/home/arjun/llvm-project/llvm/lib/Support/StringMap.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- StringMap.cpp - String Hash table map implementation -------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the StringMap class. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "llvm/ADT/StringMap.h" |
14 | | #include "llvm/ADT/StringExtras.h" |
15 | | #include "llvm/Support/DJB.h" |
16 | | #include "llvm/Support/MathExtras.h" |
17 | | |
18 | | using namespace llvm; |
19 | | |
20 | | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
21 | | /// accommodate \p NumEntries without need to grow(). |
22 | 0 | static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
23 | 0 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
24 | 0 | if (NumEntries == 0) |
25 | 0 | return 0; |
26 | 0 | // +1 is required because of the strict equality. |
27 | 0 | // For example if NumEntries is 48, we need to return 401. |
28 | 0 | return NextPowerOf2(NumEntries * 4 / 3 + 1); |
29 | 0 | } |
30 | | |
31 | 0 | StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) { |
32 | 0 | ItemSize = itemSize; |
33 | 0 |
|
34 | 0 | // If a size is specified, initialize the table with that many buckets. |
35 | 0 | if (InitSize) { |
36 | 0 | // The table will grow when the number of entries reach 3/4 of the number of |
37 | 0 | // buckets. To guarantee that "InitSize" number of entries can be inserted |
38 | 0 | // in the table without growing, we allocate just what is needed here. |
39 | 0 | init(getMinBucketToReserveForEntries(InitSize)); |
40 | 0 | return; |
41 | 0 | } |
42 | 0 | |
43 | 0 | // Otherwise, initialize it with zero buckets to avoid the allocation. |
44 | 0 | TheTable = nullptr; |
45 | 0 | NumBuckets = 0; |
46 | 0 | NumItems = 0; |
47 | 0 | NumTombstones = 0; |
48 | 0 | } |
49 | | |
50 | 4 | void StringMapImpl::init(unsigned InitSize) { |
51 | 4 | assert((InitSize & (InitSize - 1)) == 0 && |
52 | 4 | "Init Size must be a power of 2 or zero!"); |
53 | 4 | |
54 | 4 | unsigned NewNumBuckets = InitSize ? InitSize : 16; |
55 | 4 | NumItems = 0; |
56 | 4 | NumTombstones = 0; |
57 | 4 | |
58 | 4 | TheTable = static_cast<StringMapEntryBase **>(safe_calloc( |
59 | 4 | NewNumBuckets + 1, sizeof(StringMapEntryBase **) + sizeof(unsigned))); |
60 | 4 | |
61 | 4 | // Set the member only if TheTable was successfully allocated |
62 | 4 | NumBuckets = NewNumBuckets; |
63 | 4 | |
64 | 4 | // Allocate one extra bucket, set it to look filled so the iterators stop at |
65 | 4 | // end. |
66 | 4 | TheTable[NumBuckets] = (StringMapEntryBase *)2; |
67 | 4 | } |
68 | | |
69 | | /// LookupBucketFor - Look up the bucket that the specified string should end |
70 | | /// up in. If it already exists as a key in the map, the Item pointer for the |
71 | | /// specified bucket will be non-null. Otherwise, it will be null. In either |
72 | | /// case, the FullHashValue field of the bucket will be set to the hash value |
73 | | /// of the string. |
74 | 40 | unsigned StringMapImpl::LookupBucketFor(StringRef Name) { |
75 | 40 | unsigned HTSize = NumBuckets; |
76 | 40 | if (HTSize == 0) { // Hash table unallocated so far? |
77 | 4 | init(16); |
78 | 4 | HTSize = NumBuckets; |
79 | 4 | } |
80 | 40 | unsigned FullHashValue = djbHash(Name, 0); |
81 | 40 | unsigned BucketNo = FullHashValue & (HTSize - 1); |
82 | 40 | unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); |
83 | 40 | |
84 | 40 | unsigned ProbeAmt = 1; |
85 | 40 | int FirstTombstone = -1; |
86 | 66 | while (true) { |
87 | 66 | StringMapEntryBase *BucketItem = TheTable[BucketNo]; |
88 | 66 | // If we found an empty bucket, this key isn't in the table yet, return it. |
89 | 66 | if (LLVM_LIKELY(!BucketItem)) { |
90 | 40 | // If we found a tombstone, we want to reuse the tombstone instead of an |
91 | 40 | // empty bucket. This reduces probing. |
92 | 40 | if (FirstTombstone != -1) { |
93 | 0 | HashTable[FirstTombstone] = FullHashValue; |
94 | 0 | return FirstTombstone; |
95 | 0 | } |
96 | 40 | |
97 | 40 | HashTable[BucketNo] = FullHashValue; |
98 | 40 | return BucketNo; |
99 | 40 | } |
100 | 26 | |
101 | 26 | if (BucketItem == getTombstoneVal()) { |
102 | 0 | // Skip over tombstones. However, remember the first one we see. |
103 | 0 | if (FirstTombstone == -1) |
104 | 0 | FirstTombstone = BucketNo; |
105 | 26 | } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { |
106 | 0 | // If the full hash value matches, check deeply for a match. The common |
107 | 0 | // case here is that we are only looking at the buckets (for item info |
108 | 0 | // being non-null and for the full hash value) not at the items. This |
109 | 0 | // is important for cache locality. |
110 | 0 |
|
111 | 0 | // Do the comparison like this because Name isn't necessarily |
112 | 0 | // null-terminated! |
113 | 0 | char *ItemStr = (char *)BucketItem + ItemSize; |
114 | 0 | if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) { |
115 | 0 | // We found a match! |
116 | 0 | return BucketNo; |
117 | 0 | } |
118 | 26 | } |
119 | 26 | |
120 | 26 | // Okay, we didn't find the item. Probe to the next bucket. |
121 | 26 | BucketNo = (BucketNo + ProbeAmt) & (HTSize - 1); |
122 | 26 | |
123 | 26 | // Use quadratic probing, it has fewer clumping artifacts than linear |
124 | 26 | // probing and has good cache behavior in the common case. |
125 | 26 | ++ProbeAmt; |
126 | 26 | } |
127 | 40 | } |
128 | | |
129 | | /// FindKey - Look up the bucket that contains the specified key. If it exists |
130 | | /// in the map, return the bucket number of the key. Otherwise return -1. |
131 | | /// This does not modify the map. |
132 | 4 | int StringMapImpl::FindKey(StringRef Key) const { |
133 | 4 | unsigned HTSize = NumBuckets; |
134 | 4 | if (HTSize == 0) |
135 | 0 | return -1; // Really empty table? |
136 | 4 | unsigned FullHashValue = djbHash(Key, 0); |
137 | 4 | unsigned BucketNo = FullHashValue & (HTSize - 1); |
138 | 4 | unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); |
139 | 4 | |
140 | 4 | unsigned ProbeAmt = 1; |
141 | 4 | while (true) { |
142 | 4 | StringMapEntryBase *BucketItem = TheTable[BucketNo]; |
143 | 4 | // If we found an empty bucket, this key isn't in the table yet, return. |
144 | 4 | if (LLVM_LIKELY(!BucketItem)) |
145 | 4 | return -1; |
146 | 0 | |
147 | 0 | if (BucketItem == getTombstoneVal()) { |
148 | 0 | // Ignore tombstones. |
149 | 0 | } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) { |
150 | 0 | // If the full hash value matches, check deeply for a match. The common |
151 | 0 | // case here is that we are only looking at the buckets (for item info |
152 | 0 | // being non-null and for the full hash value) not at the items. This |
153 | 0 | // is important for cache locality. |
154 | 0 |
|
155 | 0 | // Do the comparison like this because NameStart isn't necessarily |
156 | 0 | // null-terminated! |
157 | 0 | char *ItemStr = (char *)BucketItem + ItemSize; |
158 | 0 | if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) { |
159 | 0 | // We found a match! |
160 | 0 | return BucketNo; |
161 | 0 | } |
162 | 0 | } |
163 | 0 | |
164 | 0 | // Okay, we didn't find the item. Probe to the next bucket. |
165 | 0 | BucketNo = (BucketNo + ProbeAmt) & (HTSize - 1); |
166 | 0 |
|
167 | 0 | // Use quadratic probing, it has fewer clumping artifacts than linear |
168 | 0 | // probing and has good cache behavior in the common case. |
169 | 0 | ++ProbeAmt; |
170 | 0 | } |
171 | 4 | } |
172 | | |
173 | | /// RemoveKey - Remove the specified StringMapEntry from the table, but do not |
174 | | /// delete it. This aborts if the value isn't in the table. |
175 | 0 | void StringMapImpl::RemoveKey(StringMapEntryBase *V) { |
176 | 0 | const char *VStr = (char *)V + ItemSize; |
177 | 0 | StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength())); |
178 | 0 | (void)V2; |
179 | 0 | assert(V == V2 && "Didn't find key?"); |
180 | 0 | } |
181 | | |
182 | | /// RemoveKey - Remove the StringMapEntry for the specified key from the |
183 | | /// table, returning it. If the key is not in the table, this returns null. |
184 | 0 | StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) { |
185 | 0 | int Bucket = FindKey(Key); |
186 | 0 | if (Bucket == -1) |
187 | 0 | return nullptr; |
188 | 0 | |
189 | 0 | StringMapEntryBase *Result = TheTable[Bucket]; |
190 | 0 | TheTable[Bucket] = getTombstoneVal(); |
191 | 0 | --NumItems; |
192 | 0 | ++NumTombstones; |
193 | 0 | assert(NumItems + NumTombstones <= NumBuckets); |
194 | 0 |
|
195 | 0 | return Result; |
196 | 0 | } |
197 | | |
198 | | /// RehashTable - Grow the table, redistributing values into the buckets with |
199 | | /// the appropriate mod-of-hashtable-size. |
200 | 40 | unsigned StringMapImpl::RehashTable(unsigned BucketNo) { |
201 | 40 | unsigned NewSize; |
202 | 40 | unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1); |
203 | 40 | |
204 | 40 | // If the hash table is now more than 3/4 full, or if fewer than 1/8 of |
205 | 40 | // the buckets are empty (meaning that many are filled with tombstones), |
206 | 40 | // grow/rehash the table. |
207 | 40 | if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) { |
208 | 2 | NewSize = NumBuckets * 2; |
209 | 38 | } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <= |
210 | 38 | NumBuckets / 8)) { |
211 | 0 | NewSize = NumBuckets; |
212 | 38 | } else { |
213 | 38 | return BucketNo; |
214 | 38 | } |
215 | 2 | |
216 | 2 | unsigned NewBucketNo = BucketNo; |
217 | 2 | // Allocate one extra bucket which will always be non-empty. This allows the |
218 | 2 | // iterators to stop at end. |
219 | 2 | auto NewTableArray = static_cast<StringMapEntryBase **>(safe_calloc( |
220 | 2 | NewSize + 1, sizeof(StringMapEntryBase *) + sizeof(unsigned))); |
221 | 2 | |
222 | 2 | unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1); |
223 | 2 | NewTableArray[NewSize] = (StringMapEntryBase *)2; |
224 | 2 | |
225 | 2 | // Rehash all the items into their new buckets. Luckily :) we already have |
226 | 2 | // the hash values available, so we don't have to rehash any strings. |
227 | 34 | for (unsigned I = 0, E = NumBuckets; I != E; ++I) { |
228 | 32 | StringMapEntryBase *Bucket = TheTable[I]; |
229 | 32 | if (Bucket && Bucket != getTombstoneVal()) { |
230 | 26 | // Fast case, bucket available. |
231 | 26 | unsigned FullHash = HashTable[I]; |
232 | 26 | unsigned NewBucket = FullHash & (NewSize - 1); |
233 | 26 | if (!NewTableArray[NewBucket]) { |
234 | 20 | NewTableArray[FullHash & (NewSize - 1)] = Bucket; |
235 | 20 | NewHashArray[FullHash & (NewSize - 1)] = FullHash; |
236 | 20 | if (I == BucketNo) |
237 | 2 | NewBucketNo = NewBucket; |
238 | 20 | continue; |
239 | 20 | } |
240 | 6 | |
241 | 6 | // Otherwise probe for a spot. |
242 | 6 | unsigned ProbeSize = 1; |
243 | 10 | do { |
244 | 10 | NewBucket = (NewBucket + ProbeSize++) & (NewSize - 1); |
245 | 10 | } while (NewTableArray[NewBucket]); |
246 | 6 | |
247 | 6 | // Finally found a slot. Fill it in. |
248 | 6 | NewTableArray[NewBucket] = Bucket; |
249 | 6 | NewHashArray[NewBucket] = FullHash; |
250 | 6 | if (I == BucketNo) |
251 | 0 | NewBucketNo = NewBucket; |
252 | 6 | } |
253 | 32 | } |
254 | 2 | |
255 | 2 | free(TheTable); |
256 | 2 | |
257 | 2 | TheTable = NewTableArray; |
258 | 2 | NumBuckets = NewSize; |
259 | 2 | NumTombstones = 0; |
260 | 2 | return NewBucketNo; |
261 | 2 | } |