/home/arjun/llvm-project/llvm/lib/Support/Host.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  | // | 
| 9 |  | //  This file implements the operating system Host concept. | 
| 10 |  | // | 
| 11 |  | //===----------------------------------------------------------------------===// | 
| 12 |  |  | 
| 13 |  | #include "llvm/Support/Host.h" | 
| 14 |  | #include "llvm/ADT/SmallSet.h" | 
| 15 |  | #include "llvm/ADT/SmallVector.h" | 
| 16 |  | #include "llvm/ADT/StringMap.h" | 
| 17 |  | #include "llvm/ADT/StringRef.h" | 
| 18 |  | #include "llvm/ADT/StringSwitch.h" | 
| 19 |  | #include "llvm/ADT/Triple.h" | 
| 20 |  | #include "llvm/Config/llvm-config.h" | 
| 21 |  | #include "llvm/Support/Debug.h" | 
| 22 |  | #include "llvm/Support/FileSystem.h" | 
| 23 |  | #include "llvm/Support/MemoryBuffer.h" | 
| 24 |  | #include "llvm/Support/TargetParser.h" | 
| 25 |  | #include "llvm/Support/raw_ostream.h" | 
| 26 |  | #include <assert.h> | 
| 27 |  | #include <string.h> | 
| 28 |  |  | 
| 29 |  | // Include the platform-specific parts of this class. | 
| 30 |  | #ifdef LLVM_ON_UNIX | 
| 31 |  | #include "Unix/Host.inc" | 
| 32 |  | #include <sched.h> | 
| 33 |  | #endif | 
| 34 |  | #ifdef _WIN32 | 
| 35 |  | #include "Windows/Host.inc" | 
| 36 |  | #endif | 
| 37 |  | #ifdef _MSC_VER | 
| 38 |  | #include <intrin.h> | 
| 39 |  | #endif | 
| 40 |  | #if defined(__APPLE__) && (!defined(__x86_64__)) | 
| 41 |  | #include <mach/host_info.h> | 
| 42 |  | #include <mach/mach.h> | 
| 43 |  | #include <mach/mach_host.h> | 
| 44 |  | #include <mach/machine.h> | 
| 45 |  | #endif | 
| 46 |  |  | 
| 47 |  | #define DEBUG_TYPE "host-detection" | 
| 48 |  |  | 
| 49 |  | //===----------------------------------------------------------------------===// | 
| 50 |  | // | 
| 51 |  | //  Implementations of the CPU detection routines | 
| 52 |  | // | 
| 53 |  | //===----------------------------------------------------------------------===// | 
| 54 |  |  | 
| 55 |  | using namespace llvm; | 
| 56 |  |  | 
| 57 |  | static std::unique_ptr<llvm::MemoryBuffer> | 
| 58 | 0 |     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { | 
| 59 | 0 |   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | 
| 60 | 0 |       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | 
| 61 | 0 |   if (std::error_code EC = Text.getError()) { | 
| 62 | 0 |     llvm::errs() << "Can't read " | 
| 63 | 0 |                  << "/proc/cpuinfo: " << EC.message() << "\n"; | 
| 64 | 0 |     return nullptr; | 
| 65 | 0 |   } | 
| 66 | 0 |   return std::move(*Text); | 
| 67 | 0 | } | 
| 68 |  |  | 
| 69 | 0 | StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { | 
| 70 | 0 |   // Access to the Processor Version Register (PVR) on PowerPC is privileged, | 
| 71 | 0 |   // and so we must use an operating-system interface to determine the current | 
| 72 | 0 |   // processor type. On Linux, this is exposed through the /proc/cpuinfo file. | 
| 73 | 0 |   const char *generic = "generic"; | 
| 74 | 0 | 
 | 
| 75 | 0 |   // The cpu line is second (after the 'processor: 0' line), so if this | 
| 76 | 0 |   // buffer is too small then something has changed (or is wrong). | 
| 77 | 0 |   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); | 
| 78 | 0 |   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); | 
| 79 | 0 | 
 | 
| 80 | 0 |   StringRef::const_iterator CIP = CPUInfoStart; | 
| 81 | 0 | 
 | 
| 82 | 0 |   StringRef::const_iterator CPUStart = 0; | 
| 83 | 0 |   size_t CPULen = 0; | 
| 84 | 0 | 
 | 
| 85 | 0 |   // We need to find the first line which starts with cpu, spaces, and a colon. | 
| 86 | 0 |   // After the colon, there may be some additional spaces and then the cpu type. | 
| 87 | 0 |   while (CIP < CPUInfoEnd && CPUStart == 0) { | 
| 88 | 0 |     if (CIP < CPUInfoEnd && *CIP == '\n') | 
| 89 | 0 |       ++CIP; | 
| 90 | 0 | 
 | 
| 91 | 0 |     if (CIP < CPUInfoEnd && *CIP == 'c') { | 
| 92 | 0 |       ++CIP; | 
| 93 | 0 |       if (CIP < CPUInfoEnd && *CIP == 'p') { | 
| 94 | 0 |         ++CIP; | 
| 95 | 0 |         if (CIP < CPUInfoEnd && *CIP == 'u') { | 
| 96 | 0 |           ++CIP; | 
| 97 | 0 |           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
| 98 | 0 |             ++CIP; | 
| 99 | 0 | 
 | 
| 100 | 0 |           if (CIP < CPUInfoEnd && *CIP == ':') { | 
| 101 | 0 |             ++CIP; | 
| 102 | 0 |             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
| 103 | 0 |               ++CIP; | 
| 104 | 0 | 
 | 
| 105 | 0 |             if (CIP < CPUInfoEnd) { | 
| 106 | 0 |               CPUStart = CIP; | 
| 107 | 0 |               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && | 
| 108 | 0 |                                           *CIP != ',' && *CIP != '\n')) | 
| 109 | 0 |                 ++CIP; | 
| 110 | 0 |               CPULen = CIP - CPUStart; | 
| 111 | 0 |             } | 
| 112 | 0 |           } | 
| 113 | 0 |         } | 
| 114 | 0 |       } | 
| 115 | 0 |     } | 
| 116 | 0 | 
 | 
| 117 | 0 |     if (CPUStart == 0) | 
| 118 | 0 |       while (CIP < CPUInfoEnd && *CIP != '\n') | 
| 119 | 0 |         ++CIP; | 
| 120 | 0 |   } | 
| 121 | 0 | 
 | 
| 122 | 0 |   if (CPUStart == 0) | 
| 123 | 0 |     return generic; | 
| 124 | 0 |  | 
| 125 | 0 |   return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) | 
| 126 | 0 |       .Case("604e", "604e") | 
| 127 | 0 |       .Case("604", "604") | 
| 128 | 0 |       .Case("7400", "7400") | 
| 129 | 0 |       .Case("7410", "7400") | 
| 130 | 0 |       .Case("7447", "7400") | 
| 131 | 0 |       .Case("7455", "7450") | 
| 132 | 0 |       .Case("G4", "g4") | 
| 133 | 0 |       .Case("POWER4", "970") | 
| 134 | 0 |       .Case("PPC970FX", "970") | 
| 135 | 0 |       .Case("PPC970MP", "970") | 
| 136 | 0 |       .Case("G5", "g5") | 
| 137 | 0 |       .Case("POWER5", "g5") | 
| 138 | 0 |       .Case("A2", "a2") | 
| 139 | 0 |       .Case("POWER6", "pwr6") | 
| 140 | 0 |       .Case("POWER7", "pwr7") | 
| 141 | 0 |       .Case("POWER8", "pwr8") | 
| 142 | 0 |       .Case("POWER8E", "pwr8") | 
| 143 | 0 |       .Case("POWER8NVL", "pwr8") | 
| 144 | 0 |       .Case("POWER9", "pwr9") | 
| 145 | 0 |       .Case("POWER10", "pwr10") | 
| 146 | 0 |       // FIXME: If we get a simulator or machine with the capabilities of | 
| 147 | 0 |       // mcpu=future, we should revisit this and add the name reported by the | 
| 148 | 0 |       // simulator/machine. | 
| 149 | 0 |       .Default(generic); | 
| 150 | 0 | } | 
| 151 |  |  | 
| 152 | 0 | StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { | 
| 153 | 0 |   // The cpuid register on arm is not accessible from user space. On Linux, | 
| 154 | 0 |   // it is exposed through the /proc/cpuinfo file. | 
| 155 | 0 | 
 | 
| 156 | 0 |   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line | 
| 157 | 0 |   // in all cases. | 
| 158 | 0 |   SmallVector<StringRef, 32> Lines; | 
| 159 | 0 |   ProcCpuinfoContent.split(Lines, "\n"); | 
| 160 | 0 | 
 | 
| 161 | 0 |   // Look for the CPU implementer line. | 
| 162 | 0 |   StringRef Implementer; | 
| 163 | 0 |   StringRef Hardware; | 
| 164 | 0 |   for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
| 165 | 0 |     if (Lines[I].startswith("CPU implementer")) | 
| 166 | 0 |       Implementer = Lines[I].substr(15).ltrim("\t :"); | 
| 167 | 0 |     if (Lines[I].startswith("Hardware")) | 
| 168 | 0 |       Hardware = Lines[I].substr(8).ltrim("\t :"); | 
| 169 | 0 |   } | 
| 170 | 0 | 
 | 
| 171 | 0 |   if (Implementer == "0x41") { // ARM Ltd. | 
| 172 | 0 |     // MSM8992/8994 may give cpu part for the core that the kernel is running on, | 
| 173 | 0 |     // which is undeterministic and wrong. Always return cortex-a53 for these SoC. | 
| 174 | 0 |     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) | 
| 175 | 0 |       return "cortex-a53"; | 
| 176 | 0 |  | 
| 177 | 0 |  | 
| 178 | 0 |     // Look for the CPU part line. | 
| 179 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
| 180 | 0 |       if (Lines[I].startswith("CPU part")) | 
| 181 | 0 |         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
| 182 | 0 |         // values correspond to the "Part number" in the CP15/c0 register. The | 
| 183 | 0 |         // contents are specified in the various processor manuals. | 
| 184 | 0 |         // This corresponds to the Main ID Register in Technical Reference Manuals. | 
| 185 | 0 |         // and is used in programs like sys-utils | 
| 186 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 187 | 0 |             .Case("0x926", "arm926ej-s") | 
| 188 | 0 |             .Case("0xb02", "mpcore") | 
| 189 | 0 |             .Case("0xb36", "arm1136j-s") | 
| 190 | 0 |             .Case("0xb56", "arm1156t2-s") | 
| 191 | 0 |             .Case("0xb76", "arm1176jz-s") | 
| 192 | 0 |             .Case("0xc08", "cortex-a8") | 
| 193 | 0 |             .Case("0xc09", "cortex-a9") | 
| 194 | 0 |             .Case("0xc0f", "cortex-a15") | 
| 195 | 0 |             .Case("0xc20", "cortex-m0") | 
| 196 | 0 |             .Case("0xc23", "cortex-m3") | 
| 197 | 0 |             .Case("0xc24", "cortex-m4") | 
| 198 | 0 |             .Case("0xd22", "cortex-m55") | 
| 199 | 0 |             .Case("0xd02", "cortex-a34") | 
| 200 | 0 |             .Case("0xd04", "cortex-a35") | 
| 201 | 0 |             .Case("0xd03", "cortex-a53") | 
| 202 | 0 |             .Case("0xd07", "cortex-a57") | 
| 203 | 0 |             .Case("0xd08", "cortex-a72") | 
| 204 | 0 |             .Case("0xd09", "cortex-a73") | 
| 205 | 0 |             .Case("0xd0a", "cortex-a75") | 
| 206 | 0 |             .Case("0xd0b", "cortex-a76") | 
| 207 | 0 |             .Case("0xd0c", "neoverse-n1") | 
| 208 | 0 |             .Default("generic"); | 
| 209 | 0 |   } | 
| 210 | 0 | 
 | 
| 211 | 0 |   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium. | 
| 212 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
| 213 | 0 |       if (Lines[I].startswith("CPU part")) { | 
| 214 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 215 | 0 |           .Case("0x516", "thunderx2t99") | 
| 216 | 0 |           .Case("0x0516", "thunderx2t99") | 
| 217 | 0 |           .Case("0xaf", "thunderx2t99") | 
| 218 | 0 |           .Case("0x0af", "thunderx2t99") | 
| 219 | 0 |           .Case("0xa1", "thunderxt88") | 
| 220 | 0 |           .Case("0x0a1", "thunderxt88") | 
| 221 | 0 |           .Default("generic"); | 
| 222 | 0 |       } | 
| 223 | 0 |     } | 
| 224 | 0 |   } | 
| 225 | 0 | 
 | 
| 226 | 0 |   if (Implementer == "0x46") { // Fujitsu Ltd. | 
| 227 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
| 228 | 0 |       if (Lines[I].startswith("CPU part")) { | 
| 229 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 230 | 0 |           .Case("0x001", "a64fx") | 
| 231 | 0 |           .Default("generic"); | 
| 232 | 0 |       } | 
| 233 | 0 |     } | 
| 234 | 0 |   } | 
| 235 | 0 | 
 | 
| 236 | 0 |   if (Implementer == "0x4e") { // NVIDIA Corporation | 
| 237 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
| 238 | 0 |       if (Lines[I].startswith("CPU part")) { | 
| 239 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 240 | 0 |             .Case("0x004", "carmel") | 
| 241 | 0 |             .Default("generic"); | 
| 242 | 0 |       } | 
| 243 | 0 |     } | 
| 244 | 0 |   } | 
| 245 | 0 | 
 | 
| 246 | 0 |   if (Implementer == "0x48") // HiSilicon Technologies, Inc. | 
| 247 | 0 |     // Look for the CPU part line. | 
| 248 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
| 249 | 0 |       if (Lines[I].startswith("CPU part")) | 
| 250 | 0 |         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
| 251 | 0 |         // values correspond to the "Part number" in the CP15/c0 register. The | 
| 252 | 0 |         // contents are specified in the various processor manuals. | 
| 253 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 254 | 0 |           .Case("0xd01", "tsv110") | 
| 255 | 0 |           .Default("generic"); | 
| 256 | 0 | 
 | 
| 257 | 0 |   if (Implementer == "0x51") // Qualcomm Technologies, Inc. | 
| 258 | 0 |     // Look for the CPU part line. | 
| 259 | 0 |     for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
| 260 | 0 |       if (Lines[I].startswith("CPU part")) | 
| 261 | 0 |         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
| 262 | 0 |         // values correspond to the "Part number" in the CP15/c0 register. The | 
| 263 | 0 |         // contents are specified in the various processor manuals. | 
| 264 | 0 |         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) | 
| 265 | 0 |             .Case("0x06f", "krait") // APQ8064 | 
| 266 | 0 |             .Case("0x201", "kryo") | 
| 267 | 0 |             .Case("0x205", "kryo") | 
| 268 | 0 |             .Case("0x211", "kryo") | 
| 269 | 0 |             .Case("0x800", "cortex-a73") | 
| 270 | 0 |             .Case("0x801", "cortex-a73") | 
| 271 | 0 |             .Case("0x802", "cortex-a73") | 
| 272 | 0 |             .Case("0x803", "cortex-a73") | 
| 273 | 0 |             .Case("0x804", "cortex-a73") | 
| 274 | 0 |             .Case("0x805", "cortex-a73") | 
| 275 | 0 |             .Case("0xc00", "falkor") | 
| 276 | 0 |             .Case("0xc01", "saphira") | 
| 277 | 0 |             .Default("generic"); | 
| 278 | 0 | 
 | 
| 279 | 0 |   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. | 
| 280 | 0 |     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow | 
| 281 | 0 |     // any predictive pattern across variants and parts. | 
| 282 | 0 |     unsigned Variant = 0, Part = 0; | 
| 283 | 0 | 
 | 
| 284 | 0 |     // Look for the CPU variant line, whose value is a 1 digit hexadecimal | 
| 285 | 0 |     // number, corresponding to the Variant bits in the CP15/C0 register. | 
| 286 | 0 |     for (auto I : Lines) | 
| 287 | 0 |       if (I.consume_front("CPU variant")) | 
| 288 | 0 |         I.ltrim("\t :").getAsInteger(0, Variant); | 
| 289 | 0 | 
 | 
| 290 | 0 |     // Look for the CPU part line, whose value is a 3 digit hexadecimal | 
| 291 | 0 |     // number, corresponding to the PartNum bits in the CP15/C0 register. | 
| 292 | 0 |     for (auto I : Lines) | 
| 293 | 0 |       if (I.consume_front("CPU part")) | 
| 294 | 0 |         I.ltrim("\t :").getAsInteger(0, Part); | 
| 295 | 0 | 
 | 
| 296 | 0 |     unsigned Exynos = (Variant << 12) | Part; | 
| 297 | 0 |     switch (Exynos) { | 
| 298 | 0 |     default: | 
| 299 | 0 |       // Default by falling through to Exynos M3. | 
| 300 | 0 |       LLVM_FALLTHROUGH; | 
| 301 | 0 |     case 0x1002: | 
| 302 | 0 |       return "exynos-m3"; | 
| 303 | 0 |     case 0x1003: | 
| 304 | 0 |       return "exynos-m4"; | 
| 305 | 0 |     } | 
| 306 | 0 |   } | 
| 307 | 0 |  | 
| 308 | 0 |   return "generic"; | 
| 309 | 0 | } | 
| 310 |  |  | 
| 311 | 0 | StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { | 
| 312 | 0 |   // STIDP is a privileged operation, so use /proc/cpuinfo instead. | 
| 313 | 0 | 
 | 
| 314 | 0 |   // The "processor 0:" line comes after a fair amount of other information, | 
| 315 | 0 |   // including a cache breakdown, but this should be plenty. | 
| 316 | 0 |   SmallVector<StringRef, 32> Lines; | 
| 317 | 0 |   ProcCpuinfoContent.split(Lines, "\n"); | 
| 318 | 0 | 
 | 
| 319 | 0 |   // Look for the CPU features. | 
| 320 | 0 |   SmallVector<StringRef, 32> CPUFeatures; | 
| 321 | 0 |   for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
| 322 | 0 |     if (Lines[I].startswith("features")) { | 
| 323 | 0 |       size_t Pos = Lines[I].find(":"); | 
| 324 | 0 |       if (Pos != StringRef::npos) { | 
| 325 | 0 |         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); | 
| 326 | 0 |         break; | 
| 327 | 0 |       } | 
| 328 | 0 |     } | 
| 329 | 0 | 
 | 
| 330 | 0 |   // We need to check for the presence of vector support independently of | 
| 331 | 0 |   // the machine type, since we may only use the vector register set when | 
| 332 | 0 |   // supported by the kernel (and hypervisor). | 
| 333 | 0 |   bool HaveVectorSupport = false; | 
| 334 | 0 |   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
| 335 | 0 |     if (CPUFeatures[I] == "vx") | 
| 336 | 0 |       HaveVectorSupport = true; | 
| 337 | 0 |   } | 
| 338 | 0 | 
 | 
| 339 | 0 |   // Now check the processor machine type. | 
| 340 | 0 |   for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
| 341 | 0 |     if (Lines[I].startswith("processor ")) { | 
| 342 | 0 |       size_t Pos = Lines[I].find("machine = "); | 
| 343 | 0 |       if (Pos != StringRef::npos) { | 
| 344 | 0 |         Pos += sizeof("machine = ") - 1; | 
| 345 | 0 |         unsigned int Id; | 
| 346 | 0 |         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { | 
| 347 | 0 |           if (Id >= 8561 && HaveVectorSupport) | 
| 348 | 0 |             return "z15"; | 
| 349 | 0 |           if (Id >= 3906 && HaveVectorSupport) | 
| 350 | 0 |             return "z14"; | 
| 351 | 0 |           if (Id >= 2964 && HaveVectorSupport) | 
| 352 | 0 |             return "z13"; | 
| 353 | 0 |           if (Id >= 2827) | 
| 354 | 0 |             return "zEC12"; | 
| 355 | 0 |           if (Id >= 2817) | 
| 356 | 0 |             return "z196"; | 
| 357 | 0 |         } | 
| 358 | 0 |       } | 
| 359 | 0 |       break; | 
| 360 | 0 |     } | 
| 361 | 0 |   } | 
| 362 | 0 | 
 | 
| 363 | 0 |   return "generic"; | 
| 364 | 0 | } | 
| 365 |  |  | 
| 366 | 0 | StringRef sys::detail::getHostCPUNameForBPF() { | 
| 367 |  | #if !defined(__linux__) || !defined(__x86_64__) | 
| 368 |  |   return "generic"; | 
| 369 |  | #else | 
| 370 |  |   uint8_t v3_insns[40] __attribute__ ((aligned (8))) = | 
| 371 | 0 |       /* BPF_MOV64_IMM(BPF_REG_0, 0) */ | 
| 372 | 0 |     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, | 
| 373 | 0 |       /* BPF_MOV64_IMM(BPF_REG_2, 1) */ | 
| 374 | 0 |       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
| 375 | 0 |       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ | 
| 376 | 0 |       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, | 
| 377 | 0 |       /* BPF_MOV64_IMM(BPF_REG_0, 1) */ | 
| 378 | 0 |       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
| 379 | 0 |       /* BPF_EXIT_INSN() */ | 
| 380 | 0 |       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; | 
| 381 | 0 | 
 | 
| 382 | 0 |   uint8_t v2_insns[40] __attribute__ ((aligned (8))) = | 
| 383 | 0 |       /* BPF_MOV64_IMM(BPF_REG_0, 0) */ | 
| 384 | 0 |     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, | 
| 385 | 0 |       /* BPF_MOV64_IMM(BPF_REG_2, 1) */ | 
| 386 | 0 |       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
| 387 | 0 |       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ | 
| 388 | 0 |       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, | 
| 389 | 0 |       /* BPF_MOV64_IMM(BPF_REG_0, 1) */ | 
| 390 | 0 |       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
| 391 | 0 |       /* BPF_EXIT_INSN() */ | 
| 392 | 0 |       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; | 
| 393 | 0 | 
 | 
| 394 | 0 |   struct bpf_prog_load_attr { | 
| 395 | 0 |     uint32_t prog_type; | 
| 396 | 0 |     uint32_t insn_cnt; | 
| 397 | 0 |     uint64_t insns; | 
| 398 | 0 |     uint64_t license; | 
| 399 | 0 |     uint32_t log_level; | 
| 400 | 0 |     uint32_t log_size; | 
| 401 | 0 |     uint64_t log_buf; | 
| 402 | 0 |     uint32_t kern_version; | 
| 403 | 0 |     uint32_t prog_flags; | 
| 404 | 0 |   } attr = {}; | 
| 405 | 0 |   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ | 
| 406 | 0 |   attr.insn_cnt = 5; | 
| 407 | 0 |   attr.insns = (uint64_t)v3_insns; | 
| 408 | 0 |   attr.license = (uint64_t)"DUMMY"; | 
| 409 | 0 | 
 | 
| 410 | 0 |   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, | 
| 411 | 0 |                    sizeof(attr)); | 
| 412 | 0 |   if (fd >= 0) { | 
| 413 | 0 |     close(fd); | 
| 414 | 0 |     return "v3"; | 
| 415 | 0 |   } | 
| 416 | 0 |  | 
| 417 | 0 |   /* Clear the whole attr in case its content changed by syscall. */ | 
| 418 | 0 |   memset(&attr, 0, sizeof(attr)); | 
| 419 | 0 |   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ | 
| 420 | 0 |   attr.insn_cnt = 5; | 
| 421 | 0 |   attr.insns = (uint64_t)v2_insns; | 
| 422 | 0 |   attr.license = (uint64_t)"DUMMY"; | 
| 423 | 0 |   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); | 
| 424 | 0 |   if (fd >= 0) { | 
| 425 | 0 |     close(fd); | 
| 426 | 0 |     return "v2"; | 
| 427 | 0 |   } | 
| 428 | 0 |   return "v1"; | 
| 429 | 0 | #endif | 
| 430 | 0 | } | 
| 431 |  |  | 
| 432 |  | #if defined(__i386__) || defined(_M_IX86) || \ | 
| 433 |  |     defined(__x86_64__) || defined(_M_X64) | 
| 434 |  |  | 
| 435 |  | enum VendorSignatures { | 
| 436 |  |   SIG_INTEL = 0x756e6547 /* Genu */, | 
| 437 |  |   SIG_AMD = 0x68747541 /* Auth */ | 
| 438 |  | }; | 
| 439 |  |  | 
| 440 |  | // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). | 
| 441 |  | // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID | 
| 442 |  | // support. Consequently, for i386, the presence of CPUID is checked first | 
| 443 |  | // via the corresponding eflags bit. | 
| 444 |  | // Removal of cpuid.h header motivated by PR30384 | 
| 445 |  | // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp | 
| 446 |  | // or test-suite, but are used in external projects e.g. libstdcxx | 
| 447 | 0 | static bool isCpuIdSupported() { | 
| 448 | 0 | #if defined(__GNUC__) || defined(__clang__) | 
| 449 |  | #if defined(__i386__) | 
| 450 |  |   int __cpuid_supported; | 
| 451 |  |   __asm__("  pushfl\n" | 
| 452 |  |           "  popl   %%eax\n" | 
| 453 |  |           "  movl   %%eax,%%ecx\n" | 
| 454 |  |           "  xorl   $0x00200000,%%eax\n" | 
| 455 |  |           "  pushl  %%eax\n" | 
| 456 |  |           "  popfl\n" | 
| 457 |  |           "  pushfl\n" | 
| 458 |  |           "  popl   %%eax\n" | 
| 459 |  |           "  movl   $0,%0\n" | 
| 460 |  |           "  cmpl   %%eax,%%ecx\n" | 
| 461 |  |           "  je     1f\n" | 
| 462 |  |           "  movl   $1,%0\n" | 
| 463 |  |           "1:" | 
| 464 |  |           : "=r"(__cpuid_supported) | 
| 465 |  |           : | 
| 466 |  |           : "eax", "ecx"); | 
| 467 |  |   if (!__cpuid_supported) | 
| 468 |  |     return false; | 
| 469 |  | #endif | 
| 470 |  |   return true; | 
| 471 | 0 | #endif | 
| 472 | 0 |   return true; | 
| 473 | 0 | } | 
| 474 |  |  | 
| 475 |  | /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in | 
| 476 |  | /// the specified arguments.  If we can't run cpuid on the host, return true. | 
| 477 |  | static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, | 
| 478 | 0 |                                unsigned *rECX, unsigned *rEDX) { | 
| 479 | 0 | #if defined(__GNUC__) || defined(__clang__) | 
| 480 | 0 | #if defined(__x86_64__) | 
| 481 | 0 |   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. | 
| 482 | 0 |   // FIXME: should we save this for Clang? | 
| 483 | 0 |   __asm__("movq\t%%rbx, %%rsi\n\t" | 
| 484 | 0 |           "cpuid\n\t" | 
| 485 | 0 |           "xchgq\t%%rbx, %%rsi\n\t" | 
| 486 | 0 |           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
| 487 | 0 |           : "a"(value)); | 
| 488 | 0 |   return false; | 
| 489 |  | #elif defined(__i386__) | 
| 490 |  |   __asm__("movl\t%%ebx, %%esi\n\t" | 
| 491 |  |           "cpuid\n\t" | 
| 492 |  |           "xchgl\t%%ebx, %%esi\n\t" | 
| 493 |  |           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
| 494 |  |           : "a"(value)); | 
| 495 |  |   return false; | 
| 496 |  | #else | 
| 497 |  |   return true; | 
| 498 |  | #endif | 
| 499 |  | #elif defined(_MSC_VER) | 
| 500 |  |   // The MSVC intrinsic is portable across x86 and x64. | 
| 501 |  |   int registers[4]; | 
| 502 |  |   __cpuid(registers, value); | 
| 503 |  |   *rEAX = registers[0]; | 
| 504 |  |   *rEBX = registers[1]; | 
| 505 |  |   *rECX = registers[2]; | 
| 506 |  |   *rEDX = registers[3]; | 
| 507 |  |   return false; | 
| 508 |  | #else | 
| 509 |  |   return true; | 
| 510 |  | #endif | 
| 511 |  | } | 
| 512 |  |  | 
| 513 |  | /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return | 
| 514 |  | /// the 4 values in the specified arguments.  If we can't run cpuid on the host, | 
| 515 |  | /// return true. | 
| 516 |  | static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, | 
| 517 |  |                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX, | 
| 518 | 0 |                                  unsigned *rEDX) { | 
| 519 | 0 | #if defined(__GNUC__) || defined(__clang__) | 
| 520 | 0 | #if defined(__x86_64__) | 
| 521 | 0 |   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. | 
| 522 | 0 |   // FIXME: should we save this for Clang? | 
| 523 | 0 |   __asm__("movq\t%%rbx, %%rsi\n\t" | 
| 524 | 0 |           "cpuid\n\t" | 
| 525 | 0 |           "xchgq\t%%rbx, %%rsi\n\t" | 
| 526 | 0 |           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
| 527 | 0 |           : "a"(value), "c"(subleaf)); | 
| 528 | 0 |   return false; | 
| 529 |  | #elif defined(__i386__) | 
| 530 |  |   __asm__("movl\t%%ebx, %%esi\n\t" | 
| 531 |  |           "cpuid\n\t" | 
| 532 |  |           "xchgl\t%%ebx, %%esi\n\t" | 
| 533 |  |           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
| 534 |  |           : "a"(value), "c"(subleaf)); | 
| 535 |  |   return false; | 
| 536 |  | #else | 
| 537 |  |   return true; | 
| 538 |  | #endif | 
| 539 |  | #elif defined(_MSC_VER) | 
| 540 |  |   int registers[4]; | 
| 541 |  |   __cpuidex(registers, value, subleaf); | 
| 542 |  |   *rEAX = registers[0]; | 
| 543 |  |   *rEBX = registers[1]; | 
| 544 |  |   *rECX = registers[2]; | 
| 545 |  |   *rEDX = registers[3]; | 
| 546 |  |   return false; | 
| 547 |  | #else | 
| 548 |  |   return true; | 
| 549 |  | #endif | 
| 550 |  | } | 
| 551 |  |  | 
| 552 |  | // Read control register 0 (XCR0). Used to detect features such as AVX. | 
| 553 | 0 | static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { | 
| 554 | 0 | #if defined(__GNUC__) || defined(__clang__) | 
| 555 | 0 |   // Check xgetbv; this uses a .byte sequence instead of the instruction | 
| 556 | 0 |   // directly because older assemblers do not include support for xgetbv and | 
| 557 | 0 |   // there is no easy way to conditionally compile based on the assembler used. | 
| 558 | 0 |   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); | 
| 559 | 0 |   return false; | 
| 560 |  | #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) | 
| 561 |  |   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); | 
| 562 |  |   *rEAX = Result; | 
| 563 |  |   *rEDX = Result >> 32; | 
| 564 |  |   return false; | 
| 565 |  | #else | 
| 566 |  |   return true; | 
| 567 |  | #endif | 
| 568 |  | } | 
| 569 |  |  | 
| 570 |  | static void detectX86FamilyModel(unsigned EAX, unsigned *Family, | 
| 571 | 0 |                                  unsigned *Model) { | 
| 572 | 0 |   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 | 
| 573 | 0 |   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7 | 
| 574 | 0 |   if (*Family == 6 || *Family == 0xf) { | 
| 575 | 0 |     if (*Family == 0xf) | 
| 576 | 0 |       // Examine extended family ID if family ID is F. | 
| 577 | 0 |       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 | 
| 578 | 0 |     // Examine extended model ID if family ID is 6 or F. | 
| 579 | 0 |     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 | 
| 580 | 0 |   } | 
| 581 | 0 | } | 
| 582 |  |  | 
| 583 |  | static void | 
| 584 |  | getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, | 
| 585 |  |                                 unsigned Brand_id, unsigned Features, | 
| 586 |  |                                 unsigned Features2, unsigned Features3, | 
| 587 | 0 |                                 unsigned *Type, unsigned *Subtype) { | 
| 588 | 0 |   if (Brand_id != 0) | 
| 589 | 0 |     return; | 
| 590 | 0 |   switch (Family) { | 
| 591 | 0 |   case 3: | 
| 592 | 0 |     *Type = X86::INTEL_i386; | 
| 593 | 0 |     break; | 
| 594 | 0 |   case 4: | 
| 595 | 0 |     *Type = X86::INTEL_i486; | 
| 596 | 0 |     break; | 
| 597 | 0 |   case 5: | 
| 598 | 0 |     if (Features & (1 << X86::FEATURE_MMX)) { | 
| 599 | 0 |       *Type = X86::INTEL_PENTIUM_MMX; | 
| 600 | 0 |       break; | 
| 601 | 0 |     } | 
| 602 | 0 |     *Type = X86::INTEL_PENTIUM; | 
| 603 | 0 |     break; | 
| 604 | 0 |   case 6: | 
| 605 | 0 |     switch (Model) { | 
| 606 | 0 |     case 0x01: // Pentium Pro processor | 
| 607 | 0 |       *Type = X86::INTEL_PENTIUM_PRO; | 
| 608 | 0 |       break; | 
| 609 | 0 |     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, | 
| 610 | 0 |                // model 03 | 
| 611 | 0 |     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, | 
| 612 | 0 |                // model 05, and Intel Celeron processor, model 05 | 
| 613 | 0 |     case 0x06: // Celeron processor, model 06 | 
| 614 | 0 |       *Type = X86::INTEL_PENTIUM_II; | 
| 615 | 0 |       break; | 
| 616 | 0 |     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon | 
| 617 | 0 |                // processor, model 07 | 
| 618 | 0 |     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, | 
| 619 | 0 |                // model 08, and Celeron processor, model 08 | 
| 620 | 0 |     case 0x0a: // Pentium III Xeon processor, model 0Ah | 
| 621 | 0 |     case 0x0b: // Pentium III processor, model 0Bh | 
| 622 | 0 |       *Type = X86::INTEL_PENTIUM_III; | 
| 623 | 0 |       break; | 
| 624 | 0 |     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. | 
| 625 | 0 |     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model | 
| 626 | 0 |                // 0Dh. All processors are manufactured using the 90 nm process. | 
| 627 | 0 |     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 | 
| 628 | 0 |                // Integrated Processor with Intel QuickAssist Technology | 
| 629 | 0 |       *Type = X86::INTEL_PENTIUM_M; | 
| 630 | 0 |       break; | 
| 631 | 0 |     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model | 
| 632 | 0 |                // 0Eh. All processors are manufactured using the 65 nm process. | 
| 633 | 0 |       *Type = X86::INTEL_CORE_DUO; | 
| 634 | 0 |       break;   // yonah | 
| 635 | 0 |     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile | 
| 636 | 0 |                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad | 
| 637 | 0 |                // mobile processor, Intel Core 2 Extreme processor, Intel | 
| 638 | 0 |                // Pentium Dual-Core processor, Intel Xeon processor, model | 
| 639 | 0 |                // 0Fh. All processors are manufactured using the 65 nm process. | 
| 640 | 0 |     case 0x16: // Intel Celeron processor model 16h. All processors are | 
| 641 | 0 |                // manufactured using the 65 nm process | 
| 642 | 0 |       *Type = X86::INTEL_CORE2; // "core2" | 
| 643 | 0 |       *Subtype = X86::INTEL_CORE2_65; | 
| 644 | 0 |       break; | 
| 645 | 0 |     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model | 
| 646 | 0 |                // 17h. All processors are manufactured using the 45 nm process. | 
| 647 | 0 |                // | 
| 648 | 0 |                // 45nm: Penryn , Wolfdale, Yorkfield (XE) | 
| 649 | 0 |     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using | 
| 650 | 0 |                // the 45 nm process. | 
| 651 | 0 |       *Type = X86::INTEL_CORE2; // "penryn" | 
| 652 | 0 |       *Subtype = X86::INTEL_CORE2_45; | 
| 653 | 0 |       break; | 
| 654 | 0 |     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All | 
| 655 | 0 |                // processors are manufactured using the 45 nm process. | 
| 656 | 0 |     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz. | 
| 657 | 0 |                // As found in a Summer 2010 model iMac. | 
| 658 | 0 |     case 0x1f: | 
| 659 | 0 |     case 0x2e:             // Nehalem EX | 
| 660 | 0 |       *Type = X86::INTEL_COREI7; // "nehalem" | 
| 661 | 0 |       *Subtype = X86::INTEL_COREI7_NEHALEM; | 
| 662 | 0 |       break; | 
| 663 | 0 |     case 0x25: // Intel Core i7, laptop version. | 
| 664 | 0 |     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All | 
| 665 | 0 |                // processors are manufactured using the 32 nm process. | 
| 666 | 0 |     case 0x2f: // Westmere EX | 
| 667 | 0 |       *Type = X86::INTEL_COREI7; // "westmere" | 
| 668 | 0 |       *Subtype = X86::INTEL_COREI7_WESTMERE; | 
| 669 | 0 |       break; | 
| 670 | 0 |     case 0x2a: // Intel Core i7 processor. All processors are manufactured | 
| 671 | 0 |                // using the 32 nm process. | 
| 672 | 0 |     case 0x2d: | 
| 673 | 0 |       *Type = X86::INTEL_COREI7; //"sandybridge" | 
| 674 | 0 |       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; | 
| 675 | 0 |       break; | 
| 676 | 0 |     case 0x3a: | 
| 677 | 0 |     case 0x3e:             // Ivy Bridge EP | 
| 678 | 0 |       *Type = X86::INTEL_COREI7; // "ivybridge" | 
| 679 | 0 |       *Subtype = X86::INTEL_COREI7_IVYBRIDGE; | 
| 680 | 0 |       break; | 
| 681 | 0 | 
 | 
| 682 | 0 |     // Haswell: | 
| 683 | 0 |     case 0x3c: | 
| 684 | 0 |     case 0x3f: | 
| 685 | 0 |     case 0x45: | 
| 686 | 0 |     case 0x46: | 
| 687 | 0 |       *Type = X86::INTEL_COREI7; // "haswell" | 
| 688 | 0 |       *Subtype = X86::INTEL_COREI7_HASWELL; | 
| 689 | 0 |       break; | 
| 690 | 0 | 
 | 
| 691 | 0 |     // Broadwell: | 
| 692 | 0 |     case 0x3d: | 
| 693 | 0 |     case 0x47: | 
| 694 | 0 |     case 0x4f: | 
| 695 | 0 |     case 0x56: | 
| 696 | 0 |       *Type = X86::INTEL_COREI7; // "broadwell" | 
| 697 | 0 |       *Subtype = X86::INTEL_COREI7_BROADWELL; | 
| 698 | 0 |       break; | 
| 699 | 0 | 
 | 
| 700 | 0 |     // Skylake: | 
| 701 | 0 |     case 0x4e:              // Skylake mobile | 
| 702 | 0 |     case 0x5e:              // Skylake desktop | 
| 703 | 0 |     case 0x8e:              // Kaby Lake mobile | 
| 704 | 0 |     case 0x9e:              // Kaby Lake desktop | 
| 705 | 0 |     case 0xa5:              // Comet Lake-H/S | 
| 706 | 0 |     case 0xa6:              // Comet Lake-U | 
| 707 | 0 |       *Type = X86::INTEL_COREI7; // "skylake" | 
| 708 | 0 |       *Subtype = X86::INTEL_COREI7_SKYLAKE; | 
| 709 | 0 |       break; | 
| 710 | 0 | 
 | 
| 711 | 0 |     // Skylake Xeon: | 
| 712 | 0 |     case 0x55: | 
| 713 | 0 |       *Type = X86::INTEL_COREI7; | 
| 714 | 0 |       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) | 
| 715 | 0 |         *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake" | 
| 716 | 0 |       else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) | 
| 717 | 0 |         *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake" | 
| 718 | 0 |       else | 
| 719 | 0 |         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" | 
| 720 | 0 |       break; | 
| 721 | 0 | 
 | 
| 722 | 0 |     // Cannonlake: | 
| 723 | 0 |     case 0x66: | 
| 724 | 0 |       *Type = X86::INTEL_COREI7; | 
| 725 | 0 |       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake" | 
| 726 | 0 |       break; | 
| 727 | 0 | 
 | 
| 728 | 0 |     // Icelake: | 
| 729 | 0 |     case 0x7d: | 
| 730 | 0 |     case 0x7e: | 
| 731 | 0 |       *Type = X86::INTEL_COREI7; | 
| 732 | 0 |       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client" | 
| 733 | 0 |       break; | 
| 734 | 0 | 
 | 
| 735 | 0 |     // Icelake Xeon: | 
| 736 | 0 |     case 0x6a: | 
| 737 | 0 |     case 0x6c: | 
| 738 | 0 |       *Type = X86::INTEL_COREI7; | 
| 739 | 0 |       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server" | 
| 740 | 0 |       break; | 
| 741 | 0 | 
 | 
| 742 | 0 |     case 0x1c: // Most 45 nm Intel Atom processors | 
| 743 | 0 |     case 0x26: // 45 nm Atom Lincroft | 
| 744 | 0 |     case 0x27: // 32 nm Atom Medfield | 
| 745 | 0 |     case 0x35: // 32 nm Atom Midview | 
| 746 | 0 |     case 0x36: // 32 nm Atom Midview | 
| 747 | 0 |       *Type = X86::INTEL_BONNELL; | 
| 748 | 0 |       break; // "bonnell" | 
| 749 | 0 | 
 | 
| 750 | 0 |     // Atom Silvermont codes from the Intel software optimization guide. | 
| 751 | 0 |     case 0x37: | 
| 752 | 0 |     case 0x4a: | 
| 753 | 0 |     case 0x4d: | 
| 754 | 0 |     case 0x5a: | 
| 755 | 0 |     case 0x5d: | 
| 756 | 0 |     case 0x4c: // really airmont | 
| 757 | 0 |       *Type = X86::INTEL_SILVERMONT; | 
| 758 | 0 |       break; // "silvermont" | 
| 759 | 0 |     // Goldmont: | 
| 760 | 0 |     case 0x5c: // Apollo Lake | 
| 761 | 0 |     case 0x5f: // Denverton | 
| 762 | 0 |       *Type = X86::INTEL_GOLDMONT; | 
| 763 | 0 |       break; // "goldmont" | 
| 764 | 0 |     case 0x7a: | 
| 765 | 0 |       *Type = X86::INTEL_GOLDMONT_PLUS; | 
| 766 | 0 |       break; | 
| 767 | 0 |     case 0x86: | 
| 768 | 0 |       *Type = X86::INTEL_TREMONT; | 
| 769 | 0 |       break; | 
| 770 | 0 | 
 | 
| 771 | 0 |     case 0x57: | 
| 772 | 0 |       *Type = X86::INTEL_KNL; // knl | 
| 773 | 0 |       break; | 
| 774 | 0 | 
 | 
| 775 | 0 |     case 0x85: | 
| 776 | 0 |       *Type = X86::INTEL_KNM; // knm | 
| 777 | 0 |       break; | 
| 778 | 0 | 
 | 
| 779 | 0 |     default: // Unknown family 6 CPU, try to guess. | 
| 780 | 0 |       // TODO detect tigerlake host | 
| 781 | 0 |       if (Features2 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 32))) { | 
| 782 | 0 |         *Type = X86::INTEL_COREI7; | 
| 783 | 0 |         *Subtype = X86::INTEL_COREI7_TIGERLAKE; | 
| 784 | 0 |         break; | 
| 785 | 0 |       } | 
| 786 | 0 |  | 
| 787 | 0 |       if (Features & (1 << X86::FEATURE_AVX512VBMI2)) { | 
| 788 | 0 |         *Type = X86::INTEL_COREI7; | 
| 789 | 0 |         *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; | 
| 790 | 0 |         break; | 
| 791 | 0 |       } | 
| 792 | 0 |  | 
| 793 | 0 |       if (Features & (1 << X86::FEATURE_AVX512VBMI)) { | 
| 794 | 0 |         *Type = X86::INTEL_COREI7; | 
| 795 | 0 |         *Subtype = X86::INTEL_COREI7_CANNONLAKE; | 
| 796 | 0 |         break; | 
| 797 | 0 |       } | 
| 798 | 0 |  | 
| 799 | 0 |       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) { | 
| 800 | 0 |         *Type = X86::INTEL_COREI7; | 
| 801 | 0 |         *Subtype = X86::INTEL_COREI7_COOPERLAKE; | 
| 802 | 0 |         break; | 
| 803 | 0 |       } | 
| 804 | 0 |  | 
| 805 | 0 |       if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) { | 
| 806 | 0 |         *Type = X86::INTEL_COREI7; | 
| 807 | 0 |         *Subtype = X86::INTEL_COREI7_CASCADELAKE; | 
| 808 | 0 |         break; | 
| 809 | 0 |       } | 
| 810 | 0 |  | 
| 811 | 0 |       if (Features & (1 << X86::FEATURE_AVX512VL)) { | 
| 812 | 0 |         *Type = X86::INTEL_COREI7; | 
| 813 | 0 |         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; | 
| 814 | 0 |         break; | 
| 815 | 0 |       } | 
| 816 | 0 |  | 
| 817 | 0 |       if (Features & (1 << X86::FEATURE_AVX512ER)) { | 
| 818 | 0 |         *Type = X86::INTEL_KNL; // knl | 
| 819 | 0 |         break; | 
| 820 | 0 |       } | 
| 821 | 0 |  | 
| 822 | 0 |       if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) { | 
| 823 | 0 |         if (Features3 & (1 << (X86::FEATURE_SHA - 64))) { | 
| 824 | 0 |           *Type = X86::INTEL_GOLDMONT; | 
| 825 | 0 |         } else { | 
| 826 | 0 |           *Type = X86::INTEL_COREI7; | 
| 827 | 0 |           *Subtype = X86::INTEL_COREI7_SKYLAKE; | 
| 828 | 0 |         } | 
| 829 | 0 |         break; | 
| 830 | 0 |       } | 
| 831 | 0 |       if (Features3 & (1 << (X86::FEATURE_ADX - 64))) { | 
| 832 | 0 |         *Type = X86::INTEL_COREI7; | 
| 833 | 0 |         *Subtype = X86::INTEL_COREI7_BROADWELL; | 
| 834 | 0 |         break; | 
| 835 | 0 |       } | 
| 836 | 0 |       if (Features & (1 << X86::FEATURE_AVX2)) { | 
| 837 | 0 |         *Type = X86::INTEL_COREI7; | 
| 838 | 0 |         *Subtype = X86::INTEL_COREI7_HASWELL; | 
| 839 | 0 |         break; | 
| 840 | 0 |       } | 
| 841 | 0 |       if (Features & (1 << X86::FEATURE_AVX)) { | 
| 842 | 0 |         *Type = X86::INTEL_COREI7; | 
| 843 | 0 |         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; | 
| 844 | 0 |         break; | 
| 845 | 0 |       } | 
| 846 | 0 |       if (Features & (1 << X86::FEATURE_SSE4_2)) { | 
| 847 | 0 |         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { | 
| 848 | 0 |           *Type = X86::INTEL_SILVERMONT; | 
| 849 | 0 |         } else { | 
| 850 | 0 |           *Type = X86::INTEL_COREI7; | 
| 851 | 0 |           *Subtype = X86::INTEL_COREI7_NEHALEM; | 
| 852 | 0 |         } | 
| 853 | 0 |         break; | 
| 854 | 0 |       } | 
| 855 | 0 |       if (Features & (1 << X86::FEATURE_SSE4_1)) { | 
| 856 | 0 |         *Type = X86::INTEL_CORE2; // "penryn" | 
| 857 | 0 |         *Subtype = X86::INTEL_CORE2_45; | 
| 858 | 0 |         break; | 
| 859 | 0 |       } | 
| 860 | 0 |       if (Features & (1 << X86::FEATURE_SSSE3)) { | 
| 861 | 0 |         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { | 
| 862 | 0 |           *Type = X86::INTEL_BONNELL; // "bonnell" | 
| 863 | 0 |         } else { | 
| 864 | 0 |           *Type = X86::INTEL_CORE2; // "core2" | 
| 865 | 0 |           *Subtype = X86::INTEL_CORE2_65; | 
| 866 | 0 |         } | 
| 867 | 0 |         break; | 
| 868 | 0 |       } | 
| 869 | 0 |       if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { | 
| 870 | 0 |         *Type = X86::INTEL_CORE2; // "core2" | 
| 871 | 0 |         *Subtype = X86::INTEL_CORE2_65; | 
| 872 | 0 |         break; | 
| 873 | 0 |       } | 
| 874 | 0 |       if (Features & (1 << X86::FEATURE_SSE3)) { | 
| 875 | 0 |         *Type = X86::INTEL_CORE_DUO; | 
| 876 | 0 |         break; | 
| 877 | 0 |       } | 
| 878 | 0 |       if (Features & (1 << X86::FEATURE_SSE2)) { | 
| 879 | 0 |         *Type = X86::INTEL_PENTIUM_M; | 
| 880 | 0 |         break; | 
| 881 | 0 |       } | 
| 882 | 0 |       if (Features & (1 << X86::FEATURE_SSE)) { | 
| 883 | 0 |         *Type = X86::INTEL_PENTIUM_III; | 
| 884 | 0 |         break; | 
| 885 | 0 |       } | 
| 886 | 0 |       if (Features & (1 << X86::FEATURE_MMX)) { | 
| 887 | 0 |         *Type = X86::INTEL_PENTIUM_II; | 
| 888 | 0 |         break; | 
| 889 | 0 |       } | 
| 890 | 0 |       *Type = X86::INTEL_PENTIUM_PRO; | 
| 891 | 0 |       break; | 
| 892 | 0 |     } | 
| 893 | 0 |     break; | 
| 894 | 0 |   case 15: { | 
| 895 | 0 |     if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { | 
| 896 | 0 |       *Type = X86::INTEL_NOCONA; | 
| 897 | 0 |       break; | 
| 898 | 0 |     } | 
| 899 | 0 |     if (Features & (1 << X86::FEATURE_SSE3)) { | 
| 900 | 0 |       *Type = X86::INTEL_PRESCOTT; | 
| 901 | 0 |       break; | 
| 902 | 0 |     } | 
| 903 | 0 |     *Type = X86::INTEL_PENTIUM_IV; | 
| 904 | 0 |     break; | 
| 905 | 0 |   } | 
| 906 | 0 |   default: | 
| 907 | 0 |     break; /*"generic"*/ | 
| 908 | 0 |   } | 
| 909 | 0 | } | 
| 910 |  |  | 
| 911 |  | static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, | 
| 912 |  |                                           unsigned Features, unsigned *Type, | 
| 913 | 0 |                                           unsigned *Subtype) { | 
| 914 | 0 |   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There | 
| 915 | 0 |   // appears to be no way to generate the wide variety of AMD-specific targets | 
| 916 | 0 |   // from the information returned from CPUID. | 
| 917 | 0 |   switch (Family) { | 
| 918 | 0 |   case 4: | 
| 919 | 0 |     *Type = X86::AMD_i486; | 
| 920 | 0 |     break; | 
| 921 | 0 |   case 5: | 
| 922 | 0 |     *Type = X86::AMDPENTIUM; | 
| 923 | 0 |     switch (Model) { | 
| 924 | 0 |     case 6: | 
| 925 | 0 |     case 7: | 
| 926 | 0 |       *Subtype = X86::AMDPENTIUM_K6; | 
| 927 | 0 |       break; // "k6" | 
| 928 | 0 |     case 8: | 
| 929 | 0 |       *Subtype = X86::AMDPENTIUM_K62; | 
| 930 | 0 |       break; // "k6-2" | 
| 931 | 0 |     case 9: | 
| 932 | 0 |     case 13: | 
| 933 | 0 |       *Subtype = X86::AMDPENTIUM_K63; | 
| 934 | 0 |       break; // "k6-3" | 
| 935 | 0 |     case 10: | 
| 936 | 0 |       *Subtype = X86::AMDPENTIUM_GEODE; | 
| 937 | 0 |       break; // "geode" | 
| 938 | 0 |     } | 
| 939 | 0 |     break; | 
| 940 | 0 |   case 6: | 
| 941 | 0 |     if (Features & (1 << X86::FEATURE_SSE)) { | 
| 942 | 0 |       *Type = X86::AMD_ATHLON_XP; | 
| 943 | 0 |       break; // "athlon-xp" | 
| 944 | 0 |     } | 
| 945 | 0 |     *Type = X86::AMD_ATHLON; | 
| 946 | 0 |     break; // "athlon" | 
| 947 | 0 |   case 15: | 
| 948 | 0 |     if (Features & (1 << X86::FEATURE_SSE3)) { | 
| 949 | 0 |       *Type = X86::AMD_K8SSE3; | 
| 950 | 0 |       break; // "k8-sse3" | 
| 951 | 0 |     } | 
| 952 | 0 |     *Type = X86::AMD_K8; | 
| 953 | 0 |     break; // "k8" | 
| 954 | 0 |   case 16: | 
| 955 | 0 |     *Type = X86::AMDFAM10H; // "amdfam10" | 
| 956 | 0 |     switch (Model) { | 
| 957 | 0 |     case 2: | 
| 958 | 0 |       *Subtype = X86::AMDFAM10H_BARCELONA; | 
| 959 | 0 |       break; | 
| 960 | 0 |     case 4: | 
| 961 | 0 |       *Subtype = X86::AMDFAM10H_SHANGHAI; | 
| 962 | 0 |       break; | 
| 963 | 0 |     case 8: | 
| 964 | 0 |       *Subtype = X86::AMDFAM10H_ISTANBUL; | 
| 965 | 0 |       break; | 
| 966 | 0 |     } | 
| 967 | 0 |     break; | 
| 968 | 0 |   case 20: | 
| 969 | 0 |     *Type = X86::AMD_BTVER1; | 
| 970 | 0 |     break; // "btver1"; | 
| 971 | 0 |   case 21: | 
| 972 | 0 |     *Type = X86::AMDFAM15H; | 
| 973 | 0 |     if (Model >= 0x60 && Model <= 0x7f) { | 
| 974 | 0 |       *Subtype = X86::AMDFAM15H_BDVER4; | 
| 975 | 0 |       break; // "bdver4"; 60h-7Fh: Excavator | 
| 976 | 0 |     } | 
| 977 | 0 |     if (Model >= 0x30 && Model <= 0x3f) { | 
| 978 | 0 |       *Subtype = X86::AMDFAM15H_BDVER3; | 
| 979 | 0 |       break; // "bdver3"; 30h-3Fh: Steamroller | 
| 980 | 0 |     } | 
| 981 | 0 |     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { | 
| 982 | 0 |       *Subtype = X86::AMDFAM15H_BDVER2; | 
| 983 | 0 |       break; // "bdver2"; 02h, 10h-1Fh: Piledriver | 
| 984 | 0 |     } | 
| 985 | 0 |     if (Model <= 0x0f) { | 
| 986 | 0 |       *Subtype = X86::AMDFAM15H_BDVER1; | 
| 987 | 0 |       break; // "bdver1"; 00h-0Fh: Bulldozer | 
| 988 | 0 |     } | 
| 989 | 0 |     break; | 
| 990 | 0 |   case 22: | 
| 991 | 0 |     *Type = X86::AMD_BTVER2; | 
| 992 | 0 |     break; // "btver2" | 
| 993 | 0 |   case 23: | 
| 994 | 0 |     *Type = X86::AMDFAM17H; | 
| 995 | 0 |     if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) { | 
| 996 | 0 |       *Subtype = X86::AMDFAM17H_ZNVER2; | 
| 997 | 0 |       break; // "znver2"; 30h-3fh, 71h: Zen2 | 
| 998 | 0 |     } | 
| 999 | 0 |     if (Model <= 0x0f) { | 
| 1000 | 0 |       *Subtype = X86::AMDFAM17H_ZNVER1; | 
| 1001 | 0 |       break; // "znver1"; 00h-0Fh: Zen1 | 
| 1002 | 0 |     } | 
| 1003 | 0 |     break; | 
| 1004 | 0 |   default: | 
| 1005 | 0 |     break; // "generic" | 
| 1006 | 0 |   } | 
| 1007 | 0 | } | 
| 1008 |  |  | 
| 1009 |  | static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, | 
| 1010 |  |                                  unsigned *FeaturesOut, unsigned *Features2Out, | 
| 1011 | 0 |                                  unsigned *Features3Out) { | 
| 1012 | 0 |   unsigned Features = 0; | 
| 1013 | 0 |   unsigned Features2 = 0; | 
| 1014 | 0 |   unsigned Features3 = 0; | 
| 1015 | 0 |   unsigned EAX, EBX; | 
| 1016 | 0 | 
 | 
| 1017 | 0 |   auto setFeature = [&](unsigned F) { | 
| 1018 | 0 |     if (F < 32) | 
| 1019 | 0 |       Features |= 1U << (F & 0x1f); | 
| 1020 | 0 |     else if (F < 64) | 
| 1021 | 0 |       Features2 |= 1U << ((F - 32) & 0x1f); | 
| 1022 | 0 |     else if (F < 96) | 
| 1023 | 0 |       Features3 |= 1U << ((F - 64) & 0x1f); | 
| 1024 | 0 |     else | 
| 1025 | 0 |       llvm_unreachable("Unexpected FeatureBit"); | 
| 1026 | 0 |   }; | 
| 1027 | 0 | 
 | 
| 1028 | 0 |   if ((EDX >> 15) & 1) | 
| 1029 | 0 |     setFeature(X86::FEATURE_CMOV); | 
| 1030 | 0 |   if ((EDX >> 23) & 1) | 
| 1031 | 0 |     setFeature(X86::FEATURE_MMX); | 
| 1032 | 0 |   if ((EDX >> 25) & 1) | 
| 1033 | 0 |     setFeature(X86::FEATURE_SSE); | 
| 1034 | 0 |   if ((EDX >> 26) & 1) | 
| 1035 | 0 |     setFeature(X86::FEATURE_SSE2); | 
| 1036 | 0 | 
 | 
| 1037 | 0 |   if ((ECX >> 0) & 1) | 
| 1038 | 0 |     setFeature(X86::FEATURE_SSE3); | 
| 1039 | 0 |   if ((ECX >> 1) & 1) | 
| 1040 | 0 |     setFeature(X86::FEATURE_PCLMUL); | 
| 1041 | 0 |   if ((ECX >> 9) & 1) | 
| 1042 | 0 |     setFeature(X86::FEATURE_SSSE3); | 
| 1043 | 0 |   if ((ECX >> 12) & 1) | 
| 1044 | 0 |     setFeature(X86::FEATURE_FMA); | 
| 1045 | 0 |   if ((ECX >> 19) & 1) | 
| 1046 | 0 |     setFeature(X86::FEATURE_SSE4_1); | 
| 1047 | 0 |   if ((ECX >> 20) & 1) | 
| 1048 | 0 |     setFeature(X86::FEATURE_SSE4_2); | 
| 1049 | 0 |   if ((ECX >> 23) & 1) | 
| 1050 | 0 |     setFeature(X86::FEATURE_POPCNT); | 
| 1051 | 0 |   if ((ECX >> 25) & 1) | 
| 1052 | 0 |     setFeature(X86::FEATURE_AES); | 
| 1053 | 0 | 
 | 
| 1054 | 0 |   if ((ECX >> 22) & 1) | 
| 1055 | 0 |     setFeature(X86::FEATURE_MOVBE); | 
| 1056 | 0 | 
 | 
| 1057 | 0 |   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
| 1058 | 0 |   // indicates that the AVX registers will be saved and restored on context | 
| 1059 | 0 |   // switch, then we have full AVX support. | 
| 1060 | 0 |   const unsigned AVXBits = (1 << 27) | (1 << 28); | 
| 1061 | 0 |   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && | 
| 1062 | 0 |                 ((EAX & 0x6) == 0x6); | 
| 1063 |  | #if defined(__APPLE__) | 
| 1064 |  |   // Darwin lazily saves the AVX512 context on first use: trust that the OS will | 
| 1065 |  |   // save the AVX512 context if we use AVX512 instructions, even the bit is not | 
| 1066 |  |   // set right now. | 
| 1067 |  |   bool HasAVX512Save = true; | 
| 1068 |  | #else | 
| 1069 |  |   // AVX512 requires additional context to be saved by the OS. | 
| 1070 | 0 |   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); | 
| 1071 | 0 | #endif | 
| 1072 | 0 | 
 | 
| 1073 | 0 |   if (HasAVX) | 
| 1074 | 0 |     setFeature(X86::FEATURE_AVX); | 
| 1075 | 0 | 
 | 
| 1076 | 0 |   bool HasLeaf7 = | 
| 1077 | 0 |       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
| 1078 | 0 | 
 | 
| 1079 | 0 |   if (HasLeaf7 && ((EBX >> 3) & 1)) | 
| 1080 | 0 |     setFeature(X86::FEATURE_BMI); | 
| 1081 | 0 |   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) | 
| 1082 | 0 |     setFeature(X86::FEATURE_AVX2); | 
| 1083 | 0 |   if (HasLeaf7 && ((EBX >> 8) & 1)) | 
| 1084 | 0 |     setFeature(X86::FEATURE_BMI2); | 
| 1085 | 0 |   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) | 
| 1086 | 0 |     setFeature(X86::FEATURE_AVX512F); | 
| 1087 | 0 |   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) | 
| 1088 | 0 |     setFeature(X86::FEATURE_AVX512DQ); | 
| 1089 | 0 |   if (HasLeaf7 && ((EBX >> 19) & 1)) | 
| 1090 | 0 |     setFeature(X86::FEATURE_ADX); | 
| 1091 | 0 |   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) | 
| 1092 | 0 |     setFeature(X86::FEATURE_AVX512IFMA); | 
| 1093 | 0 |   if (HasLeaf7 && ((EBX >> 23) & 1)) | 
| 1094 | 0 |     setFeature(X86::FEATURE_CLFLUSHOPT); | 
| 1095 | 0 |   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) | 
| 1096 | 0 |     setFeature(X86::FEATURE_AVX512PF); | 
| 1097 | 0 |   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) | 
| 1098 | 0 |     setFeature(X86::FEATURE_AVX512ER); | 
| 1099 | 0 |   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) | 
| 1100 | 0 |     setFeature(X86::FEATURE_AVX512CD); | 
| 1101 | 0 |   if (HasLeaf7 && ((EBX >> 29) & 1)) | 
| 1102 | 0 |     setFeature(X86::FEATURE_SHA); | 
| 1103 | 0 |   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) | 
| 1104 | 0 |     setFeature(X86::FEATURE_AVX512BW); | 
| 1105 | 0 |   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) | 
| 1106 | 0 |     setFeature(X86::FEATURE_AVX512VL); | 
| 1107 | 0 | 
 | 
| 1108 | 0 |   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) | 
| 1109 | 0 |     setFeature(X86::FEATURE_AVX512VBMI); | 
| 1110 | 0 |   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save) | 
| 1111 | 0 |     setFeature(X86::FEATURE_AVX512VBMI2); | 
| 1112 | 0 |   if (HasLeaf7 && ((ECX >> 8) & 1)) | 
| 1113 | 0 |     setFeature(X86::FEATURE_GFNI); | 
| 1114 | 0 |   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX) | 
| 1115 | 0 |     setFeature(X86::FEATURE_VPCLMULQDQ); | 
| 1116 | 0 |   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save) | 
| 1117 | 0 |     setFeature(X86::FEATURE_AVX512VNNI); | 
| 1118 | 0 |   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save) | 
| 1119 | 0 |     setFeature(X86::FEATURE_AVX512BITALG); | 
| 1120 | 0 |   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) | 
| 1121 | 0 |     setFeature(X86::FEATURE_AVX512VPOPCNTDQ); | 
| 1122 | 0 | 
 | 
| 1123 | 0 |   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) | 
| 1124 | 0 |     setFeature(X86::FEATURE_AVX5124VNNIW); | 
| 1125 | 0 |   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) | 
| 1126 | 0 |     setFeature(X86::FEATURE_AVX5124FMAPS); | 
| 1127 | 0 |   if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save) | 
| 1128 | 0 |     setFeature(X86::FEATURE_AVX512VP2INTERSECT); | 
| 1129 | 0 | 
 | 
| 1130 | 0 |   bool HasLeaf7Subleaf1 = | 
| 1131 | 0 |       MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); | 
| 1132 | 0 |   if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save) | 
| 1133 | 0 |     setFeature(X86::FEATURE_AVX512BF16); | 
| 1134 | 0 | 
 | 
| 1135 | 0 |   unsigned MaxExtLevel; | 
| 1136 | 0 |   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | 
| 1137 | 0 | 
 | 
| 1138 | 0 |   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | 
| 1139 | 0 |                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
| 1140 | 0 |   if (HasExtLeaf1 && ((ECX >> 6) & 1)) | 
| 1141 | 0 |     setFeature(X86::FEATURE_SSE4_A); | 
| 1142 | 0 |   if (HasExtLeaf1 && ((ECX >> 11) & 1)) | 
| 1143 | 0 |     setFeature(X86::FEATURE_XOP); | 
| 1144 | 0 |   if (HasExtLeaf1 && ((ECX >> 16) & 1)) | 
| 1145 | 0 |     setFeature(X86::FEATURE_FMA4); | 
| 1146 | 0 | 
 | 
| 1147 | 0 |   if (HasExtLeaf1 && ((EDX >> 29) & 1)) | 
| 1148 | 0 |     setFeature(X86::FEATURE_EM64T); | 
| 1149 | 0 | 
 | 
| 1150 | 0 |   *FeaturesOut  = Features; | 
| 1151 | 0 |   *Features2Out = Features2; | 
| 1152 | 0 |   *Features3Out = Features3; | 
| 1153 | 0 | } | 
| 1154 |  |  | 
| 1155 | 0 | StringRef sys::getHostCPUName() { | 
| 1156 | 0 |   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
| 1157 | 0 |   unsigned MaxLeaf, Vendor; | 
| 1158 | 0 | 
 | 
| 1159 | 0 | #if defined(__GNUC__) || defined(__clang__) | 
| 1160 | 0 |   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here | 
| 1161 | 0 |   // and simplify it to not invoke __cpuid (like cpu_model.c in | 
| 1162 | 0 |   // compiler-rt/lib/builtins/cpu_model.c? | 
| 1163 | 0 |   // Opting for the second option. | 
| 1164 | 0 |   if(!isCpuIdSupported()) | 
| 1165 | 0 |     return "generic"; | 
| 1166 | 0 | #endif | 
| 1167 | 0 |   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) | 
| 1168 | 0 |     return "generic"; | 
| 1169 | 0 |   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); | 
| 1170 | 0 | 
 | 
| 1171 | 0 |   unsigned Brand_id = EBX & 0xff; | 
| 1172 | 0 |   unsigned Family = 0, Model = 0; | 
| 1173 | 0 |   unsigned Features = 0, Features2 = 0, Features3 = 0; | 
| 1174 | 0 |   detectX86FamilyModel(EAX, &Family, &Model); | 
| 1175 | 0 |   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3); | 
| 1176 | 0 | 
 | 
| 1177 | 0 |   unsigned Type = 0; | 
| 1178 | 0 |   unsigned Subtype = 0; | 
| 1179 | 0 | 
 | 
| 1180 | 0 |   if (Vendor == SIG_INTEL) { | 
| 1181 | 0 |     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, | 
| 1182 | 0 |                                     Features2, Features3, &Type, &Subtype); | 
| 1183 | 0 |   } else if (Vendor == SIG_AMD) { | 
| 1184 | 0 |     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); | 
| 1185 | 0 |   } | 
| 1186 | 0 | 
 | 
| 1187 | 0 |   // Check subtypes first since those are more specific. | 
| 1188 | 0 | #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \ | 
| 1189 | 0 |   if (Subtype == X86::ENUM) \ | 
| 1190 | 0 |     return ARCHNAME; | 
| 1191 | 0 | #include "llvm/Support/X86TargetParser.def" | 
| 1192 | 0 | 
 | 
| 1193 | 0 |   // Now check types. | 
| 1194 | 0 | #define X86_CPU_TYPE(ARCHNAME, ENUM) \ | 
| 1195 | 0 |   if (Type == X86::ENUM) \ | 
| 1196 | 0 |     return ARCHNAME; | 
| 1197 | 0 | #include "llvm/Support/X86TargetParser.def" | 
| 1198 | 0 | 
 | 
| 1199 | 0 |   return "generic"; | 
| 1200 | 0 | } | 
| 1201 |  |  | 
| 1202 |  | #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
| 1203 |  | StringRef sys::getHostCPUName() { | 
| 1204 |  |   host_basic_info_data_t hostInfo; | 
| 1205 |  |   mach_msg_type_number_t infoCount; | 
| 1206 |  |  | 
| 1207 |  |   infoCount = HOST_BASIC_INFO_COUNT; | 
| 1208 |  |   mach_port_t hostPort = mach_host_self(); | 
| 1209 |  |   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
| 1210 |  |             &infoCount); | 
| 1211 |  |   mach_port_deallocate(mach_task_self(), hostPort); | 
| 1212 |  |  | 
| 1213 |  |   if (hostInfo.cpu_type != CPU_TYPE_POWERPC) | 
| 1214 |  |     return "generic"; | 
| 1215 |  |  | 
| 1216 |  |   switch (hostInfo.cpu_subtype) { | 
| 1217 |  |   case CPU_SUBTYPE_POWERPC_601: | 
| 1218 |  |     return "601"; | 
| 1219 |  |   case CPU_SUBTYPE_POWERPC_602: | 
| 1220 |  |     return "602"; | 
| 1221 |  |   case CPU_SUBTYPE_POWERPC_603: | 
| 1222 |  |     return "603"; | 
| 1223 |  |   case CPU_SUBTYPE_POWERPC_603e: | 
| 1224 |  |     return "603e"; | 
| 1225 |  |   case CPU_SUBTYPE_POWERPC_603ev: | 
| 1226 |  |     return "603ev"; | 
| 1227 |  |   case CPU_SUBTYPE_POWERPC_604: | 
| 1228 |  |     return "604"; | 
| 1229 |  |   case CPU_SUBTYPE_POWERPC_604e: | 
| 1230 |  |     return "604e"; | 
| 1231 |  |   case CPU_SUBTYPE_POWERPC_620: | 
| 1232 |  |     return "620"; | 
| 1233 |  |   case CPU_SUBTYPE_POWERPC_750: | 
| 1234 |  |     return "750"; | 
| 1235 |  |   case CPU_SUBTYPE_POWERPC_7400: | 
| 1236 |  |     return "7400"; | 
| 1237 |  |   case CPU_SUBTYPE_POWERPC_7450: | 
| 1238 |  |     return "7450"; | 
| 1239 |  |   case CPU_SUBTYPE_POWERPC_970: | 
| 1240 |  |     return "970"; | 
| 1241 |  |   default:; | 
| 1242 |  |   } | 
| 1243 |  |  | 
| 1244 |  |   return "generic"; | 
| 1245 |  | } | 
| 1246 |  | #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) | 
| 1247 |  | StringRef sys::getHostCPUName() { | 
| 1248 |  |   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
| 1249 |  |   StringRef Content = P ? P->getBuffer() : ""; | 
| 1250 |  |   return detail::getHostCPUNameForPowerPC(Content); | 
| 1251 |  | } | 
| 1252 |  | #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | 
| 1253 |  | StringRef sys::getHostCPUName() { | 
| 1254 |  |   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
| 1255 |  |   StringRef Content = P ? P->getBuffer() : ""; | 
| 1256 |  |   return detail::getHostCPUNameForARM(Content); | 
| 1257 |  | } | 
| 1258 |  | #elif defined(__linux__) && defined(__s390x__) | 
| 1259 |  | StringRef sys::getHostCPUName() { | 
| 1260 |  |   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
| 1261 |  |   StringRef Content = P ? P->getBuffer() : ""; | 
| 1262 |  |   return detail::getHostCPUNameForS390x(Content); | 
| 1263 |  | } | 
| 1264 |  | #elif defined(__APPLE__) && defined(__aarch64__) | 
| 1265 |  | StringRef sys::getHostCPUName() { | 
| 1266 |  |   return "cyclone"; | 
| 1267 |  | } | 
| 1268 |  | #elif defined(__APPLE__) && defined(__arm__) | 
| 1269 |  | StringRef sys::getHostCPUName() { | 
| 1270 |  |   host_basic_info_data_t hostInfo; | 
| 1271 |  |   mach_msg_type_number_t infoCount; | 
| 1272 |  |  | 
| 1273 |  |   infoCount = HOST_BASIC_INFO_COUNT; | 
| 1274 |  |   mach_port_t hostPort = mach_host_self(); | 
| 1275 |  |   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
| 1276 |  |             &infoCount); | 
| 1277 |  |   mach_port_deallocate(mach_task_self(), hostPort); | 
| 1278 |  |  | 
| 1279 |  |   if (hostInfo.cpu_type != CPU_TYPE_ARM) { | 
| 1280 |  |     assert(false && "CPUType not equal to ARM should not be possible on ARM"); | 
| 1281 |  |     return "generic"; | 
| 1282 |  |   } | 
| 1283 |  |   switch (hostInfo.cpu_subtype) { | 
| 1284 |  |     case CPU_SUBTYPE_ARM_V7S: | 
| 1285 |  |       return "swift"; | 
| 1286 |  |     default:; | 
| 1287 |  |     } | 
| 1288 |  |  | 
| 1289 |  |   return "generic"; | 
| 1290 |  | } | 
| 1291 |  | #else | 
| 1292 |  | StringRef sys::getHostCPUName() { return "generic"; } | 
| 1293 |  | #endif | 
| 1294 |  |  | 
| 1295 |  | #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) | 
| 1296 |  | // On Linux, the number of physical cores can be computed from /proc/cpuinfo, | 
| 1297 |  | // using the number of unique physical/core id pairs. The following | 
| 1298 |  | // implementation reads the /proc/cpuinfo format on an x86_64 system. | 
| 1299 | 0 | int computeHostNumPhysicalCores() { | 
| 1300 | 0 |   // Enabled represents the number of physical id/core id pairs with at least | 
| 1301 | 0 |   // one processor id enabled by the CPU affinity mask. | 
| 1302 | 0 |   cpu_set_t Affinity, Enabled; | 
| 1303 | 0 |   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0) | 
| 1304 | 0 |     return -1; | 
| 1305 | 0 |   CPU_ZERO(&Enabled); | 
| 1306 | 0 | 
 | 
| 1307 | 0 |   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be | 
| 1308 | 0 |   // mmapped because it appears to have 0 size. | 
| 1309 | 0 |   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | 
| 1310 | 0 |       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | 
| 1311 | 0 |   if (std::error_code EC = Text.getError()) { | 
| 1312 | 0 |     llvm::errs() << "Can't read " | 
| 1313 | 0 |                  << "/proc/cpuinfo: " << EC.message() << "\n"; | 
| 1314 | 0 |     return -1; | 
| 1315 | 0 |   } | 
| 1316 | 0 |   SmallVector<StringRef, 8> strs; | 
| 1317 | 0 |   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, | 
| 1318 | 0 |                              /*KeepEmpty=*/false); | 
| 1319 | 0 |   int CurProcessor = -1; | 
| 1320 | 0 |   int CurPhysicalId = -1; | 
| 1321 | 0 |   int CurSiblings = -1; | 
| 1322 | 0 |   int CurCoreId = -1; | 
| 1323 | 0 |   for (StringRef Line : strs) { | 
| 1324 | 0 |     std::pair<StringRef, StringRef> Data = Line.split(':'); | 
| 1325 | 0 |     auto Name = Data.first.trim(); | 
| 1326 | 0 |     auto Val = Data.second.trim(); | 
| 1327 | 0 |     // These fields are available if the kernel is configured with CONFIG_SMP. | 
| 1328 | 0 |     if (Name == "processor") | 
| 1329 | 0 |       Val.getAsInteger(10, CurProcessor); | 
| 1330 | 0 |     else if (Name == "physical id") | 
| 1331 | 0 |       Val.getAsInteger(10, CurPhysicalId); | 
| 1332 | 0 |     else if (Name == "siblings") | 
| 1333 | 0 |       Val.getAsInteger(10, CurSiblings); | 
| 1334 | 0 |     else if (Name == "core id") { | 
| 1335 | 0 |       Val.getAsInteger(10, CurCoreId); | 
| 1336 | 0 |       // The processor id corresponds to an index into cpu_set_t. | 
| 1337 | 0 |       if (CPU_ISSET(CurProcessor, &Affinity)) | 
| 1338 | 0 |         CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled); | 
| 1339 | 0 |     } | 
| 1340 | 0 |   } | 
| 1341 | 0 |   return CPU_COUNT(&Enabled); | 
| 1342 | 0 | } | 
| 1343 |  | #elif defined(__APPLE__) && defined(__x86_64__) | 
| 1344 |  | #include <sys/param.h> | 
| 1345 |  | #include <sys/sysctl.h> | 
| 1346 |  |  | 
| 1347 |  | // Gets the number of *physical cores* on the machine. | 
| 1348 |  | int computeHostNumPhysicalCores() { | 
| 1349 |  |   uint32_t count; | 
| 1350 |  |   size_t len = sizeof(count); | 
| 1351 |  |   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); | 
| 1352 |  |   if (count < 1) { | 
| 1353 |  |     int nm[2]; | 
| 1354 |  |     nm[0] = CTL_HW; | 
| 1355 |  |     nm[1] = HW_AVAILCPU; | 
| 1356 |  |     sysctl(nm, 2, &count, &len, NULL, 0); | 
| 1357 |  |     if (count < 1) | 
| 1358 |  |       return -1; | 
| 1359 |  |   } | 
| 1360 |  |   return count; | 
| 1361 |  | } | 
| 1362 |  | #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0 | 
| 1363 |  | // Defined in llvm/lib/Support/Windows/Threading.inc | 
| 1364 |  | int computeHostNumPhysicalCores(); | 
| 1365 |  | #else | 
| 1366 |  | // On other systems, return -1 to indicate unknown. | 
| 1367 |  | static int computeHostNumPhysicalCores() { return -1; } | 
| 1368 |  | #endif | 
| 1369 |  |  | 
| 1370 | 0 | int sys::getHostNumPhysicalCores() { | 
| 1371 | 0 |   static int NumCores = computeHostNumPhysicalCores(); | 
| 1372 | 0 |   return NumCores; | 
| 1373 | 0 | } | 
| 1374 |  |  | 
| 1375 |  | #if defined(__i386__) || defined(_M_IX86) || \ | 
| 1376 |  |     defined(__x86_64__) || defined(_M_X64) | 
| 1377 | 0 | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
| 1378 | 0 |   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
| 1379 | 0 |   unsigned MaxLevel; | 
| 1380 | 0 |   union { | 
| 1381 | 0 |     unsigned u[3]; | 
| 1382 | 0 |     char c[12]; | 
| 1383 | 0 |   } text; | 
| 1384 | 0 | 
 | 
| 1385 | 0 |   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || | 
| 1386 | 0 |       MaxLevel < 1) | 
| 1387 | 0 |     return false; | 
| 1388 | 0 |  | 
| 1389 | 0 |   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); | 
| 1390 | 0 | 
 | 
| 1391 | 0 |   Features["cx8"]    = (EDX >>  8) & 1; | 
| 1392 | 0 |   Features["cmov"]   = (EDX >> 15) & 1; | 
| 1393 | 0 |   Features["mmx"]    = (EDX >> 23) & 1; | 
| 1394 | 0 |   Features["fxsr"]   = (EDX >> 24) & 1; | 
| 1395 | 0 |   Features["sse"]    = (EDX >> 25) & 1; | 
| 1396 | 0 |   Features["sse2"]   = (EDX >> 26) & 1; | 
| 1397 | 0 | 
 | 
| 1398 | 0 |   Features["sse3"]   = (ECX >>  0) & 1; | 
| 1399 | 0 |   Features["pclmul"] = (ECX >>  1) & 1; | 
| 1400 | 0 |   Features["ssse3"]  = (ECX >>  9) & 1; | 
| 1401 | 0 |   Features["cx16"]   = (ECX >> 13) & 1; | 
| 1402 | 0 |   Features["sse4.1"] = (ECX >> 19) & 1; | 
| 1403 | 0 |   Features["sse4.2"] = (ECX >> 20) & 1; | 
| 1404 | 0 |   Features["movbe"]  = (ECX >> 22) & 1; | 
| 1405 | 0 |   Features["popcnt"] = (ECX >> 23) & 1; | 
| 1406 | 0 |   Features["aes"]    = (ECX >> 25) & 1; | 
| 1407 | 0 |   Features["rdrnd"]  = (ECX >> 30) & 1; | 
| 1408 | 0 | 
 | 
| 1409 | 0 |   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
| 1410 | 0 |   // indicates that the AVX registers will be saved and restored on context | 
| 1411 | 0 |   // switch, then we have full AVX support. | 
| 1412 | 0 |   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && | 
| 1413 | 0 |                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); | 
| 1414 |  | #if defined(__APPLE__) | 
| 1415 |  |   // Darwin lazily saves the AVX512 context on first use: trust that the OS will | 
| 1416 |  |   // save the AVX512 context if we use AVX512 instructions, even the bit is not | 
| 1417 |  |   // set right now. | 
| 1418 |  |   bool HasAVX512Save = true; | 
| 1419 |  | #else | 
| 1420 |  |   // AVX512 requires additional context to be saved by the OS. | 
| 1421 | 0 |   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); | 
| 1422 | 0 | #endif | 
| 1423 | 0 | 
 | 
| 1424 | 0 |   Features["avx"]   = HasAVXSave; | 
| 1425 | 0 |   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave; | 
| 1426 | 0 |   // Only enable XSAVE if OS has enabled support for saving YMM state. | 
| 1427 | 0 |   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; | 
| 1428 | 0 |   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave; | 
| 1429 | 0 | 
 | 
| 1430 | 0 |   unsigned MaxExtLevel; | 
| 1431 | 0 |   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | 
| 1432 | 0 | 
 | 
| 1433 | 0 |   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | 
| 1434 | 0 |                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
| 1435 | 0 |   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1); | 
| 1436 | 0 |   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1); | 
| 1437 | 0 |   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1); | 
| 1438 | 0 |   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1); | 
| 1439 | 0 |   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; | 
| 1440 | 0 |   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1); | 
| 1441 | 0 |   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; | 
| 1442 | 0 |   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1); | 
| 1443 | 0 |   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); | 
| 1444 | 0 | 
 | 
| 1445 | 0 |   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1); | 
| 1446 | 0 | 
 | 
| 1447 | 0 |   // Miscellaneous memory related features, detected by | 
| 1448 | 0 |   // using the 0x80000008 leaf of the CPUID instruction | 
| 1449 | 0 |   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && | 
| 1450 | 0 |                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); | 
| 1451 | 0 |   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1); | 
| 1452 | 0 |   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); | 
| 1453 | 0 | 
 | 
| 1454 | 0 |   bool HasLeaf7 = | 
| 1455 | 0 |       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
| 1456 | 0 | 
 | 
| 1457 | 0 |   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1); | 
| 1458 | 0 |   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1); | 
| 1459 | 0 |   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1); | 
| 1460 | 0 |   // AVX2 is only supported if we have the OS save support from AVX. | 
| 1461 | 0 |   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave; | 
| 1462 | 0 |   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1); | 
| 1463 | 0 |   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1); | 
| 1464 | 0 |   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1); | 
| 1465 | 0 |   // AVX512 is only supported if the OS supports the context save for it. | 
| 1466 | 0 |   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; | 
| 1467 | 0 |   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; | 
| 1468 | 0 |   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1); | 
| 1469 | 0 |   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1); | 
| 1470 | 0 |   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; | 
| 1471 | 0 |   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); | 
| 1472 | 0 |   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1); | 
| 1473 | 0 |   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; | 
| 1474 | 0 |   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; | 
| 1475 | 0 |   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; | 
| 1476 | 0 |   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1); | 
| 1477 | 0 |   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; | 
| 1478 | 0 |   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; | 
| 1479 | 0 | 
 | 
| 1480 | 0 |   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1); | 
| 1481 | 0 |   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save; | 
| 1482 | 0 |   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1); | 
| 1483 | 0 |   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1); | 
| 1484 | 0 |   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save; | 
| 1485 | 0 |   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1); | 
| 1486 | 0 |   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1); | 
| 1487 | 0 |   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave; | 
| 1488 | 0 |   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; | 
| 1489 | 0 |   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; | 
| 1490 | 0 |   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; | 
| 1491 | 0 |   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; | 
| 1492 | 0 |   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1); | 
| 1493 | 0 |   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1); | 
| 1494 | 0 |   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1); | 
| 1495 | 0 |   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1); | 
| 1496 | 0 |   Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1); | 
| 1497 | 0 | 
 | 
| 1498 | 0 |   Features["avx512vp2intersect"] = | 
| 1499 | 0 |       HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save; | 
| 1500 | 0 |   Features["serialize"]       = HasLeaf7 && ((EDX >> 14) & 1); | 
| 1501 | 0 |   Features["tsxldtrk"]        = HasLeaf7 && ((EDX >> 16) & 1); | 
| 1502 | 0 |   // There are two CPUID leafs which information associated with the pconfig | 
| 1503 | 0 |   // instruction: | 
| 1504 | 0 |   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th | 
| 1505 | 0 |   // bit of EDX), while the EAX=0x1b leaf returns information on the | 
| 1506 | 0 |   // availability of specific pconfig leafs. | 
| 1507 | 0 |   // The target feature here only refers to the the first of these two. | 
| 1508 | 0 |   // Users might need to check for the availability of specific pconfig | 
| 1509 | 0 |   // leaves using cpuid, since that information is ignored while | 
| 1510 | 0 |   // detecting features using the "-march=native" flag. | 
| 1511 | 0 |   // For more info, see X86 ISA docs. | 
| 1512 | 0 |   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); | 
| 1513 | 0 |   bool HasLeaf7Subleaf1 = | 
| 1514 | 0 |       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); | 
| 1515 | 0 |   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save; | 
| 1516 | 0 | 
 | 
| 1517 | 0 |   bool HasLeafD = MaxLevel >= 0xd && | 
| 1518 | 0 |                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); | 
| 1519 | 0 | 
 | 
| 1520 | 0 |   // Only enable XSAVE if OS has enabled support for saving YMM state. | 
| 1521 | 0 |   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; | 
| 1522 | 0 |   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; | 
| 1523 | 0 |   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; | 
| 1524 | 0 | 
 | 
| 1525 | 0 |   bool HasLeaf14 = MaxLevel >= 0x14 && | 
| 1526 | 0 |                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); | 
| 1527 | 0 | 
 | 
| 1528 | 0 |   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); | 
| 1529 | 0 | 
 | 
| 1530 | 0 |   return true; | 
| 1531 | 0 | } | 
| 1532 |  | #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | 
| 1533 |  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
| 1534 |  |   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
| 1535 |  |   if (!P) | 
| 1536 |  |     return false; | 
| 1537 |  |  | 
| 1538 |  |   SmallVector<StringRef, 32> Lines; | 
| 1539 |  |   P->getBuffer().split(Lines, "\n"); | 
| 1540 |  |  | 
| 1541 |  |   SmallVector<StringRef, 32> CPUFeatures; | 
| 1542 |  |  | 
| 1543 |  |   // Look for the CPU features. | 
| 1544 |  |   for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
| 1545 |  |     if (Lines[I].startswith("Features")) { | 
| 1546 |  |       Lines[I].split(CPUFeatures, ' '); | 
| 1547 |  |       break; | 
| 1548 |  |     } | 
| 1549 |  |  | 
| 1550 |  | #if defined(__aarch64__) | 
| 1551 |  |   // Keep track of which crypto features we have seen | 
| 1552 |  |   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; | 
| 1553 |  |   uint32_t crypto = 0; | 
| 1554 |  | #endif | 
| 1555 |  |  | 
| 1556 |  |   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
| 1557 |  |     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) | 
| 1558 |  | #if defined(__aarch64__) | 
| 1559 |  |                                    .Case("asimd", "neon") | 
| 1560 |  |                                    .Case("fp", "fp-armv8") | 
| 1561 |  |                                    .Case("crc32", "crc") | 
| 1562 |  | #else | 
| 1563 |  |                                    .Case("half", "fp16") | 
| 1564 |  |                                    .Case("neon", "neon") | 
| 1565 |  |                                    .Case("vfpv3", "vfp3") | 
| 1566 |  |                                    .Case("vfpv3d16", "d16") | 
| 1567 |  |                                    .Case("vfpv4", "vfp4") | 
| 1568 |  |                                    .Case("idiva", "hwdiv-arm") | 
| 1569 |  |                                    .Case("idivt", "hwdiv") | 
| 1570 |  | #endif | 
| 1571 |  |                                    .Default(""); | 
| 1572 |  |  | 
| 1573 |  | #if defined(__aarch64__) | 
| 1574 |  |     // We need to check crypto separately since we need all of the crypto | 
| 1575 |  |     // extensions to enable the subtarget feature | 
| 1576 |  |     if (CPUFeatures[I] == "aes") | 
| 1577 |  |       crypto |= CAP_AES; | 
| 1578 |  |     else if (CPUFeatures[I] == "pmull") | 
| 1579 |  |       crypto |= CAP_PMULL; | 
| 1580 |  |     else if (CPUFeatures[I] == "sha1") | 
| 1581 |  |       crypto |= CAP_SHA1; | 
| 1582 |  |     else if (CPUFeatures[I] == "sha2") | 
| 1583 |  |       crypto |= CAP_SHA2; | 
| 1584 |  | #endif | 
| 1585 |  |  | 
| 1586 |  |     if (LLVMFeatureStr != "") | 
| 1587 |  |       Features[LLVMFeatureStr] = true; | 
| 1588 |  |   } | 
| 1589 |  |  | 
| 1590 |  | #if defined(__aarch64__) | 
| 1591 |  |   // If we have all crypto bits we can add the feature | 
| 1592 |  |   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) | 
| 1593 |  |     Features["crypto"] = true; | 
| 1594 |  | #endif | 
| 1595 |  |  | 
| 1596 |  |   return true; | 
| 1597 |  | } | 
| 1598 |  | #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64)) | 
| 1599 |  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
| 1600 |  |   if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE)) | 
| 1601 |  |     Features["neon"] = true; | 
| 1602 |  |   if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE)) | 
| 1603 |  |     Features["crc"] = true; | 
| 1604 |  |   if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)) | 
| 1605 |  |     Features["crypto"] = true; | 
| 1606 |  |  | 
| 1607 |  |   return true; | 
| 1608 |  | } | 
| 1609 |  | #else | 
| 1610 |  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } | 
| 1611 |  | #endif | 
| 1612 |  |  | 
| 1613 | 2 | std::string sys::getProcessTriple() { | 
| 1614 | 2 |   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); | 
| 1615 | 2 |   Triple PT(Triple::normalize(TargetTripleString)); | 
| 1616 | 2 |  | 
| 1617 | 2 |   if (sizeof(void *) == 8 && PT.isArch32Bit()) | 
| 1618 | 0 |     PT = PT.get64BitArchVariant(); | 
| 1619 | 2 |   if (sizeof(void *) == 4 && PT.isArch64Bit()) | 
| 1620 | 0 |     PT = PT.get32BitArchVariant(); | 
| 1621 | 2 |  | 
| 1622 | 2 |   return PT.str(); | 
| 1623 | 2 | } |