;
1134
0
}
1135
1136
0
bool Scanner::scanDocumentIndicator(bool IsStart) {
1137
0
  unrollIndent(-1);
1138
0
  SimpleKeys.clear();
1139
0
  IsSimpleKeyAllowed = false;
1140
0
1141
0
  Token T;
1142
0
  T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1143
0
  T.Range = StringRef(Current, 3);
1144
0
  skip(3);
1145
0
  TokenQueue.push_back(T);
1146
0
  return true;
1147
0
}
1148
1149
0
bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1150
0
  Token T;
1151
0
  T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1152
0
                      : Token::TK_FlowMappingStart;
1153
0
  T.Range = StringRef(Current, 1);
1154
0
  skip(1);
1155
0
  TokenQueue.push_back(T);
1156
0
1157
0
  // [ and { may begin a simple key.
1158
0
  saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1159
0
1160
0
  // And may also be followed by a simple key.
1161
0
  IsSimpleKeyAllowed = true;
1162
0
  ++FlowLevel;
1163
0
  return true;
1164
0
}
1165
1166
0
bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1167
0
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1168
0
  IsSimpleKeyAllowed = false;
1169
0
  Token T;
1170
0
  T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1171
0
                      : Token::TK_FlowMappingEnd;
1172
0
  T.Range = StringRef(Current, 1);
1173
0
  skip(1);
1174
0
  TokenQueue.push_back(T);
1175
0
  if (FlowLevel)
1176
0
    --FlowLevel;
1177
0
  return true;
1178
0
}
1179
1180
0
bool Scanner::scanFlowEntry() {
1181
0
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1182
0
  IsSimpleKeyAllowed = true;
1183
0
  Token T;
1184
0
  T.Kind = Token::TK_FlowEntry;
1185
0
  T.Range = StringRef(Current, 1);
1186
0
  skip(1);
1187
0
  TokenQueue.push_back(T);
1188
0
  return true;
1189
0
}
1190
1191
0
bool Scanner::scanBlockEntry() {
1192
0
  rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1193
0
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1194
0
  IsSimpleKeyAllowed = true;
1195
0
  Token T;
1196
0
  T.Kind = Token::TK_BlockEntry;
1197
0
  T.Range = StringRef(Current, 1);
1198
0
  skip(1);
1199
0
  TokenQueue.push_back(T);
1200
0
  return true;
1201
0
}
1202
1203
0
bool Scanner::scanKey() {
1204
0
  if (!FlowLevel)
1205
0
    rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1206
0
1207
0
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1208
0
  IsSimpleKeyAllowed = !FlowLevel;
1209
0
1210
0
  Token T;
1211
0
  T.Kind = Token::TK_Key;
1212
0
  T.Range = StringRef(Current, 1);
1213
0
  skip(1);
1214
0
  TokenQueue.push_back(T);
1215
0
  return true;
1216
0
}
1217
1218
0
bool Scanner::scanValue() {
1219
0
  // If the previous token could have been a simple key, insert the key token
1220
0
  // into the token queue.
1221
0
  if (!SimpleKeys.empty()) {
1222
0
    SimpleKey SK = SimpleKeys.pop_back_val();
1223
0
    Token T;
1224
0
    T.Kind = Token::TK_Key;
1225
0
    T.Range = SK.Tok->Range;
1226
0
    TokenQueueT::iterator i, e;
1227
0
    for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1228
0
      if (i == SK.Tok)
1229
0
        break;
1230
0
    }
1231
0
    if (i == e) {
1232
0
      Failed = true;
1233
0
      return false;
1234
0
    }
1235
0
    i = TokenQueue.insert(i, T);
1236
0
1237
0
    // We may also need to add a Block-Mapping-Start token.
1238
0
    rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1239
0
1240
0
    IsSimpleKeyAllowed = false;
1241
0
  } else {
1242
0
    if (!FlowLevel)
1243
0
      rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1244
0
    IsSimpleKeyAllowed = !FlowLevel;
1245
0
  }
1246
0
1247
0
  Token T;
1248
0
  T.Kind = Token::TK_Value;
1249
0
  T.Range = StringRef(Current, 1);
1250
0
  skip(1);
1251
0
  TokenQueue.push_back(T);
1252
0
  return true;
1253
0
}
1254
1255
// Forbidding inlining improves performance by roughly 20%.
1256
// FIXME: Remove once llvm optimizes this to the faster version without hints.
1257
LLVM_ATTRIBUTE_NOINLINE static bool
1258
wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1259
1260
// Returns whether a character at 'Position' was escaped with a leading '\'.
1261
// 'First' specifies the position of the first character in the string.
1262
static bool wasEscaped(StringRef::iterator First,
1263
0
                       StringRef::iterator Position) {
1264
0
  assert(Position - 1 >= First);
1265
0
  StringRef::iterator I = Position - 1;
1266
0
  // We calculate the number of consecutive '\'s before the current position
1267
0
  // by iterating backwards through our string.
1268
0
  while (I >= First && *I == '\\') --I;
1269
0
  // (Position - 1 - I) now contains the number of '\'s before the current
1270
0
  // position. If it is odd, the character at 'Position' was escaped.
1271
0
  return (Position - 1 - I) % 2 == 1;
1272
0
}
1273
1274
0
bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1275
0
  StringRef::iterator Start = Current;
1276
0
  unsigned ColStart = Column;
1277
0
  if (IsDoubleQuoted) {
1278
0
    do {
1279
0
      ++Current;
1280
0
      while (Current != End && *Current != '"')
1281
0
        ++Current;
1282
0
      // Repeat until the previous character was not a '\' or was an escaped
1283
0
      // backslash.
1284
0
    } while (   Current != End
1285
0
             && *(Current - 1) == '\\'
1286
0
             && wasEscaped(Start + 1, Current));
1287
0
  } else {
1288
0
    skip(1);
1289
0
    while (true) {
1290
0
      // Skip a ' followed by another '.
1291
0
      if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1292
0
        skip(2);
1293
0
        continue;
1294
0
      } else if (*Current == '\'')
1295
0
        break;
1296
0
      StringRef::iterator i = skip_nb_char(Current);
1297
0
      if (i == Current) {
1298
0
        i = skip_b_break(Current);
1299
0
        if (i == Current)
1300
0
          break;
1301
0
        Current = i;
1302
0
        Column = 0;
1303
0
        ++Line;
1304
0
      } else {
1305
0
        if (i == End)
1306
0
          break;
1307
0
        Current = i;
1308
0
        ++Column;
1309
0
      }
1310
0
    }
1311
0
  }
1312
0
1313
0
  if (Current == End) {
1314
0
    setError("Expected quote at end of scalar", Current);
1315
0
    return false;
1316
0
  }
1317
0
1318
0
  skip(1); // Skip ending quote.
1319
0
  Token T;
1320
0
  T.Kind = Token::TK_Scalar;
1321
0
  T.Range = StringRef(Start, Current - Start);
1322
0
  TokenQueue.push_back(T);
1323
0
1324
0
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1325
0
1326
0
  IsSimpleKeyAllowed = false;
1327
0
1328
0
  return true;
1329
0
}
1330
1331
0
bool Scanner::scanPlainScalar() {
1332
0
  StringRef::iterator Start = Current;
1333
0
  unsigned ColStart = Column;
1334
0
  unsigned LeadingBlanks = 0;
1335
0
  assert(Indent >= -1 && "Indent must be >= -1 !");
1336
0
  unsigned indent = static_cast<unsigned>(Indent + 1);
1337
0
  while (true) {
1338
0
    if (*Current == '#')
1339
0
      break;
1340
0
1341
0
    while (!isBlankOrBreak(Current)) {
1342
0
      if (  FlowLevel && *Current == ':'
1343
0
          && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1344
0
        setError("Found unexpected ':' while scanning a plain scalar", Current);
1345
0
        return false;
1346
0
      }
1347
0
1348
0
      // Check for the end of the plain scalar.
1349
0
      if (  (*Current == ':' && isBlankOrBreak(Current + 1))
1350
0
          || (  FlowLevel
1351
0
          && (StringRef(Current, 1).find_first_of(",:?[]{}")
1352
0
              != StringRef::npos)))
1353
0
        break;
1354
0
1355
0
      StringRef::iterator i = skip_nb_char(Current);
1356
0
      if (i == Current)
1357
0
        break;
1358
0
      Current = i;
1359
0
      ++Column;
1360
0
    }
1361
0
1362
0
    // Are we at the end?
1363
0
    if (!isBlankOrBreak(Current))
1364
0
      break;
1365
0
1366
0
    // Eat blanks.
1367
0
    StringRef::iterator Tmp = Current;
1368
0
    while (isBlankOrBreak(Tmp)) {
1369
0
      StringRef::iterator i = skip_s_white(Tmp);
1370
0
      if (i != Tmp) {
1371
0
        if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1372
0
          setError("Found invalid tab character in indentation", Tmp);
1373
0
          return false;
1374
0
        }
1375
0
        Tmp = i;
1376
0
        ++Column;
1377
0
      } else {
1378
0
        i = skip_b_break(Tmp);
1379
0
        if (!LeadingBlanks)
1380
0
          LeadingBlanks = 1;
1381
0
        Tmp = i;
1382
0
        Column = 0;
1383
0
        ++Line;
1384
0
      }
1385
0
    }
1386
0
1387
0
    if (!FlowLevel && Column < indent)
1388
0
      break;
1389
0
1390
0
    Current = Tmp;
1391
0
  }
1392
0
  if (Start == Current) {
1393
0
    setError("Got empty plain scalar", Start);
1394
0
    return false;
1395
0
  }
1396
0
  Token T;
1397
0
  T.Kind = Token::TK_Scalar;
1398
0
  T.Range = StringRef(Start, Current - Start);
1399
0
  TokenQueue.push_back(T);
1400
0
1401
0
  // Plain scalars can be simple keys.
1402
0
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1403
0
1404
0
  IsSimpleKeyAllowed = false;
1405
0
1406
0
  return true;
1407
0
}
1408
1409
0
bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1410
0
  StringRef::iterator Start = Current;
1411
0
  unsigned ColStart = Column;
1412
0
  skip(1);
1413
0
  while(true) {
1414
0
    if (   *Current == '[' || *Current == ']'
1415
0
        || *Current == '{' || *Current == '}'
1416
0
        || *Current == ','
1417
0
        || *Current == ':')
1418
0
      break;
1419
0
    StringRef::iterator i = skip_ns_char(Current);
1420
0
    if (i == Current)
1421
0
      break;
1422
0
    Current = i;
1423
0
    ++Column;
1424
0
  }
1425
0
1426
0
  if (Start == Current) {
1427
0
    setError("Got empty alias or anchor", Start);
1428
0
    return false;
1429
0
  }
1430
0
1431
0
  Token T;
1432
0
  T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1433
0
  T.Range = StringRef(Start, Current - Start);
1434
0
  TokenQueue.push_back(T);
1435
0
1436
0
  // Alias and anchors can be simple keys.
1437
0
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1438
0
1439
0
  IsSimpleKeyAllowed = false;
1440
0
1441
0
  return true;
1442
0
}
1443
1444
0
char Scanner::scanBlockChompingIndicator() {
1445
0
  char Indicator = ' ';
1446
0
  if (Current != End && (*Current == '+' || *Current == '-')) {
1447
0
    Indicator = *Current;
1448
0
    skip(1);
1449
0
  }
1450
0
  return Indicator;
1451
0
}
1452
1453
/// Get the number of line breaks after chomping.
1454
///
1455
/// Return the number of trailing line breaks to emit, depending on
1456
/// \p ChompingIndicator.
1457
static unsigned getChompedLineBreaks(char ChompingIndicator,
1458
0
                                     unsigned LineBreaks, StringRef Str) {
1459
0
  if (ChompingIndicator == '-') // Strip all line breaks.
1460
0
    return 0;
1461
0
  if (ChompingIndicator == '+') // Keep all line breaks.
1462
0
    return LineBreaks;
1463
0
  // Clip trailing lines.
1464
0
  return Str.empty() ? 0 : 1;
1465
0
}
1466
1467
0
unsigned Scanner::scanBlockIndentationIndicator() {
1468
0
  unsigned Indent = 0;
1469
0
  if (Current != End && (*Current >= '1' && *Current <= '9')) {
1470
0
    Indent = unsigned(*Current - '0');
1471
0
    skip(1);
1472
0
  }
1473
0
  return Indent;
1474
0
}
1475
1476
bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1477
0
                                    unsigned &IndentIndicator, bool &IsDone) {
1478
0
  auto Start = Current;
1479
0
1480
0
  ChompingIndicator = scanBlockChompingIndicator();
1481
0
  IndentIndicator = scanBlockIndentationIndicator();
1482
0
  // Check for the chomping indicator once again.
1483
0
  if (ChompingIndicator == ' ')
1484
0
    ChompingIndicator = scanBlockChompingIndicator();
1485
0
  Current = skip_while(&Scanner::skip_s_white, Current);
1486
0
  skipComment();
1487
0
1488
0
  if (Current == End) { // EOF, we have an empty scalar.
1489
0
    Token T;
1490
0
    T.Kind = Token::TK_BlockScalar;
1491
0
    T.Range = StringRef(Start, Current - Start);
1492
0
    TokenQueue.push_back(T);
1493
0
    IsDone = true;
1494
0
    return true;
1495
0
  }
1496
0
1497
0
  if (!consumeLineBreakIfPresent()) {
1498
0
    setError("Expected a line break after block scalar header", Current);
1499
0
    return false;
1500
0
  }
1501
0
  return true;
1502
0
}
1503
1504
bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1505
                                    unsigned BlockExitIndent,
1506
0
                                    unsigned &LineBreaks, bool &IsDone) {
1507
0
  unsigned MaxAllSpaceLineCharacters = 0;
1508
0
  StringRef::iterator LongestAllSpaceLine;
1509
0
1510
0
  while (true) {
1511
0
    advanceWhile(&Scanner::skip_s_space);
1512
0
    if (skip_nb_char(Current) != Current) {
1513
0
      // This line isn't empty, so try and find the indentation.
1514
0
      if (Column <= BlockExitIndent) { // End of the block literal.
1515
0
        IsDone = true;
1516
0
        return true;
1517
0
      }
1518
0
      // We found the block's indentation.
1519
0
      BlockIndent = Column;
1520
0
      if (MaxAllSpaceLineCharacters > BlockIndent) {
1521
0
        setError(
1522
0
            "Leading all-spaces line must be smaller than the block indent",
1523
0
            LongestAllSpaceLine);
1524
0
        return false;
1525
0
      }
1526
0
      return true;
1527
0
    }
1528
0
    if (skip_b_break(Current) != Current &&
1529
0
        Column > MaxAllSpaceLineCharacters) {
1530
0
      // Record the longest all-space line in case it's longer than the
1531
0
      // discovered block indent.
1532
0
      MaxAllSpaceLineCharacters = Column;
1533
0
      LongestAllSpaceLine = Current;
1534
0
    }
1535
0
1536
0
    // Check for EOF.
1537
0
    if (Current == End) {
1538
0
      IsDone = true;
1539
0
      return true;
1540
0
    }
1541
0
1542
0
    if (!consumeLineBreakIfPresent()) {
1543
0
      IsDone = true;
1544
0
      return true;
1545
0
    }
1546
0
    ++LineBreaks;
1547
0
  }
1548
0
  return true;
1549
0
}
1550
1551
bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1552
0
                                    unsigned BlockExitIndent, bool &IsDone) {
1553
0
  // Skip the indentation.
1554
0
  while (Column < BlockIndent) {
1555
0
    auto I = skip_s_space(Current);
1556
0
    if (I == Current)
1557
0
      break;
1558
0
    Current = I;
1559
0
    ++Column;
1560
0
  }
1561
0
1562
0
  if (skip_nb_char(Current) == Current)
1563
0
    return true;
1564
0
1565
0
  if (Column <= BlockExitIndent) { // End of the block literal.
1566
0
    IsDone = true;
1567
0
    return true;
1568
0
  }
1569
0
1570
0
  if (Column < BlockIndent) {
1571
0
    if (Current != End && *Current == '#') { // Trailing comment.
1572
0
      IsDone = true;
1573
0
      return true;
1574
0
    }
1575
0
    setError("A text line is less indented than the block scalar", Current);
1576
0
    return false;
1577
0
  }
1578
0
  return true; // A normal text line.
1579
0
}
1580
1581
0
bool Scanner::scanBlockScalar(bool IsLiteral) {
1582
0
  // Eat '|' or '>'
1583
0
  assert(*Current == '|' || *Current == '>');
1584
0
  skip(1);
1585
0
1586
0
  char ChompingIndicator;
1587
0
  unsigned BlockIndent;
1588
0
  bool IsDone = false;
1589
0
  if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1590
0
    return false;
1591
0
  if (IsDone)
1592
0
    return true;
1593
0
1594
0
  auto Start = Current;
1595
0
  unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1596
0
  unsigned LineBreaks = 0;
1597
0
  if (BlockIndent == 0) {
1598
0
    if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1599
0
                               IsDone))
1600
0
      return false;
1601
0
  }
1602
0
1603
0
  // Scan the block's scalars body.
1604
0
  SmallString<256> Str;
1605
0
  while (!IsDone) {
1606
0
    if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1607
0
      return false;
1608
0
    if (IsDone)
1609
0
      break;
1610
0
1611
0
    // Parse the current line.
1612
0
    auto LineStart = Current;
1613
0
    advanceWhile(&Scanner::skip_nb_char);
1614
0
    if (LineStart != Current) {
1615
0
      Str.append(LineBreaks, '\n');
1616
0
      Str.append(StringRef(LineStart, Current - LineStart));
1617
0
      LineBreaks = 0;
1618
0
    }
1619
0
1620
0
    // Check for EOF.
1621
0
    if (Current == End)
1622
0
      break;
1623
0
1624
0
    if (!consumeLineBreakIfPresent())
1625
0
      break;
1626
0
    ++LineBreaks;
1627
0
  }
1628
0
1629
0
  if (Current == End && !LineBreaks)
1630
0
    // Ensure that there is at least one line break before the end of file.
1631
0
    LineBreaks = 1;
1632
0
  Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1633
0
1634
0
  // New lines may start a simple key.
1635
0
  if (!FlowLevel)
1636
0
    IsSimpleKeyAllowed = true;
1637
0
1638
0
  Token T;
1639
0
  T.Kind = Token::TK_BlockScalar;
1640
0
  T.Range = StringRef(Start, Current - Start);
1641
0
  T.Value = std::string(Str);
1642
0
  TokenQueue.push_back(T);
1643
0
  return true;
1644
0
}
1645
1646
0
bool Scanner::scanTag() {
1647
0
  StringRef::iterator Start = Current;
1648
0
  unsigned ColStart = Column;
1649
0
  skip(1); // Eat !.
1650
0
  if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1651
0
  else if (*Current == '<') {
1652
0
    skip(1);
1653
0
    scan_ns_uri_char();
1654
0
    if (!consume('>'))
1655
0
      return false;
1656
0
  } else {
1657
0
    // FIXME: Actually parse the c-ns-shorthand-tag rule.
1658
0
    Current = skip_while(&Scanner::skip_ns_char, Current);
1659
0
  }
1660
0
1661
0
  Token T;
1662
0
  T.Kind = Token::TK_Tag;
1663
0
  T.Range = StringRef(Start, Current - Start);
1664
0
  TokenQueue.push_back(T);
1665
0
1666
0
  // Tags can be simple keys.
1667
0
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1668
0
1669
0
  IsSimpleKeyAllowed = false;
1670
0
1671
0
  return true;
1672
0
}
1673
1674
0
bool Scanner::fetchMoreTokens() {
1675
0
  if (IsStartOfStream)
1676
0
    return scanStreamStart();
1677
0
1678
0
  scanToNextToken();
1679
0
1680
0
  if (Current == End)
1681
0
    return scanStreamEnd();
1682
0
1683
0
  removeStaleSimpleKeyCandidates();
1684
0
1685
0
  unrollIndent(Column);
1686
0
1687
0
  if (Column == 0 && *Current == '%')
1688
0
    return scanDirective();
1689
0
1690
0
  if (Column == 0 && Current + 4 <= End
1691
0
      && *Current == '-'
1692
0
      && *(Current + 1) == '-'
1693
0
      && *(Current + 2) == '-'
1694
0
      && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1695
0
    return scanDocumentIndicator(true);
1696
0
1697
0
  if (Column == 0 && Current + 4 <= End
1698
0
      && *Current == '.'
1699
0
      && *(Current + 1) == '.'
1700
0
      && *(Current + 2) == '.'
1701
0
      && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1702
0
    return scanDocumentIndicator(false);
1703
0
1704
0
  if (*Current == '[')
1705
0
    return scanFlowCollectionStart(true);
1706
0
1707
0
  if (*Current == '{')
1708
0
    return scanFlowCollectionStart(false);
1709
0
1710
0
  if (*Current == ']')
1711
0
    return scanFlowCollectionEnd(true);
1712
0
1713
0
  if (*Current == '}')
1714
0
    return scanFlowCollectionEnd(false);
1715
0
1716
0
  if (*Current == ',')
1717
0
    return scanFlowEntry();
1718
0
1719
0
  if (*Current == '-' && isBlankOrBreak(Current + 1))
1720
0
    return scanBlockEntry();
1721
0
1722
0
  if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1723
0
    return scanKey();
1724
0
1725
0
  if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1726
0
    return scanValue();
1727
0
1728
0
  if (*Current == '*')
1729
0
    return scanAliasOrAnchor(true);
1730
0
1731
0
  if (*Current == '&')
1732
0
    return scanAliasOrAnchor(false);
1733
0
1734
0
  if (*Current == '!')
1735
0
    return scanTag();
1736
0
1737
0
  if (*Current == '|' && !FlowLevel)
1738
0
    return scanBlockScalar(true);
1739
0
1740
0
  if (*Current == '>' && !FlowLevel)
1741
0
    return scanBlockScalar(false);
1742
0
1743
0
  if (*Current == '\'')
1744
0
    return scanFlowScalar(false);
1745
0
1746
0
  if (*Current == '"')
1747
0
    return scanFlowScalar(true);
1748
0
1749
0
  // Get a plain scalar.
1750
0
  StringRef FirstChar(Current, 1);
1751
0
  if (!(isBlankOrBreak(Current)
1752
0
        || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1753
0
      || (*Current == '-' && !isBlankOrBreak(Current + 1))
1754
0
      || (!FlowLevel && (*Current == '?' || *Current == ':')
1755
0
          && isBlankOrBreak(Current + 1))
1756
0
      || (!FlowLevel && *Current == ':'
1757
0
                      && Current + 2 < End
1758
0
                      && *(Current + 1) == ':'
1759
0
                      && !isBlankOrBreak(Current + 2)))
1760
0
    return scanPlainScalar();
1761
0
1762
0
  setError("Unrecognized character while tokenizing.", Current);
1763
0
  return false;
1764
0
}
1765
1766
Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1767
               std::error_code *EC)
1768
0
    : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1769
1770
Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1771
               std::error_code *EC)
1772
0
    : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1773
1774
0
Stream::~Stream() = default;
1775
1776
0
bool Stream::failed() { return scanner->failed(); }
1777
1778
0
void Stream::printError(Node *N, const Twine &Msg) {
1779
0
  SMRange Range = N ? N->getSourceRange() : SMRange();
1780
0
  scanner->printError( Range.Start
1781
0
                     , SourceMgr::DK_Error
1782
0
                     , Msg
1783
0
                     , Range);
1784
0
}
1785
1786
0
document_iterator Stream::begin() {
1787
0
  if (CurrentDoc)
1788
0
    report_fatal_error("Can only iterate over the stream once");
1789
0
1790
0
  // Skip Stream-Start.
1791
0
  scanner->getNext();
1792
0
1793
0
  CurrentDoc.reset(new Document(*this));
1794
0
  return document_iterator(CurrentDoc);
1795
0
}
1796
1797
0
document_iterator Stream::end() {
1798
0
  return document_iterator();
1799
0
}
1800
1801
0
void Stream::skip() {
1802
0
  for (document_iterator i = begin(), e = end(); i != e; ++i)
1803
0
    i->skip();
1804
0
}
1805
1806
Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1807
           StringRef T)
1808
0
    : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1809
0
  SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1810
0
  SourceRange = SMRange(Start, Start);
1811
0
}
1812
1813
0
std::string Node::getVerbatimTag() const {
1814
0
  StringRef Raw = getRawTag();
1815
0
  if (!Raw.empty() && Raw != "!") {
1816
0
    std::string Ret;
1817
0
    if (Raw.find_last_of('!') == 0) {
1818
0
      Ret = std::string(Doc->getTagMap().find("!")->second);
1819
0
      Ret += Raw.substr(1);
1820
0
      return Ret;
1821
0
    } else if (Raw.startswith("!!")) {
1822
0
      Ret = std::string(Doc->getTagMap().find("!!")->second);
1823
0
      Ret += Raw.substr(2);
1824
0
      return Ret;
1825
0
    } else {
1826
0
      StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1827
0
      std::map<StringRef, StringRef>::const_iterator It =
1828
0
          Doc->getTagMap().find(TagHandle);
1829
0
      if (It != Doc->getTagMap().end())
1830
0
        Ret = std::string(It->second);
1831
0
      else {
1832
0
        Token T;
1833
0
        T.Kind = Token::TK_Tag;
1834
0
        T.Range = TagHandle;
1835
0
        setError(Twine("Unknown tag handle ") + TagHandle, T);
1836
0
      }
1837
0
      Ret += Raw.substr(Raw.find_last_of('!') + 1);
1838
0
      return Ret;
1839
0
    }
1840
0
  }
1841
0
1842
0
  switch (getType()) {
1843
0
  case NK_Null:
1844
0
    return "tag:yaml.org,2002:null";
1845
0
  case NK_Scalar:
1846
0
  case NK_BlockScalar:
1847
0
    // TODO: Tag resolution.
1848
0
    return "tag:yaml.org,2002:str";
1849
0
  case NK_Mapping:
1850
0
    return "tag:yaml.org,2002:map";
1851
0
  case NK_Sequence:
1852
0
    return "tag:yaml.org,2002:seq";
1853
0
  }
1854
0
1855
0
  return "";
1856
0
}
1857
1858
0
Token &Node::peekNext() {
1859
0
  return Doc->peekNext();
1860
0
}
1861
1862
0
Token Node::getNext() {
1863
0
  return Doc->getNext();
1864
0
}
1865
1866
0
Node *Node::parseBlockNode() {
1867
0
  return Doc->parseBlockNode();
1868
0
}
1869
1870
0
BumpPtrAllocator &Node::getAllocator() {
1871
0
  return Doc->NodeAllocator;
1872
0
}
1873
1874
0
void Node::setError(const Twine &Msg, Token &Tok) const {
1875
0
  Doc->setError(Msg, Tok);
1876
0
}
1877
1878
0
bool Node::failed() const {
1879
0
  return Doc->failed();
1880
0
}
1881
1882
0
StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1883
0
  // TODO: Handle newlines properly. We need to remove leading whitespace.
1884
0
  if (Value[0] == '"') { // Double quoted.
1885
0
    // Pull off the leading and trailing "s.
1886
0
    StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1887
0
    // Search for characters that would require unescaping the value.
1888
0
    StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1889
0
    if (i != StringRef::npos)
1890
0
      return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1891
0
    return UnquotedValue;
1892
0
  } else if (Value[0] == '\'') { // Single quoted.
1893
0
    // Pull off the leading and trailing 's.
1894
0
    StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1895
0
    StringRef::size_type i = UnquotedValue.find('\'');
1896
0
    if (i != StringRef::npos) {
1897
0
      // We're going to need Storage.
1898
0
      Storage.clear();
1899
0
      Storage.reserve(UnquotedValue.size());
1900
0
      for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1901
0
        StringRef Valid(UnquotedValue.begin(), i);
1902
0
        Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1903
0
        Storage.push_back('\'');
1904
0
        UnquotedValue = UnquotedValue.substr(i + 2);
1905
0
      }
1906
0
      Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1907
0
      return StringRef(Storage.begin(), Storage.size());
1908
0
    }
1909
0
    return UnquotedValue;
1910
0
  }
1911
0
  // Plain or block.
1912
0
  return Value.rtrim(' ');
1913
0
}
1914
1915
StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1916
                                          , StringRef::size_type i
1917
                                          , SmallVectorImpl<char> &Storage)
1918
0
                                          const {
1919
0
  // Use Storage to build proper value.
1920
0
  Storage.clear();
1921
0
  Storage.reserve(UnquotedValue.size());
1922
0
  for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1923
0
    // Insert all previous chars into Storage.
1924
0
    StringRef Valid(UnquotedValue.begin(), i);
1925
0
    Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1926
0
    // Chop off inserted chars.
1927
0
    UnquotedValue = UnquotedValue.substr(i);
1928
0
1929
0
    assert(!UnquotedValue.empty() && "Can't be empty!");
1930
0
1931
0
    // Parse escape or line break.
1932
0
    switch (UnquotedValue[0]) {
1933
0
    case '\r':
1934
0
    case '\n':
1935
0
      Storage.push_back('\n');
1936
0
      if (   UnquotedValue.size() > 1
1937
0
          && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1938
0
        UnquotedValue = UnquotedValue.substr(1);
1939
0
      UnquotedValue = UnquotedValue.substr(1);
1940
0
      break;
1941
0
    default:
1942
0
      if (UnquotedValue.size() == 1) {
1943
0
        Token T;
1944
0
        T.Range = StringRef(UnquotedValue.begin(), 1);
1945
0
        setError("Unrecognized escape code", T);
1946
0
        return "";
1947
0
      }
1948
0
      UnquotedValue = UnquotedValue.substr(1);
1949
0
      switch (UnquotedValue[0]) {
1950
0
      default: {
1951
0
          Token T;
1952
0
          T.Range = StringRef(UnquotedValue.begin(), 1);
1953
0
          setError("Unrecognized escape code", T);
1954
0
          return "";
1955
0
        }
1956
0
      case '\r':
1957
0
      case '\n':
1958
0
        // Remove the new line.
1959
0
        if (   UnquotedValue.size() > 1
1960
0
            && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1961
0
          UnquotedValue = UnquotedValue.substr(1);
1962
0
        // If this was just a single byte newline, it will get skipped
1963
0
        // below.
1964
0
        break;
1965
0
      case '0':
1966
0
        Storage.push_back(0x00);
1967
0
        break;
1968
0
      case 'a':
1969
0
        Storage.push_back(0x07);
1970
0
        break;
1971
0
      case 'b':
1972
0
        Storage.push_back(0x08);
1973
0
        break;
1974
0
      case 't':
1975
0
      case 0x09:
1976
0
        Storage.push_back(0x09);
1977
0
        break;
1978
0
      case 'n':
1979
0
        Storage.push_back(0x0A);
1980
0
        break;
1981
0
      case 'v':
1982
0
        Storage.push_back(0x0B);
1983
0
        break;
1984
0
      case 'f':
1985
0
        Storage.push_back(0x0C);
1986
0
        break;
1987
0
      case 'r':
1988
0
        Storage.push_back(0x0D);
1989
0
        break;
1990
0
      case 'e':
1991
0
        Storage.push_back(0x1B);
1992
0
        break;
1993
0
      case ' ':
1994
0
        Storage.push_back(0x20);
1995
0
        break;
1996
0
      case '"':
1997
0
        Storage.push_back(0x22);
1998
0
        break;
1999
0
      case '/':
2000
0
        Storage.push_back(0x2F);
2001
0
        break;
2002
0
      case '\\':
2003
0
        Storage.push_back(0x5C);
2004
0
        break;
2005
0
      case 'N':
2006
0
        encodeUTF8(0x85, Storage);
2007
0
        break;
2008
0
      case '_':
2009
0
        encodeUTF8(0xA0, Storage);
2010
0
        break;
2011
0
      case 'L':
2012
0
        encodeUTF8(0x2028, Storage);
2013
0
        break;
2014
0
      case 'P':
2015
0
        encodeUTF8(0x2029, Storage);
2016
0
        break;
2017
0
      case 'x': {
2018
0
          if (UnquotedValue.size() < 3)
2019
0
            // TODO: Report error.
2020
0
            break;
2021
0
          unsigned int UnicodeScalarValue;
2022
0
          if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2023
0
            // TODO: Report error.
2024
0
            UnicodeScalarValue = 0xFFFD;
2025
0
          encodeUTF8(UnicodeScalarValue, Storage);
2026
0
          UnquotedValue = UnquotedValue.substr(2);
2027
0
          break;
2028
0
        }
2029
0
      case 'u': {
2030
0
          if (UnquotedValue.size() < 5)
2031
0
            // TODO: Report error.
2032
0
            break;
2033
0
          unsigned int UnicodeScalarValue;
2034
0
          if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2035
0
            // TODO: Report error.
2036
0
            UnicodeScalarValue = 0xFFFD;
2037
0
          encodeUTF8(UnicodeScalarValue, Storage);
2038
0
          UnquotedValue = UnquotedValue.substr(4);
2039
0
          break;
2040
0
        }
2041
0
      case 'U': {
2042
0
          if (UnquotedValue.size() < 9)
2043
0
            // TODO: Report error.
2044
0
            break;
2045
0
          unsigned int UnicodeScalarValue;
2046
0
          if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2047
0
            // TODO: Report error.
2048
0
            UnicodeScalarValue = 0xFFFD;
2049
0
          encodeUTF8(UnicodeScalarValue, Storage);
2050
0
          UnquotedValue = UnquotedValue.substr(8);
2051
0
          break;
2052
0
        }
2053
0
      }
2054
0
      UnquotedValue = UnquotedValue.substr(1);
2055
0
    }
2056
0
  }
2057
0
  Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
2058
0
  return StringRef(Storage.begin(), Storage.size());
2059
0
}
2060
2061
0
Node *KeyValueNode::getKey() {
2062
0
  if (Key)
2063
0
    return Key;
2064
0
  // Handle implicit null keys.
2065
0
  {
2066
0
    Token &t = peekNext();
2067
0
    if (   t.Kind == Token::TK_BlockEnd
2068
0
        || t.Kind == Token::TK_Value
2069
0
        || t.Kind == Token::TK_Error) {
2070
0
      return Key = new (getAllocator()) NullNode(Doc);
2071
0
    }
2072
0
    if (t.Kind == Token::TK_Key)
2073
0
      getNext(); // skip TK_Key.
2074
0
  }
2075
0
2076
0
  // Handle explicit null keys.
2077
0
  Token &t = peekNext();
2078
0
  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2079
0
    return Key = new (getAllocator()) NullNode(Doc);
2080
0
  }
2081
0
2082
0
  // We've got a normal key.
2083
0
  return Key = parseBlockNode();
2084
0
}
2085
2086
0
Node *KeyValueNode::getValue() {
2087
0
  if (Value)
2088
0
    return Value;
2089
0
2090
0
  if (Node* Key = getKey())
2091
0
    Key->skip();
2092
0
  else {
2093
0
    setError("Null key in Key Value.", peekNext());
2094
0
    return Value = new (getAllocator()) NullNode(Doc);
2095
0
  }
2096
0
2097
0
  if (failed())
2098
0
    return Value = new (getAllocator()) NullNode(Doc);
2099
0
2100
0
  // Handle implicit null values.
2101
0
  {
2102
0
    Token &t = peekNext();
2103
0
    if (   t.Kind == Token::TK_BlockEnd
2104
0
        || t.Kind == Token::TK_FlowMappingEnd
2105
0
        || t.Kind == Token::TK_Key
2106
0
        || t.Kind == Token::TK_FlowEntry
2107
0
        || t.Kind == Token::TK_Error) {
2108
0
      return Value = new (getAllocator()) NullNode(Doc);
2109
0
    }
2110
0
2111
0
    if (t.Kind != Token::TK_Value) {
2112
0
      setError("Unexpected token in Key Value.", t);
2113
0
      return Value = new (getAllocator()) NullNode(Doc);
2114
0
    }
2115
0
    getNext(); // skip TK_Value.
2116
0
  }
2117
0
2118
0
  // Handle explicit null values.
2119
0
  Token &t = peekNext();
2120
0
  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2121
0
    return Value = new (getAllocator()) NullNode(Doc);
2122
0
  }
2123
0
2124
0
  // We got a normal value.
2125
0
  return Value = parseBlockNode();
2126
0
}
2127
2128
0
void MappingNode::increment() {
2129
0
  if (failed()) {
2130
0
    IsAtEnd = true;
2131
0
    CurrentEntry = nullptr;
2132
0
    return;
2133
0
  }
2134
0
  if (CurrentEntry) {
2135
0
    CurrentEntry->skip();
2136
0
    if (Type == MT_Inline) {
2137
0
      IsAtEnd = true;
2138
0
      CurrentEntry = nullptr;
2139
0
      return;
2140
0
    }
2141
0
  }
2142
0
  Token T = peekNext();
2143
0
  if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2144
0
    // KeyValueNode eats the TK_Key. That way it can detect null keys.
2145
0
    CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2146
0
  } else if (Type == MT_Block) {
2147
0
    switch (T.Kind) {
2148
0
    case Token::TK_BlockEnd:
2149
0
      getNext();
2150
0
      IsAtEnd = true;
2151
0
      CurrentEntry = nullptr;
2152
0
      break;
2153
0
    default:
2154
0
      setError("Unexpected token. Expected Key or Block End", T);
2155
0
      LLVM_FALLTHROUGH;
2156
0
    case Token::TK_Error:
2157
0
      IsAtEnd = true;
2158
0
      CurrentEntry = nullptr;
2159
0
    }
2160
0
  } else {
2161
0
    switch (T.Kind) {
2162
0
    case Token::TK_FlowEntry:
2163
0
      // Eat the flow entry and recurse.
2164
0
      getNext();
2165
0
      return increment();
2166
0
    case Token::TK_FlowMappingEnd:
2167
0
      getNext();
2168
0
      LLVM_FALLTHROUGH;
2169
0
    case Token::TK_Error:
2170
0
      // Set this to end iterator.
2171
0
      IsAtEnd = true;
2172
0
      CurrentEntry = nullptr;
2173
0
      break;
2174
0
    default:
2175
0
      setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2176
0
                "Mapping End."
2177
0
              , T);
2178
0
      IsAtEnd = true;
2179
0
      CurrentEntry = nullptr;
2180
0
    }
2181
0
  }
2182
0
}
2183
2184
0
void SequenceNode::increment() {
2185
0
  if (failed()) {
2186
0
    IsAtEnd = true;
2187
0
    CurrentEntry = nullptr;
2188
0
    return;
2189
0
  }
2190
0
  if (CurrentEntry)
2191
0
    CurrentEntry->skip();
2192
0
  Token T = peekNext();
2193
0
  if (SeqType == ST_Block) {
2194
0
    switch (T.Kind) {
2195
0
    case Token::TK_BlockEntry:
2196
0
      getNext();
2197
0
      CurrentEntry = parseBlockNode();
2198
0
      if (!CurrentEntry) { // An error occurred.
2199
0
        IsAtEnd = true;
2200
0
        CurrentEntry = nullptr;
2201
0
      }
2202
0
      break;
2203
0
    case Token::TK_BlockEnd:
2204
0
      getNext();
2205
0
      IsAtEnd = true;
2206
0
      CurrentEntry = nullptr;
2207
0
      break;
2208
0
    default:
2209
0
      setError( "Unexpected token. Expected Block Entry or Block End."
2210
0
              , T);
2211
0
      LLVM_FALLTHROUGH;
2212
0
    case Token::TK_Error:
2213
0
      IsAtEnd = true;
2214
0
      CurrentEntry = nullptr;
2215
0
    }
2216
0
  } else if (SeqType == ST_Indentless) {
2217
0
    switch (T.Kind) {
2218
0
    case Token::TK_BlockEntry:
2219
0
      getNext();
2220
0
      CurrentEntry = parseBlockNode();
2221
0
      if (!CurrentEntry) { // An error occurred.
2222
0
        IsAtEnd = true;
2223
0
        CurrentEntry = nullptr;
2224
0
      }
2225
0
      break;
2226
0
    default:
2227
0
    case Token::TK_Error:
2228
0
      IsAtEnd = true;
2229
0
      CurrentEntry = nullptr;
2230
0
    }
2231
0
  } else if (SeqType == ST_Flow) {
2232
0
    switch (T.Kind) {
2233
0
    case Token::TK_FlowEntry:
2234
0
      // Eat the flow entry and recurse.
2235
0
      getNext();
2236
0
      WasPreviousTokenFlowEntry = true;
2237
0
      return increment();
2238
0
    case Token::TK_FlowSequenceEnd:
2239
0
      getNext();
2240
0
      LLVM_FALLTHROUGH;
2241
0
    case Token::TK_Error:
2242
0
      // Set this to end iterator.
2243
0
      IsAtEnd = true;
2244
0
      CurrentEntry = nullptr;
2245
0
      break;
2246
0
    case Token::TK_StreamEnd:
2247
0
    case Token::TK_DocumentEnd:
2248
0
    case Token::TK_DocumentStart:
2249
0
      setError("Could not find closing ]!", T);
2250
0
      // Set this to end iterator.
2251
0
      IsAtEnd = true;
2252
0
      CurrentEntry = nullptr;
2253
0
      break;
2254
0
    default:
2255
0
      if (!WasPreviousTokenFlowEntry) {
2256
0
        setError("Expected , between entries!", T);
2257
0
        IsAtEnd = true;
2258
0
        CurrentEntry = nullptr;
2259
0
        break;
2260
0
      }
2261
0
      // Otherwise it must be a flow entry.
2262
0
      CurrentEntry = parseBlockNode();
2263
0
      if (!CurrentEntry) {
2264
0
        IsAtEnd = true;
2265
0
      }
2266
0
      WasPreviousTokenFlowEntry = false;
2267
0
      break;
2268
0
    }
2269
0
  }
2270
0
}
2271
2272
0
Document::Document(Stream &S) : stream(S), Root(nullptr) {
2273
0
  // Tag maps starts with two default mappings.
2274
0
  TagMap["!"] = "!";
2275
0
  TagMap["!!"] = "tag:yaml.org,2002:";
2276
0
2277
0
  if (parseDirectives())
2278
0
    expectToken(Token::TK_DocumentStart);
2279
0
  Token &T = peekNext();
2280
0
  if (T.Kind == Token::TK_DocumentStart)
2281
0
    getNext();
2282
0
}
2283
2284
0
bool Document::skip()  {
2285
0
  if (stream.scanner->failed())
2286
0
    return false;
2287
0
  if (!Root && !getRoot())
2288
0
    return false;
2289
0
  Root->skip();
2290
0
  Token &T = peekNext();
2291
0
  if (T.Kind == Token::TK_StreamEnd)
2292
0
    return false;
2293
0
  if (T.Kind == Token::TK_DocumentEnd) {
2294
0
    getNext();
2295
0
    return skip();
2296
0
  }
2297
0
  return true;
2298
0
}
2299
2300
0
Token &Document::peekNext() {
2301
0
  return stream.scanner->peekNext();
2302
0
}
2303
2304
0
Token Document::getNext() {
2305
0
  return stream.scanner->getNext();
2306
0
}
2307
2308
0
void Document::setError(const Twine &Message, Token &Location) const {
2309
0
  stream.scanner->setError(Message, Location.Range.begin());
2310
0
}
2311
2312
0
bool Document::failed() const {
2313
0
  return stream.scanner->failed();
2314
0
}
2315
2316
0
Node *Document::parseBlockNode() {
2317
0
  Token T = peekNext();
2318
0
  // Handle properties.
2319
0
  Token AnchorInfo;
2320
0
  Token TagInfo;
2321
0
parse_property:
2322
0
  switch (T.Kind) {
2323
0
  case Token::TK_Alias:
2324
0
    getNext();
2325
0
    return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2326
0
  case Token::TK_Anchor:
2327
0
    if (AnchorInfo.Kind == Token::TK_Anchor) {
2328
0
      setError("Already encountered an anchor for this node!", T);
2329
0
      return nullptr;
2330
0
    }
2331
0
    AnchorInfo = getNext(); // Consume TK_Anchor.
2332
0
    T = peekNext();
2333
0
    goto parse_property;
2334
0
  case Token::TK_Tag:
2335
0
    if (TagInfo.Kind == Token::TK_Tag) {
2336
0
      setError("Already encountered a tag for this node!", T);
2337
0
      return nullptr;
2338
0
    }
2339
0
    TagInfo = getNext(); // Consume TK_Tag.
2340
0
    T = peekNext();
2341
0
    goto parse_property;
2342
0
  default:
2343
0
    break;
2344
0
  }
2345
0
2346
0
  switch (T.Kind) {
2347
0
  case Token::TK_BlockEntry:
2348
0
    // We got an unindented BlockEntry sequence. This is not terminated with
2349
0
    // a BlockEnd.
2350
0
    // Don't eat the TK_BlockEntry, SequenceNode needs it.
2351
0
    return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2352
0
                                           , AnchorInfo.Range.substr(1)
2353
0
                                           , TagInfo.Range
2354
0
                                           , SequenceNode::ST_Indentless);
2355
0
  case Token::TK_BlockSequenceStart:
2356
0
    getNext();
2357
0
    return new (NodeAllocator)
2358
0
      SequenceNode( stream.CurrentDoc
2359
0
                  , AnchorInfo.Range.substr(1)
2360
0
                  , TagInfo.Range
2361
0
                  , SequenceNode::ST_Block);
2362
0
  case Token::TK_BlockMappingStart:
2363
0
    getNext();
2364
0
    return new (NodeAllocator)
2365
0
      MappingNode( stream.CurrentDoc
2366
0
                 , AnchorInfo.Range.substr(1)
2367
0
                 , TagInfo.Range
2368
0
                 , MappingNode::MT_Block);
2369
0
  case Token::TK_FlowSequenceStart:
2370
0
    getNext();
2371
0
    return new (NodeAllocator)
2372
0
      SequenceNode( stream.CurrentDoc
2373
0
                  , AnchorInfo.Range.substr(1)
2374
0
                  , TagInfo.Range
2375
0
                  , SequenceNode::ST_Flow);
2376
0
  case Token::TK_FlowMappingStart:
2377
0
    getNext();
2378
0
    return new (NodeAllocator)
2379
0
      MappingNode( stream.CurrentDoc
2380
0
                 , AnchorInfo.Range.substr(1)
2381
0
                 , TagInfo.Range
2382
0
                 , MappingNode::MT_Flow);
2383
0
  case Token::TK_Scalar:
2384
0
    getNext();
2385
0
    return new (NodeAllocator)
2386
0
      ScalarNode( stream.CurrentDoc
2387
0
                , AnchorInfo.Range.substr(1)
2388
0
                , TagInfo.Range
2389
0
                , T.Range);
2390
0
  case Token::TK_BlockScalar: {
2391
0
    getNext();
2392
0
    StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2393
0
    StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2394
0
    return new (NodeAllocator)
2395
0
        BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2396
0
                        TagInfo.Range, StrCopy, T.Range);
2397
0
  }
2398
0
  case Token::TK_Key:
2399
0
    // Don't eat the TK_Key, KeyValueNode expects it.
2400
0
    return new (NodeAllocator)
2401
0
      MappingNode( stream.CurrentDoc
2402
0
                 , AnchorInfo.Range.substr(1)
2403
0
                 , TagInfo.Range
2404
0
                 , MappingNode::MT_Inline);
2405
0
  case Token::TK_DocumentStart:
2406
0
  case Token::TK_DocumentEnd:
2407
0
  case Token::TK_StreamEnd:
2408
0
  default:
2409
0
    // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2410
0
    //       !!null null.
2411
0
    return new (NodeAllocator) NullNode(stream.CurrentDoc);
2412
0
  case Token::TK_FlowMappingEnd:
2413
0
  case Token::TK_FlowSequenceEnd:
2414
0
  case Token::TK_FlowEntry: {
2415
0
    if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2416
0
      return new (NodeAllocator) NullNode(stream.CurrentDoc);
2417
0
2418
0
    setError("Unexpected token", T);
2419
0
    return nullptr;
2420
0
  }
2421
0
  case Token::TK_Error:
2422
0
    return nullptr;
2423
0
  }
2424
0
  llvm_unreachable("Control flow shouldn't reach here.");
2425
0
  return nullptr;
2426
0
}
2427
2428
0
bool Document::parseDirectives() {
2429
0
  bool isDirective = false;
2430
0
  while (true) {
2431
0
    Token T = peekNext();
2432
0
    if (T.Kind == Token::TK_TagDirective) {
2433
0
      parseTAGDirective();
2434
0
      isDirective = true;
2435
0
    } else if (T.Kind == Token::TK_VersionDirective) {
2436
0
      parseYAMLDirective();
2437
0
      isDirective = true;
2438
0
    } else
2439
0
      break;
2440
0
  }
2441
0
  return isDirective;
2442
0
}
2443
2444
0
void Document::parseYAMLDirective() {
2445
0
  getNext(); // Eat %YAML <version>
2446
0
}
2447
2448
0
void Document::parseTAGDirective() {
2449
0
  Token Tag = getNext(); // %TAG <handle> <prefix>
2450
0
  StringRef T = Tag.Range;
2451
0
  // Strip %TAG
2452
0
  T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2453
0
  std::size_t HandleEnd = T.find_first_of(" \t");
2454
0
  StringRef TagHandle = T.substr(0, HandleEnd);
2455
0
  StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2456
0
  TagMap[TagHandle] = TagPrefix;
2457
0
}
2458
2459
0
bool Document::expectToken(int TK) {
2460
0
  Token T = getNext();
2461
0
  if (T.Kind != TK) {
2462
0
    setError("Unexpected token", T);
2463
0
    return false;
2464
0
  }
2465
0
  return true;
2466
0
}