Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/lib/Support/StringMap.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- StringMap.cpp - String Hash table map implementation -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the StringMap class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/ADT/StringMap.h"
14
#include "llvm/ADT/StringExtras.h"
15
#include "llvm/Support/DJB.h"
16
#include "llvm/Support/MathExtras.h"
17
18
using namespace llvm;
19
20
/// Returns the number of buckets to allocate to ensure that the DenseMap can
21
/// accommodate \p NumEntries without need to grow().
22
0
static unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
23
0
  // Ensure that "NumEntries * 4 < NumBuckets * 3"
24
0
  if (NumEntries == 0)
25
0
    return 0;
26
0
  // +1 is required because of the strict equality.
27
0
  // For example if NumEntries is 48, we need to return 401.
28
0
  return NextPowerOf2(NumEntries * 4 / 3 + 1);
29
0
}
30
31
0
StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
32
0
  ItemSize = itemSize;
33
0
34
0
  // If a size is specified, initialize the table with that many buckets.
35
0
  if (InitSize) {
36
0
    // The table will grow when the number of entries reach 3/4 of the number of
37
0
    // buckets. To guarantee that "InitSize" number of entries can be inserted
38
0
    // in the table without growing, we allocate just what is needed here.
39
0
    init(getMinBucketToReserveForEntries(InitSize));
40
0
    return;
41
0
  }
42
0
43
0
  // Otherwise, initialize it with zero buckets to avoid the allocation.
44
0
  TheTable = nullptr;
45
0
  NumBuckets = 0;
46
0
  NumItems = 0;
47
0
  NumTombstones = 0;
48
0
}
49
50
4
void StringMapImpl::init(unsigned InitSize) {
51
4
  assert((InitSize & (InitSize - 1)) == 0 &&
52
4
         "Init Size must be a power of 2 or zero!");
53
4
54
4
  unsigned NewNumBuckets = InitSize ? InitSize : 16;
55
4
  NumItems = 0;
56
4
  NumTombstones = 0;
57
4
58
4
  TheTable = static_cast<StringMapEntryBase **>(safe_calloc(
59
4
      NewNumBuckets + 1, sizeof(StringMapEntryBase **) + sizeof(unsigned)));
60
4
61
4
  // Set the member only if TheTable was successfully allocated
62
4
  NumBuckets = NewNumBuckets;
63
4
64
4
  // Allocate one extra bucket, set it to look filled so the iterators stop at
65
4
  // end.
66
4
  TheTable[NumBuckets] = (StringMapEntryBase *)2;
67
4
}
68
69
/// LookupBucketFor - Look up the bucket that the specified string should end
70
/// up in.  If it already exists as a key in the map, the Item pointer for the
71
/// specified bucket will be non-null.  Otherwise, it will be null.  In either
72
/// case, the FullHashValue field of the bucket will be set to the hash value
73
/// of the string.
74
40
unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
75
40
  unsigned HTSize = NumBuckets;
76
40
  if (HTSize == 0) { // Hash table unallocated so far?
77
4
    init(16);
78
4
    HTSize = NumBuckets;
79
4
  }
80
40
  unsigned FullHashValue = djbHash(Name, 0);
81
40
  unsigned BucketNo = FullHashValue & (HTSize - 1);
82
40
  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
83
40
84
40
  unsigned ProbeAmt = 1;
85
40
  int FirstTombstone = -1;
86
66
  while (true) {
87
66
    StringMapEntryBase *BucketItem = TheTable[BucketNo];
88
66
    // If we found an empty bucket, this key isn't in the table yet, return it.
89
66
    if (LLVM_LIKELY(!BucketItem)) {
90
40
      // If we found a tombstone, we want to reuse the tombstone instead of an
91
40
      // empty bucket.  This reduces probing.
92
40
      if (FirstTombstone != -1) {
93
0
        HashTable[FirstTombstone] = FullHashValue;
94
0
        return FirstTombstone;
95
0
      }
96
40
97
40
      HashTable[BucketNo] = FullHashValue;
98
40
      return BucketNo;
99
40
    }
100
26
101
26
    if (BucketItem == getTombstoneVal()) {
102
0
      // Skip over tombstones.  However, remember the first one we see.
103
0
      if (FirstTombstone == -1)
104
0
        FirstTombstone = BucketNo;
105
26
    } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
106
0
      // If the full hash value matches, check deeply for a match.  The common
107
0
      // case here is that we are only looking at the buckets (for item info
108
0
      // being non-null and for the full hash value) not at the items.  This
109
0
      // is important for cache locality.
110
0
111
0
      // Do the comparison like this because Name isn't necessarily
112
0
      // null-terminated!
113
0
      char *ItemStr = (char *)BucketItem + ItemSize;
114
0
      if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
115
0
        // We found a match!
116
0
        return BucketNo;
117
0
      }
118
26
    }
119
26
120
26
    // Okay, we didn't find the item.  Probe to the next bucket.
121
26
    BucketNo = (BucketNo + ProbeAmt) & (HTSize - 1);
122
26
123
26
    // Use quadratic probing, it has fewer clumping artifacts than linear
124
26
    // probing and has good cache behavior in the common case.
125
26
    ++ProbeAmt;
126
26
  }
127
40
}
128
129
/// FindKey - Look up the bucket that contains the specified key. If it exists
130
/// in the map, return the bucket number of the key.  Otherwise return -1.
131
/// This does not modify the map.
132
4
int StringMapImpl::FindKey(StringRef Key) const {
133
4
  unsigned HTSize = NumBuckets;
134
4
  if (HTSize == 0)
135
0
    return -1; // Really empty table?
136
4
  unsigned FullHashValue = djbHash(Key, 0);
137
4
  unsigned BucketNo = FullHashValue & (HTSize - 1);
138
4
  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
139
4
140
4
  unsigned ProbeAmt = 1;
141
4
  while (true) {
142
4
    StringMapEntryBase *BucketItem = TheTable[BucketNo];
143
4
    // If we found an empty bucket, this key isn't in the table yet, return.
144
4
    if (LLVM_LIKELY(!BucketItem))
145
4
      return -1;
146
0
147
0
    if (BucketItem == getTombstoneVal()) {
148
0
      // Ignore tombstones.
149
0
    } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
150
0
      // If the full hash value matches, check deeply for a match.  The common
151
0
      // case here is that we are only looking at the buckets (for item info
152
0
      // being non-null and for the full hash value) not at the items.  This
153
0
      // is important for cache locality.
154
0
155
0
      // Do the comparison like this because NameStart isn't necessarily
156
0
      // null-terminated!
157
0
      char *ItemStr = (char *)BucketItem + ItemSize;
158
0
      if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
159
0
        // We found a match!
160
0
        return BucketNo;
161
0
      }
162
0
    }
163
0
164
0
    // Okay, we didn't find the item.  Probe to the next bucket.
165
0
    BucketNo = (BucketNo + ProbeAmt) & (HTSize - 1);
166
0
167
0
    // Use quadratic probing, it has fewer clumping artifacts than linear
168
0
    // probing and has good cache behavior in the common case.
169
0
    ++ProbeAmt;
170
0
  }
171
4
}
172
173
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
174
/// delete it.  This aborts if the value isn't in the table.
175
0
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
176
0
  const char *VStr = (char *)V + ItemSize;
177
0
  StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
178
0
  (void)V2;
179
0
  assert(V == V2 && "Didn't find key?");
180
0
}
181
182
/// RemoveKey - Remove the StringMapEntry for the specified key from the
183
/// table, returning it.  If the key is not in the table, this returns null.
184
0
StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
185
0
  int Bucket = FindKey(Key);
186
0
  if (Bucket == -1)
187
0
    return nullptr;
188
0
189
0
  StringMapEntryBase *Result = TheTable[Bucket];
190
0
  TheTable[Bucket] = getTombstoneVal();
191
0
  --NumItems;
192
0
  ++NumTombstones;
193
0
  assert(NumItems + NumTombstones <= NumBuckets);
194
0
195
0
  return Result;
196
0
}
197
198
/// RehashTable - Grow the table, redistributing values into the buckets with
199
/// the appropriate mod-of-hashtable-size.
200
40
unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
201
40
  unsigned NewSize;
202
40
  unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
203
40
204
40
  // If the hash table is now more than 3/4 full, or if fewer than 1/8 of
205
40
  // the buckets are empty (meaning that many are filled with tombstones),
206
40
  // grow/rehash the table.
207
40
  if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) {
208
2
    NewSize = NumBuckets * 2;
209
38
  } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <=
210
38
                           NumBuckets / 8)) {
211
0
    NewSize = NumBuckets;
212
38
  } else {
213
38
    return BucketNo;
214
38
  }
215
2
216
2
  unsigned NewBucketNo = BucketNo;
217
2
  // Allocate one extra bucket which will always be non-empty.  This allows the
218
2
  // iterators to stop at end.
219
2
  auto NewTableArray = static_cast<StringMapEntryBase **>(safe_calloc(
220
2
      NewSize + 1, sizeof(StringMapEntryBase *) + sizeof(unsigned)));
221
2
222
2
  unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1);
223
2
  NewTableArray[NewSize] = (StringMapEntryBase *)2;
224
2
225
2
  // Rehash all the items into their new buckets.  Luckily :) we already have
226
2
  // the hash values available, so we don't have to rehash any strings.
227
34
  for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
228
32
    StringMapEntryBase *Bucket = TheTable[I];
229
32
    if (Bucket && Bucket != getTombstoneVal()) {
230
26
      // Fast case, bucket available.
231
26
      unsigned FullHash = HashTable[I];
232
26
      unsigned NewBucket = FullHash & (NewSize - 1);
233
26
      if (!NewTableArray[NewBucket]) {
234
20
        NewTableArray[FullHash & (NewSize - 1)] = Bucket;
235
20
        NewHashArray[FullHash & (NewSize - 1)] = FullHash;
236
20
        if (I == BucketNo)
237
2
          NewBucketNo = NewBucket;
238
20
        continue;
239
20
      }
240
6
241
6
      // Otherwise probe for a spot.
242
6
      unsigned ProbeSize = 1;
243
10
      do {
244
10
        NewBucket = (NewBucket + ProbeSize++) & (NewSize - 1);
245
10
      } while (NewTableArray[NewBucket]);
246
6
247
6
      // Finally found a slot.  Fill it in.
248
6
      NewTableArray[NewBucket] = Bucket;
249
6
      NewHashArray[NewBucket] = FullHash;
250
6
      if (I == BucketNo)
251
0
        NewBucketNo = NewBucket;
252
6
    }
253
32
  }
254
2
255
2
  free(TheTable);
256
2
257
2
  TheTable = NewTableArray;
258
2
  NumBuckets = NewSize;
259
2
  NumTombstones = 0;
260
2
  return NewBucketNo;
261
2
}