/home/arjun/llvm-project/llvm/lib/Support/APInt.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===-- APInt.cpp - Implement APInt class ---------------------------------===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  | // | 
| 9 |  | // This file implements a class to represent arbitrary precision integer | 
| 10 |  | // constant values and provide a variety of arithmetic operations on them. | 
| 11 |  | // | 
| 12 |  | //===----------------------------------------------------------------------===// | 
| 13 |  |  | 
| 14 |  | #include "llvm/ADT/APInt.h" | 
| 15 |  | #include "llvm/ADT/ArrayRef.h" | 
| 16 |  | #include "llvm/ADT/FoldingSet.h" | 
| 17 |  | #include "llvm/ADT/Hashing.h" | 
| 18 |  | #include "llvm/ADT/Optional.h" | 
| 19 |  | #include "llvm/ADT/SmallString.h" | 
| 20 |  | #include "llvm/ADT/StringRef.h" | 
| 21 |  | #include "llvm/ADT/bit.h" | 
| 22 |  | #include "llvm/Config/llvm-config.h" | 
| 23 |  | #include "llvm/Support/Debug.h" | 
| 24 |  | #include "llvm/Support/ErrorHandling.h" | 
| 25 |  | #include "llvm/Support/MathExtras.h" | 
| 26 |  | #include "llvm/Support/raw_ostream.h" | 
| 27 |  | #include <climits> | 
| 28 |  | #include <cmath> | 
| 29 |  | #include <cstdlib> | 
| 30 |  | #include <cstring> | 
| 31 |  | using namespace llvm; | 
| 32 |  |  | 
| 33 |  | #define DEBUG_TYPE "apint" | 
| 34 |  |  | 
| 35 |  | /// A utility function for allocating memory, checking for allocation failures, | 
| 36 |  | /// and ensuring the contents are zeroed. | 
| 37 | 0 | inline static uint64_t* getClearedMemory(unsigned numWords) { | 
| 38 | 0 |   uint64_t *result = new uint64_t[numWords]; | 
| 39 | 0 |   memset(result, 0, numWords * sizeof(uint64_t)); | 
| 40 | 0 |   return result; | 
| 41 | 0 | } | 
| 42 |  |  | 
| 43 |  | /// A utility function for allocating memory and checking for allocation | 
| 44 |  | /// failure.  The content is not zeroed. | 
| 45 | 0 | inline static uint64_t* getMemory(unsigned numWords) { | 
| 46 | 0 |   return new uint64_t[numWords]; | 
| 47 | 0 | } | 
| 48 |  |  | 
| 49 |  | /// A utility function that converts a character to a digit. | 
| 50 | 0 | inline static unsigned getDigit(char cdigit, uint8_t radix) { | 
| 51 | 0 |   unsigned r; | 
| 52 | 0 | 
 | 
| 53 | 0 |   if (radix == 16 || radix == 36) { | 
| 54 | 0 |     r = cdigit - '0'; | 
| 55 | 0 |     if (r <= 9) | 
| 56 | 0 |       return r; | 
| 57 | 0 |  | 
| 58 | 0 |     r = cdigit - 'A'; | 
| 59 | 0 |     if (r <= radix - 11U) | 
| 60 | 0 |       return r + 10; | 
| 61 | 0 |  | 
| 62 | 0 |     r = cdigit - 'a'; | 
| 63 | 0 |     if (r <= radix - 11U) | 
| 64 | 0 |       return r + 10; | 
| 65 | 0 |  | 
| 66 | 0 |     radix = 10; | 
| 67 | 0 |   } | 
| 68 | 0 | 
 | 
| 69 | 0 |   r = cdigit - '0'; | 
| 70 | 0 |   if (r < radix) | 
| 71 | 0 |     return r; | 
| 72 | 0 |  | 
| 73 | 0 |   return -1U; | 
| 74 | 0 | } | 
| 75 |  |  | 
| 76 |  |  | 
| 77 | 0 | void APInt::initSlowCase(uint64_t val, bool isSigned) { | 
| 78 | 0 |   U.pVal = getClearedMemory(getNumWords()); | 
| 79 | 0 |   U.pVal[0] = val; | 
| 80 | 0 |   if (isSigned && int64_t(val) < 0) | 
| 81 | 0 |     for (unsigned i = 1; i < getNumWords(); ++i) | 
| 82 | 0 |       U.pVal[i] = WORDTYPE_MAX; | 
| 83 | 0 |   clearUnusedBits(); | 
| 84 | 0 | } | 
| 85 |  |  | 
| 86 | 0 | void APInt::initSlowCase(const APInt& that) { | 
| 87 | 0 |   U.pVal = getMemory(getNumWords()); | 
| 88 | 0 |   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); | 
| 89 | 0 | } | 
| 90 |  |  | 
| 91 | 0 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | 
| 92 | 0 |   assert(BitWidth && "Bitwidth too small"); | 
| 93 | 0 |   assert(bigVal.data() && "Null pointer detected!"); | 
| 94 | 0 |   if (isSingleWord()) | 
| 95 | 0 |     U.VAL = bigVal[0]; | 
| 96 | 0 |   else { | 
| 97 | 0 |     // Get memory, cleared to 0 | 
| 98 | 0 |     U.pVal = getClearedMemory(getNumWords()); | 
| 99 | 0 |     // Calculate the number of words to copy | 
| 100 | 0 |     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | 
| 101 | 0 |     // Copy the words from bigVal to pVal | 
| 102 | 0 |     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); | 
| 103 | 0 |   } | 
| 104 | 0 |   // Make sure unused high bits are cleared | 
| 105 | 0 |   clearUnusedBits(); | 
| 106 | 0 | } | 
| 107 |  |  | 
| 108 |  | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) | 
| 109 | 0 |   : BitWidth(numBits) { | 
| 110 | 0 |   initFromArray(bigVal); | 
| 111 | 0 | } | 
| 112 |  |  | 
| 113 |  | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | 
| 114 | 0 |   : BitWidth(numBits) { | 
| 115 | 0 |   initFromArray(makeArrayRef(bigVal, numWords)); | 
| 116 | 0 | } | 
| 117 |  |  | 
| 118 |  | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | 
| 119 | 0 |   : BitWidth(numbits) { | 
| 120 | 0 |   assert(BitWidth && "Bitwidth too small"); | 
| 121 | 0 |   fromString(numbits, Str, radix); | 
| 122 | 0 | } | 
| 123 |  |  | 
| 124 | 0 | void APInt::reallocate(unsigned NewBitWidth) { | 
| 125 | 0 |   // If the number of words is the same we can just change the width and stop. | 
| 126 | 0 |   if (getNumWords() == getNumWords(NewBitWidth)) { | 
| 127 | 0 |     BitWidth = NewBitWidth; | 
| 128 | 0 |     return; | 
| 129 | 0 |   } | 
| 130 | 0 |  | 
| 131 | 0 |   // If we have an allocation, delete it. | 
| 132 | 0 |   if (!isSingleWord()) | 
| 133 | 0 |     delete [] U.pVal; | 
| 134 | 0 | 
 | 
| 135 | 0 |   // Update BitWidth. | 
| 136 | 0 |   BitWidth = NewBitWidth; | 
| 137 | 0 | 
 | 
| 138 | 0 |   // If we are supposed to have an allocation, create it. | 
| 139 | 0 |   if (!isSingleWord()) | 
| 140 | 0 |     U.pVal = getMemory(getNumWords()); | 
| 141 | 0 | } | 
| 142 |  |  | 
| 143 | 0 | void APInt::AssignSlowCase(const APInt& RHS) { | 
| 144 | 0 |   // Don't do anything for X = X | 
| 145 | 0 |   if (this == &RHS) | 
| 146 | 0 |     return; | 
| 147 | 0 |  | 
| 148 | 0 |   // Adjust the bit width and handle allocations as necessary. | 
| 149 | 0 |   reallocate(RHS.getBitWidth()); | 
| 150 | 0 | 
 | 
| 151 | 0 |   // Copy the data. | 
| 152 | 0 |   if (isSingleWord()) | 
| 153 | 0 |     U.VAL = RHS.U.VAL; | 
| 154 | 0 |   else | 
| 155 | 0 |     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); | 
| 156 | 0 | } | 
| 157 |  |  | 
| 158 |  | /// This method 'profiles' an APInt for use with FoldingSet. | 
| 159 | 0 | void APInt::Profile(FoldingSetNodeID& ID) const { | 
| 160 | 0 |   ID.AddInteger(BitWidth); | 
| 161 | 0 | 
 | 
| 162 | 0 |   if (isSingleWord()) { | 
| 163 | 0 |     ID.AddInteger(U.VAL); | 
| 164 | 0 |     return; | 
| 165 | 0 |   } | 
| 166 | 0 |  | 
| 167 | 0 |   unsigned NumWords = getNumWords(); | 
| 168 | 0 |   for (unsigned i = 0; i < NumWords; ++i) | 
| 169 | 0 |     ID.AddInteger(U.pVal[i]); | 
| 170 | 0 | } | 
| 171 |  |  | 
| 172 |  | /// Prefix increment operator. Increments the APInt by one. | 
| 173 | 0 | APInt& APInt::operator++() { | 
| 174 | 0 |   if (isSingleWord()) | 
| 175 | 0 |     ++U.VAL; | 
| 176 | 0 |   else | 
| 177 | 0 |     tcIncrement(U.pVal, getNumWords()); | 
| 178 | 0 |   return clearUnusedBits(); | 
| 179 | 0 | } | 
| 180 |  |  | 
| 181 |  | /// Prefix decrement operator. Decrements the APInt by one. | 
| 182 | 0 | APInt& APInt::operator--() { | 
| 183 | 0 |   if (isSingleWord()) | 
| 184 | 0 |     --U.VAL; | 
| 185 | 0 |   else | 
| 186 | 0 |     tcDecrement(U.pVal, getNumWords()); | 
| 187 | 0 |   return clearUnusedBits(); | 
| 188 | 0 | } | 
| 189 |  |  | 
| 190 |  | /// Adds the RHS APInt to this APInt. | 
| 191 |  | /// @returns this, after addition of RHS. | 
| 192 |  | /// Addition assignment operator. | 
| 193 | 0 | APInt& APInt::operator+=(const APInt& RHS) { | 
| 194 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 195 | 0 |   if (isSingleWord()) | 
| 196 | 0 |     U.VAL += RHS.U.VAL; | 
| 197 | 0 |   else | 
| 198 | 0 |     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); | 
| 199 | 0 |   return clearUnusedBits(); | 
| 200 | 0 | } | 
| 201 |  |  | 
| 202 | 0 | APInt& APInt::operator+=(uint64_t RHS) { | 
| 203 | 0 |   if (isSingleWord()) | 
| 204 | 0 |     U.VAL += RHS; | 
| 205 | 0 |   else | 
| 206 | 0 |     tcAddPart(U.pVal, RHS, getNumWords()); | 
| 207 | 0 |   return clearUnusedBits(); | 
| 208 | 0 | } | 
| 209 |  |  | 
| 210 |  | /// Subtracts the RHS APInt from this APInt | 
| 211 |  | /// @returns this, after subtraction | 
| 212 |  | /// Subtraction assignment operator. | 
| 213 | 0 | APInt& APInt::operator-=(const APInt& RHS) { | 
| 214 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 215 | 0 |   if (isSingleWord()) | 
| 216 | 0 |     U.VAL -= RHS.U.VAL; | 
| 217 | 0 |   else | 
| 218 | 0 |     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); | 
| 219 | 0 |   return clearUnusedBits(); | 
| 220 | 0 | } | 
| 221 |  |  | 
| 222 | 0 | APInt& APInt::operator-=(uint64_t RHS) { | 
| 223 | 0 |   if (isSingleWord()) | 
| 224 | 0 |     U.VAL -= RHS; | 
| 225 | 0 |   else | 
| 226 | 0 |     tcSubtractPart(U.pVal, RHS, getNumWords()); | 
| 227 | 0 |   return clearUnusedBits(); | 
| 228 | 0 | } | 
| 229 |  |  | 
| 230 | 0 | APInt APInt::operator*(const APInt& RHS) const { | 
| 231 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 232 | 0 |   if (isSingleWord()) | 
| 233 | 0 |     return APInt(BitWidth, U.VAL * RHS.U.VAL); | 
| 234 | 0 |  | 
| 235 | 0 |   APInt Result(getMemory(getNumWords()), getBitWidth()); | 
| 236 | 0 | 
 | 
| 237 | 0 |   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); | 
| 238 | 0 | 
 | 
| 239 | 0 |   Result.clearUnusedBits(); | 
| 240 | 0 |   return Result; | 
| 241 | 0 | } | 
| 242 |  |  | 
| 243 | 0 | void APInt::AndAssignSlowCase(const APInt& RHS) { | 
| 244 | 0 |   tcAnd(U.pVal, RHS.U.pVal, getNumWords()); | 
| 245 | 0 | } | 
| 246 |  |  | 
| 247 | 0 | void APInt::OrAssignSlowCase(const APInt& RHS) { | 
| 248 | 0 |   tcOr(U.pVal, RHS.U.pVal, getNumWords()); | 
| 249 | 0 | } | 
| 250 |  |  | 
| 251 | 0 | void APInt::XorAssignSlowCase(const APInt& RHS) { | 
| 252 | 0 |   tcXor(U.pVal, RHS.U.pVal, getNumWords()); | 
| 253 | 0 | } | 
| 254 |  |  | 
| 255 | 0 | APInt& APInt::operator*=(const APInt& RHS) { | 
| 256 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 257 | 0 |   *this = *this * RHS; | 
| 258 | 0 |   return *this; | 
| 259 | 0 | } | 
| 260 |  |  | 
| 261 | 0 | APInt& APInt::operator*=(uint64_t RHS) { | 
| 262 | 0 |   if (isSingleWord()) { | 
| 263 | 0 |     U.VAL *= RHS; | 
| 264 | 0 |   } else { | 
| 265 | 0 |     unsigned NumWords = getNumWords(); | 
| 266 | 0 |     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); | 
| 267 | 0 |   } | 
| 268 | 0 |   return clearUnusedBits(); | 
| 269 | 0 | } | 
| 270 |  |  | 
| 271 | 0 | bool APInt::EqualSlowCase(const APInt& RHS) const { | 
| 272 | 0 |   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); | 
| 273 | 0 | } | 
| 274 |  |  | 
| 275 | 0 | int APInt::compare(const APInt& RHS) const { | 
| 276 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
| 277 | 0 |   if (isSingleWord()) | 
| 278 | 0 |     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; | 
| 279 | 0 |  | 
| 280 | 0 |   return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | 
| 281 | 0 | } | 
| 282 |  |  | 
| 283 | 0 | int APInt::compareSigned(const APInt& RHS) const { | 
| 284 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
| 285 | 0 |   if (isSingleWord()) { | 
| 286 | 0 |     int64_t lhsSext = SignExtend64(U.VAL, BitWidth); | 
| 287 | 0 |     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); | 
| 288 | 0 |     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; | 
| 289 | 0 |   } | 
| 290 | 0 | 
 | 
| 291 | 0 |   bool lhsNeg = isNegative(); | 
| 292 | 0 |   bool rhsNeg = RHS.isNegative(); | 
| 293 | 0 | 
 | 
| 294 | 0 |   // If the sign bits don't match, then (LHS < RHS) if LHS is negative | 
| 295 | 0 |   if (lhsNeg != rhsNeg) | 
| 296 | 0 |     return lhsNeg ? -1 : 1; | 
| 297 | 0 |  | 
| 298 | 0 |   // Otherwise we can just use an unsigned comparison, because even negative | 
| 299 | 0 |   // numbers compare correctly this way if both have the same signed-ness. | 
| 300 | 0 |   return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | 
| 301 | 0 | } | 
| 302 |  |  | 
| 303 | 0 | void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { | 
| 304 | 0 |   unsigned loWord = whichWord(loBit); | 
| 305 | 0 |   unsigned hiWord = whichWord(hiBit); | 
| 306 | 0 | 
 | 
| 307 | 0 |   // Create an initial mask for the low word with zeros below loBit. | 
| 308 | 0 |   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); | 
| 309 | 0 | 
 | 
| 310 | 0 |   // If hiBit is not aligned, we need a high mask. | 
| 311 | 0 |   unsigned hiShiftAmt = whichBit(hiBit); | 
| 312 | 0 |   if (hiShiftAmt != 0) { | 
| 313 | 0 |     // Create a high mask with zeros above hiBit. | 
| 314 | 0 |     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); | 
| 315 | 0 |     // If loWord and hiWord are equal, then we combine the masks. Otherwise, | 
| 316 | 0 |     // set the bits in hiWord. | 
| 317 | 0 |     if (hiWord == loWord) | 
| 318 | 0 |       loMask &= hiMask; | 
| 319 | 0 |     else | 
| 320 | 0 |       U.pVal[hiWord] |= hiMask; | 
| 321 | 0 |   } | 
| 322 | 0 |   // Apply the mask to the low word. | 
| 323 | 0 |   U.pVal[loWord] |= loMask; | 
| 324 | 0 | 
 | 
| 325 | 0 |   // Fill any words between loWord and hiWord with all ones. | 
| 326 | 0 |   for (unsigned word = loWord + 1; word < hiWord; ++word) | 
| 327 | 0 |     U.pVal[word] = WORDTYPE_MAX; | 
| 328 | 0 | } | 
| 329 |  |  | 
| 330 |  | /// Toggle every bit to its opposite value. | 
| 331 | 0 | void APInt::flipAllBitsSlowCase() { | 
| 332 | 0 |   tcComplement(U.pVal, getNumWords()); | 
| 333 | 0 |   clearUnusedBits(); | 
| 334 | 0 | } | 
| 335 |  |  | 
| 336 |  | /// Toggle a given bit to its opposite value whose position is given | 
| 337 |  | /// as "bitPosition". | 
| 338 |  | /// Toggles a given bit to its opposite value. | 
| 339 | 0 | void APInt::flipBit(unsigned bitPosition) { | 
| 340 | 0 |   assert(bitPosition < BitWidth && "Out of the bit-width range!"); | 
| 341 | 0 |   if ((*this)[bitPosition]) clearBit(bitPosition); | 
| 342 | 0 |   else setBit(bitPosition); | 
| 343 | 0 | } | 
| 344 |  |  | 
| 345 | 0 | void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { | 
| 346 | 0 |   unsigned subBitWidth = subBits.getBitWidth(); | 
| 347 | 0 |   assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && | 
| 348 | 0 |          "Illegal bit insertion"); | 
| 349 | 0 | 
 | 
| 350 | 0 |   // Insertion is a direct copy. | 
| 351 | 0 |   if (subBitWidth == BitWidth) { | 
| 352 | 0 |     *this = subBits; | 
| 353 | 0 |     return; | 
| 354 | 0 |   } | 
| 355 | 0 |  | 
| 356 | 0 |   // Single word result can be done as a direct bitmask. | 
| 357 | 0 |   if (isSingleWord()) { | 
| 358 | 0 |     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | 
| 359 | 0 |     U.VAL &= ~(mask << bitPosition); | 
| 360 | 0 |     U.VAL |= (subBits.U.VAL << bitPosition); | 
| 361 | 0 |     return; | 
| 362 | 0 |   } | 
| 363 | 0 |  | 
| 364 | 0 |   unsigned loBit = whichBit(bitPosition); | 
| 365 | 0 |   unsigned loWord = whichWord(bitPosition); | 
| 366 | 0 |   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); | 
| 367 | 0 | 
 | 
| 368 | 0 |   // Insertion within a single word can be done as a direct bitmask. | 
| 369 | 0 |   if (loWord == hi1Word) { | 
| 370 | 0 |     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | 
| 371 | 0 |     U.pVal[loWord] &= ~(mask << loBit); | 
| 372 | 0 |     U.pVal[loWord] |= (subBits.U.VAL << loBit); | 
| 373 | 0 |     return; | 
| 374 | 0 |   } | 
| 375 | 0 |  | 
| 376 | 0 |   // Insert on word boundaries. | 
| 377 | 0 |   if (loBit == 0) { | 
| 378 | 0 |     // Direct copy whole words. | 
| 379 | 0 |     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; | 
| 380 | 0 |     memcpy(U.pVal + loWord, subBits.getRawData(), | 
| 381 | 0 |            numWholeSubWords * APINT_WORD_SIZE); | 
| 382 | 0 | 
 | 
| 383 | 0 |     // Mask+insert remaining bits. | 
| 384 | 0 |     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; | 
| 385 | 0 |     if (remainingBits != 0) { | 
| 386 | 0 |       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); | 
| 387 | 0 |       U.pVal[hi1Word] &= ~mask; | 
| 388 | 0 |       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); | 
| 389 | 0 |     } | 
| 390 | 0 |     return; | 
| 391 | 0 |   } | 
| 392 | 0 | 
 | 
| 393 | 0 |   // General case - set/clear individual bits in dst based on src. | 
| 394 | 0 |   // TODO - there is scope for optimization here, but at the moment this code | 
| 395 | 0 |   // path is barely used so prefer readability over performance. | 
| 396 | 0 |   for (unsigned i = 0; i != subBitWidth; ++i) { | 
| 397 | 0 |     if (subBits[i]) | 
| 398 | 0 |       setBit(bitPosition + i); | 
| 399 | 0 |     else | 
| 400 | 0 |       clearBit(bitPosition + i); | 
| 401 | 0 |   } | 
| 402 | 0 | } | 
| 403 |  |  | 
| 404 | 0 | void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { | 
| 405 | 0 |   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | 
| 406 | 0 |   subBits &= maskBits; | 
| 407 | 0 |   if (isSingleWord()) { | 
| 408 | 0 |     U.VAL &= ~(maskBits << bitPosition); | 
| 409 | 0 |     U.VAL |= subBits << bitPosition; | 
| 410 | 0 |     return; | 
| 411 | 0 |   } | 
| 412 | 0 |  | 
| 413 | 0 |   unsigned loBit = whichBit(bitPosition); | 
| 414 | 0 |   unsigned loWord = whichWord(bitPosition); | 
| 415 | 0 |   unsigned hiWord = whichWord(bitPosition + numBits - 1); | 
| 416 | 0 |   if (loWord == hiWord) { | 
| 417 | 0 |     U.pVal[loWord] &= ~(maskBits << loBit); | 
| 418 | 0 |     U.pVal[loWord] |= subBits << loBit; | 
| 419 | 0 |     return; | 
| 420 | 0 |   } | 
| 421 | 0 |  | 
| 422 | 0 |   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | 
| 423 | 0 |   unsigned wordBits = 8 * sizeof(WordType); | 
| 424 | 0 |   U.pVal[loWord] &= ~(maskBits << loBit); | 
| 425 | 0 |   U.pVal[loWord] |= subBits << loBit; | 
| 426 | 0 | 
 | 
| 427 | 0 |   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); | 
| 428 | 0 |   U.pVal[hiWord] |= subBits >> (wordBits - loBit); | 
| 429 | 0 | } | 
| 430 |  |  | 
| 431 | 0 | APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { | 
| 432 | 0 |   assert(numBits > 0 && "Can't extract zero bits"); | 
| 433 | 0 |   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && | 
| 434 | 0 |          "Illegal bit extraction"); | 
| 435 | 0 | 
 | 
| 436 | 0 |   if (isSingleWord()) | 
| 437 | 0 |     return APInt(numBits, U.VAL >> bitPosition); | 
| 438 | 0 |  | 
| 439 | 0 |   unsigned loBit = whichBit(bitPosition); | 
| 440 | 0 |   unsigned loWord = whichWord(bitPosition); | 
| 441 | 0 |   unsigned hiWord = whichWord(bitPosition + numBits - 1); | 
| 442 | 0 | 
 | 
| 443 | 0 |   // Single word result extracting bits from a single word source. | 
| 444 | 0 |   if (loWord == hiWord) | 
| 445 | 0 |     return APInt(numBits, U.pVal[loWord] >> loBit); | 
| 446 | 0 |  | 
| 447 | 0 |   // Extracting bits that start on a source word boundary can be done | 
| 448 | 0 |   // as a fast memory copy. | 
| 449 | 0 |   if (loBit == 0) | 
| 450 | 0 |     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); | 
| 451 | 0 |  | 
| 452 | 0 |   // General case - shift + copy source words directly into place. | 
| 453 | 0 |   APInt Result(numBits, 0); | 
| 454 | 0 |   unsigned NumSrcWords = getNumWords(); | 
| 455 | 0 |   unsigned NumDstWords = Result.getNumWords(); | 
| 456 | 0 | 
 | 
| 457 | 0 |   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; | 
| 458 | 0 |   for (unsigned word = 0; word < NumDstWords; ++word) { | 
| 459 | 0 |     uint64_t w0 = U.pVal[loWord + word]; | 
| 460 | 0 |     uint64_t w1 = | 
| 461 | 0 |         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; | 
| 462 | 0 |     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); | 
| 463 | 0 |   } | 
| 464 | 0 | 
 | 
| 465 | 0 |   return Result.clearUnusedBits(); | 
| 466 | 0 | } | 
| 467 |  |  | 
| 468 |  | uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, | 
| 469 | 0 |                                        unsigned bitPosition) const { | 
| 470 | 0 |   assert(numBits > 0 && "Can't extract zero bits"); | 
| 471 | 0 |   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && | 
| 472 | 0 |          "Illegal bit extraction"); | 
| 473 | 0 |   assert(numBits <= 64 && "Illegal bit extraction"); | 
| 474 | 0 | 
 | 
| 475 | 0 |   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | 
| 476 | 0 |   if (isSingleWord()) | 
| 477 | 0 |     return (U.VAL >> bitPosition) & maskBits; | 
| 478 | 0 |  | 
| 479 | 0 |   unsigned loBit = whichBit(bitPosition); | 
| 480 | 0 |   unsigned loWord = whichWord(bitPosition); | 
| 481 | 0 |   unsigned hiWord = whichWord(bitPosition + numBits - 1); | 
| 482 | 0 |   if (loWord == hiWord) | 
| 483 | 0 |     return (U.pVal[loWord] >> loBit) & maskBits; | 
| 484 | 0 |  | 
| 485 | 0 |   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | 
| 486 | 0 |   unsigned wordBits = 8 * sizeof(WordType); | 
| 487 | 0 |   uint64_t retBits = U.pVal[loWord] >> loBit; | 
| 488 | 0 |   retBits |= U.pVal[hiWord] << (wordBits - loBit); | 
| 489 | 0 |   retBits &= maskBits; | 
| 490 | 0 |   return retBits; | 
| 491 | 0 | } | 
| 492 |  |  | 
| 493 | 0 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | 
| 494 | 0 |   assert(!str.empty() && "Invalid string length"); | 
| 495 | 0 |   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
| 496 | 0 |           radix == 36) && | 
| 497 | 0 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
| 498 | 0 | 
 | 
| 499 | 0 |   size_t slen = str.size(); | 
| 500 | 0 | 
 | 
| 501 | 0 |   // Each computation below needs to know if it's negative. | 
| 502 | 0 |   StringRef::iterator p = str.begin(); | 
| 503 | 0 |   unsigned isNegative = *p == '-'; | 
| 504 | 0 |   if (*p == '-' || *p == '+') { | 
| 505 | 0 |     p++; | 
| 506 | 0 |     slen--; | 
| 507 | 0 |     assert(slen && "String is only a sign, needs a value."); | 
| 508 | 0 |   } | 
| 509 | 0 | 
 | 
| 510 | 0 |   // For radixes of power-of-two values, the bits required is accurately and | 
| 511 | 0 |   // easily computed | 
| 512 | 0 |   if (radix == 2) | 
| 513 | 0 |     return slen + isNegative; | 
| 514 | 0 |   if (radix == 8) | 
| 515 | 0 |     return slen * 3 + isNegative; | 
| 516 | 0 |   if (radix == 16) | 
| 517 | 0 |     return slen * 4 + isNegative; | 
| 518 | 0 |  | 
| 519 | 0 |   // FIXME: base 36 | 
| 520 | 0 |  | 
| 521 | 0 |   // This is grossly inefficient but accurate. We could probably do something | 
| 522 | 0 |   // with a computation of roughly slen*64/20 and then adjust by the value of | 
| 523 | 0 |   // the first few digits. But, I'm not sure how accurate that could be. | 
| 524 | 0 |  | 
| 525 | 0 |   // Compute a sufficient number of bits that is always large enough but might | 
| 526 | 0 |   // be too large. This avoids the assertion in the constructor. This | 
| 527 | 0 |   // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | 
| 528 | 0 |   // bits in that case. | 
| 529 | 0 |   unsigned sufficient | 
| 530 | 0 |     = radix == 10? (slen == 1 ? 4 : slen * 64/18) | 
| 531 | 0 |                  : (slen == 1 ? 7 : slen * 16/3); | 
| 532 | 0 | 
 | 
| 533 | 0 |   // Convert to the actual binary value. | 
| 534 | 0 |   APInt tmp(sufficient, StringRef(p, slen), radix); | 
| 535 | 0 | 
 | 
| 536 | 0 |   // Compute how many bits are required. If the log is infinite, assume we need | 
| 537 | 0 |   // just bit. If the log is exact and value is negative, then the value is | 
| 538 | 0 |   // MinSignedValue with (log + 1) bits. | 
| 539 | 0 |   unsigned log = tmp.logBase2(); | 
| 540 | 0 |   if (log == (unsigned)-1) { | 
| 541 | 0 |     return isNegative + 1; | 
| 542 | 0 |   } else if (isNegative && tmp.isPowerOf2()) { | 
| 543 | 0 |     return isNegative + log; | 
| 544 | 0 |   } else { | 
| 545 | 0 |     return isNegative + log + 1; | 
| 546 | 0 |   } | 
| 547 | 0 | } | 
| 548 |  |  | 
| 549 | 0 | hash_code llvm::hash_value(const APInt &Arg) { | 
| 550 | 0 |   if (Arg.isSingleWord()) | 
| 551 | 0 |     return hash_combine(Arg.BitWidth, Arg.U.VAL); | 
| 552 | 0 |  | 
| 553 | 0 |   return hash_combine( | 
| 554 | 0 |       Arg.BitWidth, | 
| 555 | 0 |       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); | 
| 556 | 0 | } | 
| 557 |  |  | 
| 558 | 0 | bool APInt::isSplat(unsigned SplatSizeInBits) const { | 
| 559 | 0 |   assert(getBitWidth() % SplatSizeInBits == 0 && | 
| 560 | 0 |          "SplatSizeInBits must divide width!"); | 
| 561 | 0 |   // We can check that all parts of an integer are equal by making use of a | 
| 562 | 0 |   // little trick: rotate and check if it's still the same value. | 
| 563 | 0 |   return *this == rotl(SplatSizeInBits); | 
| 564 | 0 | } | 
| 565 |  |  | 
| 566 |  | /// This function returns the high "numBits" bits of this APInt. | 
| 567 | 0 | APInt APInt::getHiBits(unsigned numBits) const { | 
| 568 | 0 |   return this->lshr(BitWidth - numBits); | 
| 569 | 0 | } | 
| 570 |  |  | 
| 571 |  | /// This function returns the low "numBits" bits of this APInt. | 
| 572 | 0 | APInt APInt::getLoBits(unsigned numBits) const { | 
| 573 | 0 |   APInt Result(getLowBitsSet(BitWidth, numBits)); | 
| 574 | 0 |   Result &= *this; | 
| 575 | 0 |   return Result; | 
| 576 | 0 | } | 
| 577 |  |  | 
| 578 |  | /// Return a value containing V broadcasted over NewLen bits. | 
| 579 | 0 | APInt APInt::getSplat(unsigned NewLen, const APInt &V) { | 
| 580 | 0 |   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); | 
| 581 | 0 | 
 | 
| 582 | 0 |   APInt Val = V.zextOrSelf(NewLen); | 
| 583 | 0 |   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) | 
| 584 | 0 |     Val |= Val << I; | 
| 585 | 0 | 
 | 
| 586 | 0 |   return Val; | 
| 587 | 0 | } | 
| 588 |  |  | 
| 589 | 0 | unsigned APInt::countLeadingZerosSlowCase() const { | 
| 590 | 0 |   unsigned Count = 0; | 
| 591 | 0 |   for (int i = getNumWords()-1; i >= 0; --i) { | 
| 592 | 0 |     uint64_t V = U.pVal[i]; | 
| 593 | 0 |     if (V == 0) | 
| 594 | 0 |       Count += APINT_BITS_PER_WORD; | 
| 595 | 0 |     else { | 
| 596 | 0 |       Count += llvm::countLeadingZeros(V); | 
| 597 | 0 |       break; | 
| 598 | 0 |     } | 
| 599 | 0 |   } | 
| 600 | 0 |   // Adjust for unused bits in the most significant word (they are zero). | 
| 601 | 0 |   unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | 
| 602 | 0 |   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | 
| 603 | 0 |   return Count; | 
| 604 | 0 | } | 
| 605 |  |  | 
| 606 | 0 | unsigned APInt::countLeadingOnesSlowCase() const { | 
| 607 | 0 |   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | 
| 608 | 0 |   unsigned shift; | 
| 609 | 0 |   if (!highWordBits) { | 
| 610 | 0 |     highWordBits = APINT_BITS_PER_WORD; | 
| 611 | 0 |     shift = 0; | 
| 612 | 0 |   } else { | 
| 613 | 0 |     shift = APINT_BITS_PER_WORD - highWordBits; | 
| 614 | 0 |   } | 
| 615 | 0 |   int i = getNumWords() - 1; | 
| 616 | 0 |   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); | 
| 617 | 0 |   if (Count == highWordBits) { | 
| 618 | 0 |     for (i--; i >= 0; --i) { | 
| 619 | 0 |       if (U.pVal[i] == WORDTYPE_MAX) | 
| 620 | 0 |         Count += APINT_BITS_PER_WORD; | 
| 621 | 0 |       else { | 
| 622 | 0 |         Count += llvm::countLeadingOnes(U.pVal[i]); | 
| 623 | 0 |         break; | 
| 624 | 0 |       } | 
| 625 | 0 |     } | 
| 626 | 0 |   } | 
| 627 | 0 |   return Count; | 
| 628 | 0 | } | 
| 629 |  |  | 
| 630 | 0 | unsigned APInt::countTrailingZerosSlowCase() const { | 
| 631 | 0 |   unsigned Count = 0; | 
| 632 | 0 |   unsigned i = 0; | 
| 633 | 0 |   for (; i < getNumWords() && U.pVal[i] == 0; ++i) | 
| 634 | 0 |     Count += APINT_BITS_PER_WORD; | 
| 635 | 0 |   if (i < getNumWords()) | 
| 636 | 0 |     Count += llvm::countTrailingZeros(U.pVal[i]); | 
| 637 | 0 |   return std::min(Count, BitWidth); | 
| 638 | 0 | } | 
| 639 |  |  | 
| 640 | 0 | unsigned APInt::countTrailingOnesSlowCase() const { | 
| 641 | 0 |   unsigned Count = 0; | 
| 642 | 0 |   unsigned i = 0; | 
| 643 | 0 |   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) | 
| 644 | 0 |     Count += APINT_BITS_PER_WORD; | 
| 645 | 0 |   if (i < getNumWords()) | 
| 646 | 0 |     Count += llvm::countTrailingOnes(U.pVal[i]); | 
| 647 | 0 |   assert(Count <= BitWidth); | 
| 648 | 0 |   return Count; | 
| 649 | 0 | } | 
| 650 |  |  | 
| 651 | 0 | unsigned APInt::countPopulationSlowCase() const { | 
| 652 | 0 |   unsigned Count = 0; | 
| 653 | 0 |   for (unsigned i = 0; i < getNumWords(); ++i) | 
| 654 | 0 |     Count += llvm::countPopulation(U.pVal[i]); | 
| 655 | 0 |   return Count; | 
| 656 | 0 | } | 
| 657 |  |  | 
| 658 | 0 | bool APInt::intersectsSlowCase(const APInt &RHS) const { | 
| 659 | 0 |   for (unsigned i = 0, e = getNumWords(); i != e; ++i) | 
| 660 | 0 |     if ((U.pVal[i] & RHS.U.pVal[i]) != 0) | 
| 661 | 0 |       return true; | 
| 662 | 0 | 
 | 
| 663 | 0 |   return false; | 
| 664 | 0 | } | 
| 665 |  |  | 
| 666 | 0 | bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { | 
| 667 | 0 |   for (unsigned i = 0, e = getNumWords(); i != e; ++i) | 
| 668 | 0 |     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) | 
| 669 | 0 |       return false; | 
| 670 | 0 | 
 | 
| 671 | 0 |   return true; | 
| 672 | 0 | } | 
| 673 |  |  | 
| 674 | 0 | APInt APInt::byteSwap() const { | 
| 675 | 0 |   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); | 
| 676 | 0 |   if (BitWidth == 16) | 
| 677 | 0 |     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); | 
| 678 | 0 |   if (BitWidth == 32) | 
| 679 | 0 |     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); | 
| 680 | 0 |   if (BitWidth <= 64) { | 
| 681 | 0 |     uint64_t Tmp1 = ByteSwap_64(U.VAL); | 
| 682 | 0 |     Tmp1 >>= (64 - BitWidth); | 
| 683 | 0 |     return APInt(BitWidth, Tmp1); | 
| 684 | 0 |   } | 
| 685 | 0 |  | 
| 686 | 0 |   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | 
| 687 | 0 |   for (unsigned I = 0, N = getNumWords(); I != N; ++I) | 
| 688 | 0 |     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); | 
| 689 | 0 |   if (Result.BitWidth != BitWidth) { | 
| 690 | 0 |     Result.lshrInPlace(Result.BitWidth - BitWidth); | 
| 691 | 0 |     Result.BitWidth = BitWidth; | 
| 692 | 0 |   } | 
| 693 | 0 |   return Result; | 
| 694 | 0 | } | 
| 695 |  |  | 
| 696 | 0 | APInt APInt::reverseBits() const { | 
| 697 | 0 |   switch (BitWidth) { | 
| 698 | 0 |   case 64: | 
| 699 | 0 |     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); | 
| 700 | 0 |   case 32: | 
| 701 | 0 |     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); | 
| 702 | 0 |   case 16: | 
| 703 | 0 |     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); | 
| 704 | 0 |   case 8: | 
| 705 | 0 |     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); | 
| 706 | 0 |   default: | 
| 707 | 0 |     break; | 
| 708 | 0 |   } | 
| 709 | 0 |  | 
| 710 | 0 |   APInt Val(*this); | 
| 711 | 0 |   APInt Reversed(BitWidth, 0); | 
| 712 | 0 |   unsigned S = BitWidth; | 
| 713 | 0 | 
 | 
| 714 | 0 |   for (; Val != 0; Val.lshrInPlace(1)) { | 
| 715 | 0 |     Reversed <<= 1; | 
| 716 | 0 |     Reversed |= Val[0]; | 
| 717 | 0 |     --S; | 
| 718 | 0 |   } | 
| 719 | 0 | 
 | 
| 720 | 0 |   Reversed <<= S; | 
| 721 | 0 |   return Reversed; | 
| 722 | 0 | } | 
| 723 |  |  | 
| 724 | 0 | APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { | 
| 725 | 0 |   // Fast-path a common case. | 
| 726 | 0 |   if (A == B) return A; | 
| 727 | 0 |  | 
| 728 | 0 |   // Corner cases: if either operand is zero, the other is the gcd. | 
| 729 | 0 |   if (!A) return B; | 
| 730 | 0 |   if (!B) return A; | 
| 731 | 0 |  | 
| 732 | 0 |   // Count common powers of 2 and remove all other powers of 2. | 
| 733 | 0 |   unsigned Pow2; | 
| 734 | 0 |   { | 
| 735 | 0 |     unsigned Pow2_A = A.countTrailingZeros(); | 
| 736 | 0 |     unsigned Pow2_B = B.countTrailingZeros(); | 
| 737 | 0 |     if (Pow2_A > Pow2_B) { | 
| 738 | 0 |       A.lshrInPlace(Pow2_A - Pow2_B); | 
| 739 | 0 |       Pow2 = Pow2_B; | 
| 740 | 0 |     } else if (Pow2_B > Pow2_A) { | 
| 741 | 0 |       B.lshrInPlace(Pow2_B - Pow2_A); | 
| 742 | 0 |       Pow2 = Pow2_A; | 
| 743 | 0 |     } else { | 
| 744 | 0 |       Pow2 = Pow2_A; | 
| 745 | 0 |     } | 
| 746 | 0 |   } | 
| 747 | 0 | 
 | 
| 748 | 0 |   // Both operands are odd multiples of 2^Pow_2: | 
| 749 | 0 |   // | 
| 750 | 0 |   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) | 
| 751 | 0 |   // | 
| 752 | 0 |   // This is a modified version of Stein's algorithm, taking advantage of | 
| 753 | 0 |   // efficient countTrailingZeros(). | 
| 754 | 0 |   while (A != B) { | 
| 755 | 0 |     if (A.ugt(B)) { | 
| 756 | 0 |       A -= B; | 
| 757 | 0 |       A.lshrInPlace(A.countTrailingZeros() - Pow2); | 
| 758 | 0 |     } else { | 
| 759 | 0 |       B -= A; | 
| 760 | 0 |       B.lshrInPlace(B.countTrailingZeros() - Pow2); | 
| 761 | 0 |     } | 
| 762 | 0 |   } | 
| 763 | 0 | 
 | 
| 764 | 0 |   return A; | 
| 765 | 0 | } | 
| 766 |  |  | 
| 767 | 0 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | 
| 768 | 0 |   uint64_t I = bit_cast<uint64_t>(Double); | 
| 769 | 0 | 
 | 
| 770 | 0 |   // Get the sign bit from the highest order bit | 
| 771 | 0 |   bool isNeg = I >> 63; | 
| 772 | 0 | 
 | 
| 773 | 0 |   // Get the 11-bit exponent and adjust for the 1023 bit bias | 
| 774 | 0 |   int64_t exp = ((I >> 52) & 0x7ff) - 1023; | 
| 775 | 0 | 
 | 
| 776 | 0 |   // If the exponent is negative, the value is < 0 so just return 0. | 
| 777 | 0 |   if (exp < 0) | 
| 778 | 0 |     return APInt(width, 0u); | 
| 779 | 0 |  | 
| 780 | 0 |   // Extract the mantissa by clearing the top 12 bits (sign + exponent). | 
| 781 | 0 |   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; | 
| 782 | 0 | 
 | 
| 783 | 0 |   // If the exponent doesn't shift all bits out of the mantissa | 
| 784 | 0 |   if (exp < 52) | 
| 785 | 0 |     return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | 
| 786 | 0 |                     APInt(width, mantissa >> (52 - exp)); | 
| 787 | 0 |  | 
| 788 | 0 |   // If the client didn't provide enough bits for us to shift the mantissa into | 
| 789 | 0 |   // then the result is undefined, just return 0 | 
| 790 | 0 |   if (width <= exp - 52) | 
| 791 | 0 |     return APInt(width, 0); | 
| 792 | 0 |  | 
| 793 | 0 |   // Otherwise, we have to shift the mantissa bits up to the right location | 
| 794 | 0 |   APInt Tmp(width, mantissa); | 
| 795 | 0 |   Tmp <<= (unsigned)exp - 52; | 
| 796 | 0 |   return isNeg ? -Tmp : Tmp; | 
| 797 | 0 | } | 
| 798 |  |  | 
| 799 |  | /// This function converts this APInt to a double. | 
| 800 |  | /// The layout for double is as following (IEEE Standard 754): | 
| 801 |  | ///  -------------------------------------- | 
| 802 |  | /// |  Sign    Exponent    Fraction    Bias | | 
| 803 |  | /// |-------------------------------------- | | 
| 804 |  | /// |  1[63]   11[62-52]   52[51-00]   1023 | | 
| 805 |  | ///  -------------------------------------- | 
| 806 | 0 | double APInt::roundToDouble(bool isSigned) const { | 
| 807 | 0 | 
 | 
| 808 | 0 |   // Handle the simple case where the value is contained in one uint64_t. | 
| 809 | 0 |   // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | 
| 810 | 0 |   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | 
| 811 | 0 |     if (isSigned) { | 
| 812 | 0 |       int64_t sext = SignExtend64(getWord(0), BitWidth); | 
| 813 | 0 |       return double(sext); | 
| 814 | 0 |     } else | 
| 815 | 0 |       return double(getWord(0)); | 
| 816 | 0 |   } | 
| 817 | 0 |  | 
| 818 | 0 |   // Determine if the value is negative. | 
| 819 | 0 |   bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | 
| 820 | 0 | 
 | 
| 821 | 0 |   // Construct the absolute value if we're negative. | 
| 822 | 0 |   APInt Tmp(isNeg ? -(*this) : (*this)); | 
| 823 | 0 | 
 | 
| 824 | 0 |   // Figure out how many bits we're using. | 
| 825 | 0 |   unsigned n = Tmp.getActiveBits(); | 
| 826 | 0 | 
 | 
| 827 | 0 |   // The exponent (without bias normalization) is just the number of bits | 
| 828 | 0 |   // we are using. Note that the sign bit is gone since we constructed the | 
| 829 | 0 |   // absolute value. | 
| 830 | 0 |   uint64_t exp = n; | 
| 831 | 0 | 
 | 
| 832 | 0 |   // Return infinity for exponent overflow | 
| 833 | 0 |   if (exp > 1023) { | 
| 834 | 0 |     if (!isSigned || !isNeg) | 
| 835 | 0 |       return std::numeric_limits<double>::infinity(); | 
| 836 | 0 |     else | 
| 837 | 0 |       return -std::numeric_limits<double>::infinity(); | 
| 838 | 0 |   } | 
| 839 | 0 |   exp += 1023; // Increment for 1023 bias | 
| 840 | 0 | 
 | 
| 841 | 0 |   // Number of bits in mantissa is 52. To obtain the mantissa value, we must | 
| 842 | 0 |   // extract the high 52 bits from the correct words in pVal. | 
| 843 | 0 |   uint64_t mantissa; | 
| 844 | 0 |   unsigned hiWord = whichWord(n-1); | 
| 845 | 0 |   if (hiWord == 0) { | 
| 846 | 0 |     mantissa = Tmp.U.pVal[0]; | 
| 847 | 0 |     if (n > 52) | 
| 848 | 0 |       mantissa >>= n - 52; // shift down, we want the top 52 bits. | 
| 849 | 0 |   } else { | 
| 850 | 0 |     assert(hiWord > 0 && "huh?"); | 
| 851 | 0 |     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | 
| 852 | 0 |     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | 
| 853 | 0 |     mantissa = hibits | lobits; | 
| 854 | 0 |   } | 
| 855 | 0 | 
 | 
| 856 | 0 |   // The leading bit of mantissa is implicit, so get rid of it. | 
| 857 | 0 |   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | 
| 858 | 0 |   uint64_t I = sign | (exp << 52) | mantissa; | 
| 859 | 0 |   return bit_cast<double>(I); | 
| 860 | 0 | } | 
| 861 |  |  | 
| 862 |  | // Truncate to new width. | 
| 863 | 0 | APInt APInt::trunc(unsigned width) const { | 
| 864 | 0 |   assert(width < BitWidth && "Invalid APInt Truncate request"); | 
| 865 | 0 |   assert(width && "Can't truncate to 0 bits"); | 
| 866 | 0 | 
 | 
| 867 | 0 |   if (width <= APINT_BITS_PER_WORD) | 
| 868 | 0 |     return APInt(width, getRawData()[0]); | 
| 869 | 0 |  | 
| 870 | 0 |   APInt Result(getMemory(getNumWords(width)), width); | 
| 871 | 0 | 
 | 
| 872 | 0 |   // Copy full words. | 
| 873 | 0 |   unsigned i; | 
| 874 | 0 |   for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | 
| 875 | 0 |     Result.U.pVal[i] = U.pVal[i]; | 
| 876 | 0 | 
 | 
| 877 | 0 |   // Truncate and copy any partial word. | 
| 878 | 0 |   unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | 
| 879 | 0 |   if (bits != 0) | 
| 880 | 0 |     Result.U.pVal[i] = U.pVal[i] << bits >> bits; | 
| 881 | 0 | 
 | 
| 882 | 0 |   return Result; | 
| 883 | 0 | } | 
| 884 |  |  | 
| 885 |  | // Truncate to new width with unsigned saturation. | 
| 886 | 0 | APInt APInt::truncUSat(unsigned width) const { | 
| 887 | 0 |   assert(width < BitWidth && "Invalid APInt Truncate request"); | 
| 888 | 0 |   assert(width && "Can't truncate to 0 bits"); | 
| 889 | 0 | 
 | 
| 890 | 0 |   // Can we just losslessly truncate it? | 
| 891 | 0 |   if (isIntN(width)) | 
| 892 | 0 |     return trunc(width); | 
| 893 | 0 |   // If not, then just return the new limit. | 
| 894 | 0 |   return APInt::getMaxValue(width); | 
| 895 | 0 | } | 
| 896 |  |  | 
| 897 |  | // Truncate to new width with signed saturation. | 
| 898 | 0 | APInt APInt::truncSSat(unsigned width) const { | 
| 899 | 0 |   assert(width < BitWidth && "Invalid APInt Truncate request"); | 
| 900 | 0 |   assert(width && "Can't truncate to 0 bits"); | 
| 901 | 0 | 
 | 
| 902 | 0 |   // Can we just losslessly truncate it? | 
| 903 | 0 |   if (isSignedIntN(width)) | 
| 904 | 0 |     return trunc(width); | 
| 905 | 0 |   // If not, then just return the new limits. | 
| 906 | 0 |   return isNegative() ? APInt::getSignedMinValue(width) | 
| 907 | 0 |                       : APInt::getSignedMaxValue(width); | 
| 908 | 0 | } | 
| 909 |  |  | 
| 910 |  | // Sign extend to a new width. | 
| 911 | 0 | APInt APInt::sext(unsigned Width) const { | 
| 912 | 0 |   assert(Width > BitWidth && "Invalid APInt SignExtend request"); | 
| 913 | 0 | 
 | 
| 914 | 0 |   if (Width <= APINT_BITS_PER_WORD) | 
| 915 | 0 |     return APInt(Width, SignExtend64(U.VAL, BitWidth)); | 
| 916 | 0 |  | 
| 917 | 0 |   APInt Result(getMemory(getNumWords(Width)), Width); | 
| 918 | 0 | 
 | 
| 919 | 0 |   // Copy words. | 
| 920 | 0 |   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | 
| 921 | 0 | 
 | 
| 922 | 0 |   // Sign extend the last word since there may be unused bits in the input. | 
| 923 | 0 |   Result.U.pVal[getNumWords() - 1] = | 
| 924 | 0 |       SignExtend64(Result.U.pVal[getNumWords() - 1], | 
| 925 | 0 |                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | 
| 926 | 0 | 
 | 
| 927 | 0 |   // Fill with sign bits. | 
| 928 | 0 |   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, | 
| 929 | 0 |               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | 
| 930 | 0 |   Result.clearUnusedBits(); | 
| 931 | 0 |   return Result; | 
| 932 | 0 | } | 
| 933 |  |  | 
| 934 |  | //  Zero extend to a new width. | 
| 935 | 0 | APInt APInt::zext(unsigned width) const { | 
| 936 | 0 |   assert(width > BitWidth && "Invalid APInt ZeroExtend request"); | 
| 937 | 0 | 
 | 
| 938 | 0 |   if (width <= APINT_BITS_PER_WORD) | 
| 939 | 0 |     return APInt(width, U.VAL); | 
| 940 | 0 |  | 
| 941 | 0 |   APInt Result(getMemory(getNumWords(width)), width); | 
| 942 | 0 | 
 | 
| 943 | 0 |   // Copy words. | 
| 944 | 0 |   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | 
| 945 | 0 | 
 | 
| 946 | 0 |   // Zero remaining words. | 
| 947 | 0 |   std::memset(Result.U.pVal + getNumWords(), 0, | 
| 948 | 0 |               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | 
| 949 | 0 | 
 | 
| 950 | 0 |   return Result; | 
| 951 | 0 | } | 
| 952 |  |  | 
| 953 | 0 | APInt APInt::zextOrTrunc(unsigned width) const { | 
| 954 | 0 |   if (BitWidth < width) | 
| 955 | 0 |     return zext(width); | 
| 956 | 0 |   if (BitWidth > width) | 
| 957 | 0 |     return trunc(width); | 
| 958 | 0 |   return *this; | 
| 959 | 0 | } | 
| 960 |  |  | 
| 961 | 0 | APInt APInt::sextOrTrunc(unsigned width) const { | 
| 962 | 0 |   if (BitWidth < width) | 
| 963 | 0 |     return sext(width); | 
| 964 | 0 |   if (BitWidth > width) | 
| 965 | 0 |     return trunc(width); | 
| 966 | 0 |   return *this; | 
| 967 | 0 | } | 
| 968 |  |  | 
| 969 | 0 | APInt APInt::zextOrSelf(unsigned width) const { | 
| 970 | 0 |   if (BitWidth < width) | 
| 971 | 0 |     return zext(width); | 
| 972 | 0 |   return *this; | 
| 973 | 0 | } | 
| 974 |  |  | 
| 975 | 0 | APInt APInt::sextOrSelf(unsigned width) const { | 
| 976 | 0 |   if (BitWidth < width) | 
| 977 | 0 |     return sext(width); | 
| 978 | 0 |   return *this; | 
| 979 | 0 | } | 
| 980 |  |  | 
| 981 |  | /// Arithmetic right-shift this APInt by shiftAmt. | 
| 982 |  | /// Arithmetic right-shift function. | 
| 983 | 0 | void APInt::ashrInPlace(const APInt &shiftAmt) { | 
| 984 | 0 |   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
| 985 | 0 | } | 
| 986 |  |  | 
| 987 |  | /// Arithmetic right-shift this APInt by shiftAmt. | 
| 988 |  | /// Arithmetic right-shift function. | 
| 989 | 0 | void APInt::ashrSlowCase(unsigned ShiftAmt) { | 
| 990 | 0 |   // Don't bother performing a no-op shift. | 
| 991 | 0 |   if (!ShiftAmt) | 
| 992 | 0 |     return; | 
| 993 | 0 |  | 
| 994 | 0 |   // Save the original sign bit for later. | 
| 995 | 0 |   bool Negative = isNegative(); | 
| 996 | 0 | 
 | 
| 997 | 0 |   // WordShift is the inter-part shift; BitShift is intra-part shift. | 
| 998 | 0 |   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; | 
| 999 | 0 |   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; | 
| 1000 | 0 | 
 | 
| 1001 | 0 |   unsigned WordsToMove = getNumWords() - WordShift; | 
| 1002 | 0 |   if (WordsToMove != 0) { | 
| 1003 | 0 |     // Sign extend the last word to fill in the unused bits. | 
| 1004 | 0 |     U.pVal[getNumWords() - 1] = SignExtend64( | 
| 1005 | 0 |         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | 
| 1006 | 0 | 
 | 
| 1007 | 0 |     // Fastpath for moving by whole words. | 
| 1008 | 0 |     if (BitShift == 0) { | 
| 1009 | 0 |       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); | 
| 1010 | 0 |     } else { | 
| 1011 | 0 |       // Move the words containing significant bits. | 
| 1012 | 0 |       for (unsigned i = 0; i != WordsToMove - 1; ++i) | 
| 1013 | 0 |         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | | 
| 1014 | 0 |                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); | 
| 1015 | 0 | 
 | 
| 1016 | 0 |       // Handle the last word which has no high bits to copy. | 
| 1017 | 0 |       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; | 
| 1018 | 0 |       // Sign extend one more time. | 
| 1019 | 0 |       U.pVal[WordsToMove - 1] = | 
| 1020 | 0 |           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); | 
| 1021 | 0 |     } | 
| 1022 | 0 |   } | 
| 1023 | 0 | 
 | 
| 1024 | 0 |   // Fill in the remainder based on the original sign. | 
| 1025 | 0 |   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, | 
| 1026 | 0 |               WordShift * APINT_WORD_SIZE); | 
| 1027 | 0 |   clearUnusedBits(); | 
| 1028 | 0 | } | 
| 1029 |  |  | 
| 1030 |  | /// Logical right-shift this APInt by shiftAmt. | 
| 1031 |  | /// Logical right-shift function. | 
| 1032 | 0 | void APInt::lshrInPlace(const APInt &shiftAmt) { | 
| 1033 | 0 |   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
| 1034 | 0 | } | 
| 1035 |  |  | 
| 1036 |  | /// Logical right-shift this APInt by shiftAmt. | 
| 1037 |  | /// Logical right-shift function. | 
| 1038 | 0 | void APInt::lshrSlowCase(unsigned ShiftAmt) { | 
| 1039 | 0 |   tcShiftRight(U.pVal, getNumWords(), ShiftAmt); | 
| 1040 | 0 | } | 
| 1041 |  |  | 
| 1042 |  | /// Left-shift this APInt by shiftAmt. | 
| 1043 |  | /// Left-shift function. | 
| 1044 | 0 | APInt &APInt::operator<<=(const APInt &shiftAmt) { | 
| 1045 | 0 |   // It's undefined behavior in C to shift by BitWidth or greater. | 
| 1046 | 0 |   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); | 
| 1047 | 0 |   return *this; | 
| 1048 | 0 | } | 
| 1049 |  |  | 
| 1050 | 0 | void APInt::shlSlowCase(unsigned ShiftAmt) { | 
| 1051 | 0 |   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); | 
| 1052 | 0 |   clearUnusedBits(); | 
| 1053 | 0 | } | 
| 1054 |  |  | 
| 1055 |  | // Calculate the rotate amount modulo the bit width. | 
| 1056 | 0 | static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { | 
| 1057 | 0 |   unsigned rotBitWidth = rotateAmt.getBitWidth(); | 
| 1058 | 0 |   APInt rot = rotateAmt; | 
| 1059 | 0 |   if (rotBitWidth < BitWidth) { | 
| 1060 | 0 |     // Extend the rotate APInt, so that the urem doesn't divide by 0. | 
| 1061 | 0 |     // e.g. APInt(1, 32) would give APInt(1, 0). | 
| 1062 | 0 |     rot = rotateAmt.zext(BitWidth); | 
| 1063 | 0 |   } | 
| 1064 | 0 |   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); | 
| 1065 | 0 |   return rot.getLimitedValue(BitWidth); | 
| 1066 | 0 | } | 
| 1067 |  |  | 
| 1068 | 0 | APInt APInt::rotl(const APInt &rotateAmt) const { | 
| 1069 | 0 |   return rotl(rotateModulo(BitWidth, rotateAmt)); | 
| 1070 | 0 | } | 
| 1071 |  |  | 
| 1072 | 0 | APInt APInt::rotl(unsigned rotateAmt) const { | 
| 1073 | 0 |   rotateAmt %= BitWidth; | 
| 1074 | 0 |   if (rotateAmt == 0) | 
| 1075 | 0 |     return *this; | 
| 1076 | 0 |   return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | 
| 1077 | 0 | } | 
| 1078 |  |  | 
| 1079 | 0 | APInt APInt::rotr(const APInt &rotateAmt) const { | 
| 1080 | 0 |   return rotr(rotateModulo(BitWidth, rotateAmt)); | 
| 1081 | 0 | } | 
| 1082 |  |  | 
| 1083 | 0 | APInt APInt::rotr(unsigned rotateAmt) const { | 
| 1084 | 0 |   rotateAmt %= BitWidth; | 
| 1085 | 0 |   if (rotateAmt == 0) | 
| 1086 | 0 |     return *this; | 
| 1087 | 0 |   return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | 
| 1088 | 0 | } | 
| 1089 |  |  | 
| 1090 |  | // Square Root - this method computes and returns the square root of "this". | 
| 1091 |  | // Three mechanisms are used for computation. For small values (<= 5 bits), | 
| 1092 |  | // a table lookup is done. This gets some performance for common cases. For | 
| 1093 |  | // values using less than 52 bits, the value is converted to double and then | 
| 1094 |  | // the libc sqrt function is called. The result is rounded and then converted | 
| 1095 |  | // back to a uint64_t which is then used to construct the result. Finally, | 
| 1096 |  | // the Babylonian method for computing square roots is used. | 
| 1097 | 0 | APInt APInt::sqrt() const { | 
| 1098 | 0 | 
 | 
| 1099 | 0 |   // Determine the magnitude of the value. | 
| 1100 | 0 |   unsigned magnitude = getActiveBits(); | 
| 1101 | 0 | 
 | 
| 1102 | 0 |   // Use a fast table for some small values. This also gets rid of some | 
| 1103 | 0 |   // rounding errors in libc sqrt for small values. | 
| 1104 | 0 |   if (magnitude <= 5) { | 
| 1105 | 0 |     static const uint8_t results[32] = { | 
| 1106 | 0 |       /*     0 */ 0, | 
| 1107 | 0 |       /*  1- 2 */ 1, 1, | 
| 1108 | 0 |       /*  3- 6 */ 2, 2, 2, 2, | 
| 1109 | 0 |       /*  7-12 */ 3, 3, 3, 3, 3, 3, | 
| 1110 | 0 |       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | 
| 1111 | 0 |       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
| 1112 | 0 |       /*    31 */ 6 | 
| 1113 | 0 |     }; | 
| 1114 | 0 |     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); | 
| 1115 | 0 |   } | 
| 1116 | 0 | 
 | 
| 1117 | 0 |   // If the magnitude of the value fits in less than 52 bits (the precision of | 
| 1118 | 0 |   // an IEEE double precision floating point value), then we can use the | 
| 1119 | 0 |   // libc sqrt function which will probably use a hardware sqrt computation. | 
| 1120 | 0 |   // This should be faster than the algorithm below. | 
| 1121 | 0 |   if (magnitude < 52) { | 
| 1122 | 0 |     return APInt(BitWidth, | 
| 1123 | 0 |                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL | 
| 1124 | 0 |                                                                : U.pVal[0]))))); | 
| 1125 | 0 |   } | 
| 1126 | 0 | 
 | 
| 1127 | 0 |   // Okay, all the short cuts are exhausted. We must compute it. The following | 
| 1128 | 0 |   // is a classical Babylonian method for computing the square root. This code | 
| 1129 | 0 |   // was adapted to APInt from a wikipedia article on such computations. | 
| 1130 | 0 |   // See http://www.wikipedia.org/ and go to the page named | 
| 1131 | 0 |   // Calculate_an_integer_square_root. | 
| 1132 | 0 |   unsigned nbits = BitWidth, i = 4; | 
| 1133 | 0 |   APInt testy(BitWidth, 16); | 
| 1134 | 0 |   APInt x_old(BitWidth, 1); | 
| 1135 | 0 |   APInt x_new(BitWidth, 0); | 
| 1136 | 0 |   APInt two(BitWidth, 2); | 
| 1137 | 0 | 
 | 
| 1138 | 0 |   // Select a good starting value using binary logarithms. | 
| 1139 | 0 |   for (;; i += 2, testy = testy.shl(2)) | 
| 1140 | 0 |     if (i >= nbits || this->ule(testy)) { | 
| 1141 | 0 |       x_old = x_old.shl(i / 2); | 
| 1142 | 0 |       break; | 
| 1143 | 0 |     } | 
| 1144 | 0 | 
 | 
| 1145 | 0 |   // Use the Babylonian method to arrive at the integer square root: | 
| 1146 | 0 |   for (;;) { | 
| 1147 | 0 |     x_new = (this->udiv(x_old) + x_old).udiv(two); | 
| 1148 | 0 |     if (x_old.ule(x_new)) | 
| 1149 | 0 |       break; | 
| 1150 | 0 |     x_old = x_new; | 
| 1151 | 0 |   } | 
| 1152 | 0 | 
 | 
| 1153 | 0 |   // Make sure we return the closest approximation | 
| 1154 | 0 |   // NOTE: The rounding calculation below is correct. It will produce an | 
| 1155 | 0 |   // off-by-one discrepancy with results from pari/gp. That discrepancy has been | 
| 1156 | 0 |   // determined to be a rounding issue with pari/gp as it begins to use a | 
| 1157 | 0 |   // floating point representation after 192 bits. There are no discrepancies | 
| 1158 | 0 |   // between this algorithm and pari/gp for bit widths < 192 bits. | 
| 1159 | 0 |   APInt square(x_old * x_old); | 
| 1160 | 0 |   APInt nextSquare((x_old + 1) * (x_old +1)); | 
| 1161 | 0 |   if (this->ult(square)) | 
| 1162 | 0 |     return x_old; | 
| 1163 | 0 |   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); | 
| 1164 | 0 |   APInt midpoint((nextSquare - square).udiv(two)); | 
| 1165 | 0 |   APInt offset(*this - square); | 
| 1166 | 0 |   if (offset.ult(midpoint)) | 
| 1167 | 0 |     return x_old; | 
| 1168 | 0 |   return x_old + 1; | 
| 1169 | 0 | } | 
| 1170 |  |  | 
| 1171 |  | /// Computes the multiplicative inverse of this APInt for a given modulo. The | 
| 1172 |  | /// iterative extended Euclidean algorithm is used to solve for this value, | 
| 1173 |  | /// however we simplify it to speed up calculating only the inverse, and take | 
| 1174 |  | /// advantage of div+rem calculations. We also use some tricks to avoid copying | 
| 1175 |  | /// (potentially large) APInts around. | 
| 1176 |  | /// WARNING: a value of '0' may be returned, | 
| 1177 |  | ///          signifying that no multiplicative inverse exists! | 
| 1178 | 0 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | 
| 1179 | 0 |   assert(ult(modulo) && "This APInt must be smaller than the modulo"); | 
| 1180 | 0 | 
 | 
| 1181 | 0 |   // Using the properties listed at the following web page (accessed 06/21/08): | 
| 1182 | 0 |   //   http://www.numbertheory.org/php/euclid.html | 
| 1183 | 0 |   // (especially the properties numbered 3, 4 and 9) it can be proved that | 
| 1184 | 0 |   // BitWidth bits suffice for all the computations in the algorithm implemented | 
| 1185 | 0 |   // below. More precisely, this number of bits suffice if the multiplicative | 
| 1186 | 0 |   // inverse exists, but may not suffice for the general extended Euclidean | 
| 1187 | 0 |   // algorithm. | 
| 1188 | 0 | 
 | 
| 1189 | 0 |   APInt r[2] = { modulo, *this }; | 
| 1190 | 0 |   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | 
| 1191 | 0 |   APInt q(BitWidth, 0); | 
| 1192 | 0 | 
 | 
| 1193 | 0 |   unsigned i; | 
| 1194 | 0 |   for (i = 0; r[i^1] != 0; i ^= 1) { | 
| 1195 | 0 |     // An overview of the math without the confusing bit-flipping: | 
| 1196 | 0 |     // q = r[i-2] / r[i-1] | 
| 1197 | 0 |     // r[i] = r[i-2] % r[i-1] | 
| 1198 | 0 |     // t[i] = t[i-2] - t[i-1] * q | 
| 1199 | 0 |     udivrem(r[i], r[i^1], q, r[i]); | 
| 1200 | 0 |     t[i] -= t[i^1] * q; | 
| 1201 | 0 |   } | 
| 1202 | 0 | 
 | 
| 1203 | 0 |   // If this APInt and the modulo are not coprime, there is no multiplicative | 
| 1204 | 0 |   // inverse, so return 0. We check this by looking at the next-to-last | 
| 1205 | 0 |   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | 
| 1206 | 0 |   // algorithm. | 
| 1207 | 0 |   if (r[i] != 1) | 
| 1208 | 0 |     return APInt(BitWidth, 0); | 
| 1209 | 0 |  | 
| 1210 | 0 |   // The next-to-last t is the multiplicative inverse.  However, we are | 
| 1211 | 0 |   // interested in a positive inverse. Calculate a positive one from a negative | 
| 1212 | 0 |   // one if necessary. A simple addition of the modulo suffices because | 
| 1213 | 0 |   // abs(t[i]) is known to be less than *this/2 (see the link above). | 
| 1214 | 0 |   if (t[i].isNegative()) | 
| 1215 | 0 |     t[i] += modulo; | 
| 1216 | 0 | 
 | 
| 1217 | 0 |   return std::move(t[i]); | 
| 1218 | 0 | } | 
| 1219 |  |  | 
| 1220 |  | /// Calculate the magic numbers required to implement a signed integer division | 
| 1221 |  | /// by a constant as a sequence of multiplies, adds and shifts.  Requires that | 
| 1222 |  | /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S. | 
| 1223 |  | /// Warren, Jr., chapter 10. | 
| 1224 | 0 | APInt::ms APInt::magic() const { | 
| 1225 | 0 |   const APInt& d = *this; | 
| 1226 | 0 |   unsigned p; | 
| 1227 | 0 |   APInt ad, anc, delta, q1, r1, q2, r2, t; | 
| 1228 | 0 |   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
| 1229 | 0 |   struct ms mag; | 
| 1230 | 0 | 
 | 
| 1231 | 0 |   ad = d.abs(); | 
| 1232 | 0 |   t = signedMin + (d.lshr(d.getBitWidth() - 1)); | 
| 1233 | 0 |   anc = t - 1 - t.urem(ad);   // absolute value of nc | 
| 1234 | 0 |   p = d.getBitWidth() - 1;    // initialize p | 
| 1235 | 0 |   q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc) | 
| 1236 | 0 |   r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc)) | 
| 1237 | 0 |   q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d) | 
| 1238 | 0 |   r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d)) | 
| 1239 | 0 |   do { | 
| 1240 | 0 |     p = p + 1; | 
| 1241 | 0 |     q1 = q1<<1;          // update q1 = 2p/abs(nc) | 
| 1242 | 0 |     r1 = r1<<1;          // update r1 = rem(2p/abs(nc)) | 
| 1243 | 0 |     if (r1.uge(anc)) {  // must be unsigned comparison | 
| 1244 | 0 |       q1 = q1 + 1; | 
| 1245 | 0 |       r1 = r1 - anc; | 
| 1246 | 0 |     } | 
| 1247 | 0 |     q2 = q2<<1;          // update q2 = 2p/abs(d) | 
| 1248 | 0 |     r2 = r2<<1;          // update r2 = rem(2p/abs(d)) | 
| 1249 | 0 |     if (r2.uge(ad)) {   // must be unsigned comparison | 
| 1250 | 0 |       q2 = q2 + 1; | 
| 1251 | 0 |       r2 = r2 - ad; | 
| 1252 | 0 |     } | 
| 1253 | 0 |     delta = ad - r2; | 
| 1254 | 0 |   } while (q1.ult(delta) || (q1 == delta && r1 == 0)); | 
| 1255 | 0 | 
 | 
| 1256 | 0 |   mag.m = q2 + 1; | 
| 1257 | 0 |   if (d.isNegative()) mag.m = -mag.m;   // resulting magic number | 
| 1258 | 0 |   mag.s = p - d.getBitWidth();          // resulting shift | 
| 1259 | 0 |   return mag; | 
| 1260 | 0 | } | 
| 1261 |  |  | 
| 1262 |  | /// Calculate the magic numbers required to implement an unsigned integer | 
| 1263 |  | /// division by a constant as a sequence of multiplies, adds and shifts. | 
| 1264 |  | /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry | 
| 1265 |  | /// S. Warren, Jr., chapter 10. | 
| 1266 |  | /// LeadingZeros can be used to simplify the calculation if the upper bits | 
| 1267 |  | /// of the divided value are known zero. | 
| 1268 | 0 | APInt::mu APInt::magicu(unsigned LeadingZeros) const { | 
| 1269 | 0 |   const APInt& d = *this; | 
| 1270 | 0 |   unsigned p; | 
| 1271 | 0 |   APInt nc, delta, q1, r1, q2, r2; | 
| 1272 | 0 |   struct mu magu; | 
| 1273 | 0 |   magu.a = 0;               // initialize "add" indicator | 
| 1274 | 0 |   APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); | 
| 1275 | 0 |   APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
| 1276 | 0 |   APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); | 
| 1277 | 0 | 
 | 
| 1278 | 0 |   nc = allOnes - (allOnes - d).urem(d); | 
| 1279 | 0 |   p = d.getBitWidth() - 1;  // initialize p | 
| 1280 | 0 |   q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc | 
| 1281 | 0 |   r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc) | 
| 1282 | 0 |   q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d | 
| 1283 | 0 |   r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d) | 
| 1284 | 0 |   do { | 
| 1285 | 0 |     p = p + 1; | 
| 1286 | 0 |     if (r1.uge(nc - r1)) { | 
| 1287 | 0 |       q1 = q1 + q1 + 1;  // update q1 | 
| 1288 | 0 |       r1 = r1 + r1 - nc; // update r1 | 
| 1289 | 0 |     } | 
| 1290 | 0 |     else { | 
| 1291 | 0 |       q1 = q1+q1; // update q1 | 
| 1292 | 0 |       r1 = r1+r1; // update r1 | 
| 1293 | 0 |     } | 
| 1294 | 0 |     if ((r2 + 1).uge(d - r2)) { | 
| 1295 | 0 |       if (q2.uge(signedMax)) magu.a = 1; | 
| 1296 | 0 |       q2 = q2+q2 + 1;     // update q2 | 
| 1297 | 0 |       r2 = r2+r2 + 1 - d; // update r2 | 
| 1298 | 0 |     } | 
| 1299 | 0 |     else { | 
| 1300 | 0 |       if (q2.uge(signedMin)) magu.a = 1; | 
| 1301 | 0 |       q2 = q2+q2;     // update q2 | 
| 1302 | 0 |       r2 = r2+r2 + 1; // update r2 | 
| 1303 | 0 |     } | 
| 1304 | 0 |     delta = d - 1 - r2; | 
| 1305 | 0 |   } while (p < d.getBitWidth()*2 && | 
| 1306 | 0 |            (q1.ult(delta) || (q1 == delta && r1 == 0))); | 
| 1307 | 0 |   magu.m = q2 + 1; // resulting magic number | 
| 1308 | 0 |   magu.s = p - d.getBitWidth();  // resulting shift | 
| 1309 | 0 |   return magu; | 
| 1310 | 0 | } | 
| 1311 |  |  | 
| 1312 |  | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | 
| 1313 |  | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | 
| 1314 |  | /// variables here have the same names as in the algorithm. Comments explain | 
| 1315 |  | /// the algorithm and any deviation from it. | 
| 1316 |  | static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, | 
| 1317 | 0 |                      unsigned m, unsigned n) { | 
| 1318 | 0 |   assert(u && "Must provide dividend"); | 
| 1319 | 0 |   assert(v && "Must provide divisor"); | 
| 1320 | 0 |   assert(q && "Must provide quotient"); | 
| 1321 | 0 |   assert(u != v && u != q && v != q && "Must use different memory"); | 
| 1322 | 0 |   assert(n>1 && "n must be > 1"); | 
| 1323 | 0 | 
 | 
| 1324 | 0 |   // b denotes the base of the number system. In our case b is 2^32. | 
| 1325 | 0 |   const uint64_t b = uint64_t(1) << 32; | 
| 1326 | 0 | 
 | 
| 1327 | 0 | // The DEBUG macros here tend to be spam in the debug output if you're not | 
| 1328 | 0 | // debugging this code. Disable them unless KNUTH_DEBUG is defined. | 
| 1329 |  | #ifdef KNUTH_DEBUG | 
| 1330 |  | #define DEBUG_KNUTH(X) LLVM_DEBUG(X) | 
| 1331 |  | #else | 
| 1332 | 0 | #define DEBUG_KNUTH(X) do {} while(false) | 
| 1333 | 0 | #endif | 
| 1334 | 0 | 
 | 
| 1335 | 0 |   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); | 
| 1336 | 0 |   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); | 
| 1337 | 0 |   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
| 1338 | 0 |   DEBUG_KNUTH(dbgs() << " by"); | 
| 1339 | 0 |   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); | 
| 1340 | 0 |   DEBUG_KNUTH(dbgs() << '\n'); | 
| 1341 | 0 |   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | 
| 1342 | 0 |   // u and v by d. Note that we have taken Knuth's advice here to use a power | 
| 1343 | 0 |   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | 
| 1344 | 0 |   // 2 allows us to shift instead of multiply and it is easy to determine the | 
| 1345 | 0 |   // shift amount from the leading zeros.  We are basically normalizing the u | 
| 1346 | 0 |   // and v so that its high bits are shifted to the top of v's range without | 
| 1347 | 0 |   // overflow. Note that this can require an extra word in u so that u must | 
| 1348 | 0 |   // be of length m+n+1. | 
| 1349 | 0 |   unsigned shift = countLeadingZeros(v[n-1]); | 
| 1350 | 0 |   uint32_t v_carry = 0; | 
| 1351 | 0 |   uint32_t u_carry = 0; | 
| 1352 | 0 |   if (shift) { | 
| 1353 | 0 |     for (unsigned i = 0; i < m+n; ++i) { | 
| 1354 | 0 |       uint32_t u_tmp = u[i] >> (32 - shift); | 
| 1355 | 0 |       u[i] = (u[i] << shift) | u_carry; | 
| 1356 | 0 |       u_carry = u_tmp; | 
| 1357 | 0 |     } | 
| 1358 | 0 |     for (unsigned i = 0; i < n; ++i) { | 
| 1359 | 0 |       uint32_t v_tmp = v[i] >> (32 - shift); | 
| 1360 | 0 |       v[i] = (v[i] << shift) | v_carry; | 
| 1361 | 0 |       v_carry = v_tmp; | 
| 1362 | 0 |     } | 
| 1363 | 0 |   } | 
| 1364 | 0 |   u[m+n] = u_carry; | 
| 1365 | 0 | 
 | 
| 1366 | 0 |   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:"); | 
| 1367 | 0 |   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
| 1368 | 0 |   DEBUG_KNUTH(dbgs() << " by"); | 
| 1369 | 0 |   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); | 
| 1370 | 0 |   DEBUG_KNUTH(dbgs() << '\n'); | 
| 1371 | 0 | 
 | 
| 1372 | 0 |   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places. | 
| 1373 | 0 |   int j = m; | 
| 1374 | 0 |   do { | 
| 1375 | 0 |     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); | 
| 1376 | 0 |     // D3. [Calculate q'.]. | 
| 1377 | 0 |     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | 
| 1378 | 0 |     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | 
| 1379 | 0 |     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | 
| 1380 | 0 |     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test | 
| 1381 | 0 |     // on v[n-2] determines at high speed most of the cases in which the trial | 
| 1382 | 0 |     // value qp is one too large, and it eliminates all cases where qp is two | 
| 1383 | 0 |     // too large. | 
| 1384 | 0 |     uint64_t dividend = Make_64(u[j+n], u[j+n-1]); | 
| 1385 | 0 |     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); | 
| 1386 | 0 |     uint64_t qp = dividend / v[n-1]; | 
| 1387 | 0 |     uint64_t rp = dividend % v[n-1]; | 
| 1388 | 0 |     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | 
| 1389 | 0 |       qp--; | 
| 1390 | 0 |       rp += v[n-1]; | 
| 1391 | 0 |       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | 
| 1392 | 0 |         qp--; | 
| 1393 | 0 |     } | 
| 1394 | 0 |     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); | 
| 1395 | 0 | 
 | 
| 1396 | 0 |     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | 
| 1397 | 0 |     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | 
| 1398 | 0 |     // consists of a simple multiplication by a one-place number, combined with | 
| 1399 | 0 |     // a subtraction. | 
| 1400 | 0 |     // The digits (u[j+n]...u[j]) should be kept positive; if the result of | 
| 1401 | 0 |     // this step is actually negative, (u[j+n]...u[j]) should be left as the | 
| 1402 | 0 |     // true value plus b**(n+1), namely as the b's complement of | 
| 1403 | 0 |     // the true value, and a "borrow" to the left should be remembered. | 
| 1404 | 0 |     int64_t borrow = 0; | 
| 1405 | 0 |     for (unsigned i = 0; i < n; ++i) { | 
| 1406 | 0 |       uint64_t p = uint64_t(qp) * uint64_t(v[i]); | 
| 1407 | 0 |       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); | 
| 1408 | 0 |       u[j+i] = Lo_32(subres); | 
| 1409 | 0 |       borrow = Hi_32(p) - Hi_32(subres); | 
| 1410 | 0 |       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] | 
| 1411 | 0 |                         << ", borrow = " << borrow << '\n'); | 
| 1412 | 0 |     } | 
| 1413 | 0 |     bool isNeg = u[j+n] < borrow; | 
| 1414 | 0 |     u[j+n] -= Lo_32(borrow); | 
| 1415 | 0 | 
 | 
| 1416 | 0 |     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); | 
| 1417 | 0 |     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
| 1418 | 0 |     DEBUG_KNUTH(dbgs() << '\n'); | 
| 1419 | 0 | 
 | 
| 1420 | 0 |     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | 
| 1421 | 0 |     // negative, go to step D6; otherwise go on to step D7. | 
| 1422 | 0 |     q[j] = Lo_32(qp); | 
| 1423 | 0 |     if (isNeg) { | 
| 1424 | 0 |       // D6. [Add back]. The probability that this step is necessary is very | 
| 1425 | 0 |       // small, on the order of only 2/b. Make sure that test data accounts for | 
| 1426 | 0 |       // this possibility. Decrease q[j] by 1 | 
| 1427 | 0 |       q[j]--; | 
| 1428 | 0 |       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | 
| 1429 | 0 |       // A carry will occur to the left of u[j+n], and it should be ignored | 
| 1430 | 0 |       // since it cancels with the borrow that occurred in D4. | 
| 1431 | 0 |       bool carry = false; | 
| 1432 | 0 |       for (unsigned i = 0; i < n; i++) { | 
| 1433 | 0 |         uint32_t limit = std::min(u[j+i],v[i]); | 
| 1434 | 0 |         u[j+i] += v[i] + carry; | 
| 1435 | 0 |         carry = u[j+i] < limit || (carry && u[j+i] == limit); | 
| 1436 | 0 |       } | 
| 1437 | 0 |       u[j+n] += carry; | 
| 1438 | 0 |     } | 
| 1439 | 0 |     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); | 
| 1440 | 0 |     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); | 
| 1441 | 0 |     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); | 
| 1442 | 0 | 
 | 
| 1443 | 0 |     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3. | 
| 1444 | 0 |   } while (--j >= 0); | 
| 1445 | 0 | 
 | 
| 1446 | 0 |   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); | 
| 1447 | 0 |   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); | 
| 1448 | 0 |   DEBUG_KNUTH(dbgs() << '\n'); | 
| 1449 | 0 | 
 | 
| 1450 | 0 |   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | 
| 1451 | 0 |   // remainder may be obtained by dividing u[...] by d. If r is non-null we | 
| 1452 | 0 |   // compute the remainder (urem uses this). | 
| 1453 | 0 |   if (r) { | 
| 1454 | 0 |     // The value d is expressed by the "shift" value above since we avoided | 
| 1455 | 0 |     // multiplication by d by using a shift left. So, all we have to do is | 
| 1456 | 0 |     // shift right here. | 
| 1457 | 0 |     if (shift) { | 
| 1458 | 0 |       uint32_t carry = 0; | 
| 1459 | 0 |       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); | 
| 1460 | 0 |       for (int i = n-1; i >= 0; i--) { | 
| 1461 | 0 |         r[i] = (u[i] >> shift) | carry; | 
| 1462 | 0 |         carry = u[i] << (32 - shift); | 
| 1463 | 0 |         DEBUG_KNUTH(dbgs() << " " << r[i]); | 
| 1464 | 0 |       } | 
| 1465 | 0 |     } else { | 
| 1466 | 0 |       for (int i = n-1; i >= 0; i--) { | 
| 1467 | 0 |         r[i] = u[i]; | 
| 1468 | 0 |         DEBUG_KNUTH(dbgs() << " " << r[i]); | 
| 1469 | 0 |       } | 
| 1470 | 0 |     } | 
| 1471 | 0 |     DEBUG_KNUTH(dbgs() << '\n'); | 
| 1472 | 0 |   } | 
| 1473 | 0 |   DEBUG_KNUTH(dbgs() << '\n'); | 
| 1474 | 0 | } | 
| 1475 |  |  | 
| 1476 |  | void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, | 
| 1477 | 0 |                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) { | 
| 1478 | 0 |   assert(lhsWords >= rhsWords && "Fractional result"); | 
| 1479 | 0 | 
 | 
| 1480 | 0 |   // First, compose the values into an array of 32-bit words instead of | 
| 1481 | 0 |   // 64-bit words. This is a necessity of both the "short division" algorithm | 
| 1482 | 0 |   // and the Knuth "classical algorithm" which requires there to be native | 
| 1483 | 0 |   // operations for +, -, and * on an m bit value with an m*2 bit result. We | 
| 1484 | 0 |   // can't use 64-bit operands here because we don't have native results of | 
| 1485 | 0 |   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | 
| 1486 | 0 |   // work on large-endian machines. | 
| 1487 | 0 |   unsigned n = rhsWords * 2; | 
| 1488 | 0 |   unsigned m = (lhsWords * 2) - n; | 
| 1489 | 0 | 
 | 
| 1490 | 0 |   // Allocate space for the temporary values we need either on the stack, if | 
| 1491 | 0 |   // it will fit, or on the heap if it won't. | 
| 1492 | 0 |   uint32_t SPACE[128]; | 
| 1493 | 0 |   uint32_t *U = nullptr; | 
| 1494 | 0 |   uint32_t *V = nullptr; | 
| 1495 | 0 |   uint32_t *Q = nullptr; | 
| 1496 | 0 |   uint32_t *R = nullptr; | 
| 1497 | 0 |   if ((Remainder?4:3)*n+2*m+1 <= 128) { | 
| 1498 | 0 |     U = &SPACE[0]; | 
| 1499 | 0 |     V = &SPACE[m+n+1]; | 
| 1500 | 0 |     Q = &SPACE[(m+n+1) + n]; | 
| 1501 | 0 |     if (Remainder) | 
| 1502 | 0 |       R = &SPACE[(m+n+1) + n + (m+n)]; | 
| 1503 | 0 |   } else { | 
| 1504 | 0 |     U = new uint32_t[m + n + 1]; | 
| 1505 | 0 |     V = new uint32_t[n]; | 
| 1506 | 0 |     Q = new uint32_t[m+n]; | 
| 1507 | 0 |     if (Remainder) | 
| 1508 | 0 |       R = new uint32_t[n]; | 
| 1509 | 0 |   } | 
| 1510 | 0 | 
 | 
| 1511 | 0 |   // Initialize the dividend | 
| 1512 | 0 |   memset(U, 0, (m+n+1)*sizeof(uint32_t)); | 
| 1513 | 0 |   for (unsigned i = 0; i < lhsWords; ++i) { | 
| 1514 | 0 |     uint64_t tmp = LHS[i]; | 
| 1515 | 0 |     U[i * 2] = Lo_32(tmp); | 
| 1516 | 0 |     U[i * 2 + 1] = Hi_32(tmp); | 
| 1517 | 0 |   } | 
| 1518 | 0 |   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | 
| 1519 | 0 | 
 | 
| 1520 | 0 |   // Initialize the divisor | 
| 1521 | 0 |   memset(V, 0, (n)*sizeof(uint32_t)); | 
| 1522 | 0 |   for (unsigned i = 0; i < rhsWords; ++i) { | 
| 1523 | 0 |     uint64_t tmp = RHS[i]; | 
| 1524 | 0 |     V[i * 2] = Lo_32(tmp); | 
| 1525 | 0 |     V[i * 2 + 1] = Hi_32(tmp); | 
| 1526 | 0 |   } | 
| 1527 | 0 | 
 | 
| 1528 | 0 |   // initialize the quotient and remainder | 
| 1529 | 0 |   memset(Q, 0, (m+n) * sizeof(uint32_t)); | 
| 1530 | 0 |   if (Remainder) | 
| 1531 | 0 |     memset(R, 0, n * sizeof(uint32_t)); | 
| 1532 | 0 | 
 | 
| 1533 | 0 |   // Now, adjust m and n for the Knuth division. n is the number of words in | 
| 1534 | 0 |   // the divisor. m is the number of words by which the dividend exceeds the | 
| 1535 | 0 |   // divisor (i.e. m+n is the length of the dividend). These sizes must not | 
| 1536 | 0 |   // contain any zero words or the Knuth algorithm fails. | 
| 1537 | 0 |   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | 
| 1538 | 0 |     n--; | 
| 1539 | 0 |     m++; | 
| 1540 | 0 |   } | 
| 1541 | 0 |   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | 
| 1542 | 0 |     m--; | 
| 1543 | 0 | 
 | 
| 1544 | 0 |   // If we're left with only a single word for the divisor, Knuth doesn't work | 
| 1545 | 0 |   // so we implement the short division algorithm here. This is much simpler | 
| 1546 | 0 |   // and faster because we are certain that we can divide a 64-bit quantity | 
| 1547 | 0 |   // by a 32-bit quantity at hardware speed and short division is simply a | 
| 1548 | 0 |   // series of such operations. This is just like doing short division but we | 
| 1549 | 0 |   // are using base 2^32 instead of base 10. | 
| 1550 | 0 |   assert(n != 0 && "Divide by zero?"); | 
| 1551 | 0 |   if (n == 1) { | 
| 1552 | 0 |     uint32_t divisor = V[0]; | 
| 1553 | 0 |     uint32_t remainder = 0; | 
| 1554 | 0 |     for (int i = m; i >= 0; i--) { | 
| 1555 | 0 |       uint64_t partial_dividend = Make_64(remainder, U[i]); | 
| 1556 | 0 |       if (partial_dividend == 0) { | 
| 1557 | 0 |         Q[i] = 0; | 
| 1558 | 0 |         remainder = 0; | 
| 1559 | 0 |       } else if (partial_dividend < divisor) { | 
| 1560 | 0 |         Q[i] = 0; | 
| 1561 | 0 |         remainder = Lo_32(partial_dividend); | 
| 1562 | 0 |       } else if (partial_dividend == divisor) { | 
| 1563 | 0 |         Q[i] = 1; | 
| 1564 | 0 |         remainder = 0; | 
| 1565 | 0 |       } else { | 
| 1566 | 0 |         Q[i] = Lo_32(partial_dividend / divisor); | 
| 1567 | 0 |         remainder = Lo_32(partial_dividend - (Q[i] * divisor)); | 
| 1568 | 0 |       } | 
| 1569 | 0 |     } | 
| 1570 | 0 |     if (R) | 
| 1571 | 0 |       R[0] = remainder; | 
| 1572 | 0 |   } else { | 
| 1573 | 0 |     // Now we're ready to invoke the Knuth classical divide algorithm. In this | 
| 1574 | 0 |     // case n > 1. | 
| 1575 | 0 |     KnuthDiv(U, V, Q, R, m, n); | 
| 1576 | 0 |   } | 
| 1577 | 0 | 
 | 
| 1578 | 0 |   // If the caller wants the quotient | 
| 1579 | 0 |   if (Quotient) { | 
| 1580 | 0 |     for (unsigned i = 0; i < lhsWords; ++i) | 
| 1581 | 0 |       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); | 
| 1582 | 0 |   } | 
| 1583 | 0 | 
 | 
| 1584 | 0 |   // If the caller wants the remainder | 
| 1585 | 0 |   if (Remainder) { | 
| 1586 | 0 |     for (unsigned i = 0; i < rhsWords; ++i) | 
| 1587 | 0 |       Remainder[i] = Make_64(R[i*2+1], R[i*2]); | 
| 1588 | 0 |   } | 
| 1589 | 0 | 
 | 
| 1590 | 0 |   // Clean up the memory we allocated. | 
| 1591 | 0 |   if (U != &SPACE[0]) { | 
| 1592 | 0 |     delete [] U; | 
| 1593 | 0 |     delete [] V; | 
| 1594 | 0 |     delete [] Q; | 
| 1595 | 0 |     delete [] R; | 
| 1596 | 0 |   } | 
| 1597 | 0 | } | 
| 1598 |  |  | 
| 1599 | 0 | APInt APInt::udiv(const APInt &RHS) const { | 
| 1600 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 1601 | 0 | 
 | 
| 1602 | 0 |   // First, deal with the easy case | 
| 1603 | 0 |   if (isSingleWord()) { | 
| 1604 | 0 |     assert(RHS.U.VAL != 0 && "Divide by zero?"); | 
| 1605 | 0 |     return APInt(BitWidth, U.VAL / RHS.U.VAL); | 
| 1606 | 0 |   } | 
| 1607 | 0 |  | 
| 1608 | 0 |   // Get some facts about the LHS and RHS number of bits and words | 
| 1609 | 0 |   unsigned lhsWords = getNumWords(getActiveBits()); | 
| 1610 | 0 |   unsigned rhsBits  = RHS.getActiveBits(); | 
| 1611 | 0 |   unsigned rhsWords = getNumWords(rhsBits); | 
| 1612 | 0 |   assert(rhsWords && "Divided by zero???"); | 
| 1613 | 0 | 
 | 
| 1614 | 0 |   // Deal with some degenerate cases | 
| 1615 | 0 |   if (!lhsWords) | 
| 1616 | 0 |     // 0 / X ===> 0 | 
| 1617 | 0 |     return APInt(BitWidth, 0); | 
| 1618 | 0 |   if (rhsBits == 1) | 
| 1619 | 0 |     // X / 1 ===> X | 
| 1620 | 0 |     return *this; | 
| 1621 | 0 |   if (lhsWords < rhsWords || this->ult(RHS)) | 
| 1622 | 0 |     // X / Y ===> 0, iff X < Y | 
| 1623 | 0 |     return APInt(BitWidth, 0); | 
| 1624 | 0 |   if (*this == RHS) | 
| 1625 | 0 |     // X / X ===> 1 | 
| 1626 | 0 |     return APInt(BitWidth, 1); | 
| 1627 | 0 |   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | 
| 1628 | 0 |     // All high words are zero, just use native divide | 
| 1629 | 0 |     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); | 
| 1630 | 0 |  | 
| 1631 | 0 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
| 1632 | 0 |   APInt Quotient(BitWidth, 0); // to hold result. | 
| 1633 | 0 |   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); | 
| 1634 | 0 |   return Quotient; | 
| 1635 | 0 | } | 
| 1636 |  |  | 
| 1637 | 0 | APInt APInt::udiv(uint64_t RHS) const { | 
| 1638 | 0 |   assert(RHS != 0 && "Divide by zero?"); | 
| 1639 | 0 | 
 | 
| 1640 | 0 |   // First, deal with the easy case | 
| 1641 | 0 |   if (isSingleWord()) | 
| 1642 | 0 |     return APInt(BitWidth, U.VAL / RHS); | 
| 1643 | 0 |  | 
| 1644 | 0 |   // Get some facts about the LHS words. | 
| 1645 | 0 |   unsigned lhsWords = getNumWords(getActiveBits()); | 
| 1646 | 0 | 
 | 
| 1647 | 0 |   // Deal with some degenerate cases | 
| 1648 | 0 |   if (!lhsWords) | 
| 1649 | 0 |     // 0 / X ===> 0 | 
| 1650 | 0 |     return APInt(BitWidth, 0); | 
| 1651 | 0 |   if (RHS == 1) | 
| 1652 | 0 |     // X / 1 ===> X | 
| 1653 | 0 |     return *this; | 
| 1654 | 0 |   if (this->ult(RHS)) | 
| 1655 | 0 |     // X / Y ===> 0, iff X < Y | 
| 1656 | 0 |     return APInt(BitWidth, 0); | 
| 1657 | 0 |   if (*this == RHS) | 
| 1658 | 0 |     // X / X ===> 1 | 
| 1659 | 0 |     return APInt(BitWidth, 1); | 
| 1660 | 0 |   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | 
| 1661 | 0 |     // All high words are zero, just use native divide | 
| 1662 | 0 |     return APInt(BitWidth, this->U.pVal[0] / RHS); | 
| 1663 | 0 |  | 
| 1664 | 0 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
| 1665 | 0 |   APInt Quotient(BitWidth, 0); // to hold result. | 
| 1666 | 0 |   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); | 
| 1667 | 0 |   return Quotient; | 
| 1668 | 0 | } | 
| 1669 |  |  | 
| 1670 | 0 | APInt APInt::sdiv(const APInt &RHS) const { | 
| 1671 | 0 |   if (isNegative()) { | 
| 1672 | 0 |     if (RHS.isNegative()) | 
| 1673 | 0 |       return (-(*this)).udiv(-RHS); | 
| 1674 | 0 |     return -((-(*this)).udiv(RHS)); | 
| 1675 | 0 |   } | 
| 1676 | 0 |   if (RHS.isNegative()) | 
| 1677 | 0 |     return -(this->udiv(-RHS)); | 
| 1678 | 0 |   return this->udiv(RHS); | 
| 1679 | 0 | } | 
| 1680 |  |  | 
| 1681 | 0 | APInt APInt::sdiv(int64_t RHS) const { | 
| 1682 | 0 |   if (isNegative()) { | 
| 1683 | 0 |     if (RHS < 0) | 
| 1684 | 0 |       return (-(*this)).udiv(-RHS); | 
| 1685 | 0 |     return -((-(*this)).udiv(RHS)); | 
| 1686 | 0 |   } | 
| 1687 | 0 |   if (RHS < 0) | 
| 1688 | 0 |     return -(this->udiv(-RHS)); | 
| 1689 | 0 |   return this->udiv(RHS); | 
| 1690 | 0 | } | 
| 1691 |  |  | 
| 1692 | 0 | APInt APInt::urem(const APInt &RHS) const { | 
| 1693 | 0 |   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 1694 | 0 |   if (isSingleWord()) { | 
| 1695 | 0 |     assert(RHS.U.VAL != 0 && "Remainder by zero?"); | 
| 1696 | 0 |     return APInt(BitWidth, U.VAL % RHS.U.VAL); | 
| 1697 | 0 |   } | 
| 1698 | 0 |  | 
| 1699 | 0 |   // Get some facts about the LHS | 
| 1700 | 0 |   unsigned lhsWords = getNumWords(getActiveBits()); | 
| 1701 | 0 | 
 | 
| 1702 | 0 |   // Get some facts about the RHS | 
| 1703 | 0 |   unsigned rhsBits = RHS.getActiveBits(); | 
| 1704 | 0 |   unsigned rhsWords = getNumWords(rhsBits); | 
| 1705 | 0 |   assert(rhsWords && "Performing remainder operation by zero ???"); | 
| 1706 | 0 | 
 | 
| 1707 | 0 |   // Check the degenerate cases | 
| 1708 | 0 |   if (lhsWords == 0) | 
| 1709 | 0 |     // 0 % Y ===> 0 | 
| 1710 | 0 |     return APInt(BitWidth, 0); | 
| 1711 | 0 |   if (rhsBits == 1) | 
| 1712 | 0 |     // X % 1 ===> 0 | 
| 1713 | 0 |     return APInt(BitWidth, 0); | 
| 1714 | 0 |   if (lhsWords < rhsWords || this->ult(RHS)) | 
| 1715 | 0 |     // X % Y ===> X, iff X < Y | 
| 1716 | 0 |     return *this; | 
| 1717 | 0 |   if (*this == RHS) | 
| 1718 | 0 |     // X % X == 0; | 
| 1719 | 0 |     return APInt(BitWidth, 0); | 
| 1720 | 0 |   if (lhsWords == 1) | 
| 1721 | 0 |     // All high words are zero, just use native remainder | 
| 1722 | 0 |     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); | 
| 1723 | 0 |  | 
| 1724 | 0 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
| 1725 | 0 |   APInt Remainder(BitWidth, 0); | 
| 1726 | 0 |   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); | 
| 1727 | 0 |   return Remainder; | 
| 1728 | 0 | } | 
| 1729 |  |  | 
| 1730 | 0 | uint64_t APInt::urem(uint64_t RHS) const { | 
| 1731 | 0 |   assert(RHS != 0 && "Remainder by zero?"); | 
| 1732 | 0 | 
 | 
| 1733 | 0 |   if (isSingleWord()) | 
| 1734 | 0 |     return U.VAL % RHS; | 
| 1735 | 0 |  | 
| 1736 | 0 |   // Get some facts about the LHS | 
| 1737 | 0 |   unsigned lhsWords = getNumWords(getActiveBits()); | 
| 1738 | 0 | 
 | 
| 1739 | 0 |   // Check the degenerate cases | 
| 1740 | 0 |   if (lhsWords == 0) | 
| 1741 | 0 |     // 0 % Y ===> 0 | 
| 1742 | 0 |     return 0; | 
| 1743 | 0 |   if (RHS == 1) | 
| 1744 | 0 |     // X % 1 ===> 0 | 
| 1745 | 0 |     return 0; | 
| 1746 | 0 |   if (this->ult(RHS)) | 
| 1747 | 0 |     // X % Y ===> X, iff X < Y | 
| 1748 | 0 |     return getZExtValue(); | 
| 1749 | 0 |   if (*this == RHS) | 
| 1750 | 0 |     // X % X == 0; | 
| 1751 | 0 |     return 0; | 
| 1752 | 0 |   if (lhsWords == 1) | 
| 1753 | 0 |     // All high words are zero, just use native remainder | 
| 1754 | 0 |     return U.pVal[0] % RHS; | 
| 1755 | 0 |  | 
| 1756 | 0 |   // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
| 1757 | 0 |   uint64_t Remainder; | 
| 1758 | 0 |   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); | 
| 1759 | 0 |   return Remainder; | 
| 1760 | 0 | } | 
| 1761 |  |  | 
| 1762 | 0 | APInt APInt::srem(const APInt &RHS) const { | 
| 1763 | 0 |   if (isNegative()) { | 
| 1764 | 0 |     if (RHS.isNegative()) | 
| 1765 | 0 |       return -((-(*this)).urem(-RHS)); | 
| 1766 | 0 |     return -((-(*this)).urem(RHS)); | 
| 1767 | 0 |   } | 
| 1768 | 0 |   if (RHS.isNegative()) | 
| 1769 | 0 |     return this->urem(-RHS); | 
| 1770 | 0 |   return this->urem(RHS); | 
| 1771 | 0 | } | 
| 1772 |  |  | 
| 1773 | 0 | int64_t APInt::srem(int64_t RHS) const { | 
| 1774 | 0 |   if (isNegative()) { | 
| 1775 | 0 |     if (RHS < 0) | 
| 1776 | 0 |       return -((-(*this)).urem(-RHS)); | 
| 1777 | 0 |     return -((-(*this)).urem(RHS)); | 
| 1778 | 0 |   } | 
| 1779 | 0 |   if (RHS < 0) | 
| 1780 | 0 |     return this->urem(-RHS); | 
| 1781 | 0 |   return this->urem(RHS); | 
| 1782 | 0 | } | 
| 1783 |  |  | 
| 1784 |  | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | 
| 1785 | 0 |                     APInt &Quotient, APInt &Remainder) { | 
| 1786 | 0 |   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 1787 | 0 |   unsigned BitWidth = LHS.BitWidth; | 
| 1788 | 0 | 
 | 
| 1789 | 0 |   // First, deal with the easy case | 
| 1790 | 0 |   if (LHS.isSingleWord()) { | 
| 1791 | 0 |     assert(RHS.U.VAL != 0 && "Divide by zero?"); | 
| 1792 | 0 |     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; | 
| 1793 | 0 |     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; | 
| 1794 | 0 |     Quotient = APInt(BitWidth, QuotVal); | 
| 1795 | 0 |     Remainder = APInt(BitWidth, RemVal); | 
| 1796 | 0 |     return; | 
| 1797 | 0 |   } | 
| 1798 | 0 |  | 
| 1799 | 0 |   // Get some size facts about the dividend and divisor | 
| 1800 | 0 |   unsigned lhsWords = getNumWords(LHS.getActiveBits()); | 
| 1801 | 0 |   unsigned rhsBits  = RHS.getActiveBits(); | 
| 1802 | 0 |   unsigned rhsWords = getNumWords(rhsBits); | 
| 1803 | 0 |   assert(rhsWords && "Performing divrem operation by zero ???"); | 
| 1804 | 0 | 
 | 
| 1805 | 0 |   // Check the degenerate cases | 
| 1806 | 0 |   if (lhsWords == 0) { | 
| 1807 | 0 |     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0 | 
| 1808 | 0 |     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0 | 
| 1809 | 0 |     return; | 
| 1810 | 0 |   } | 
| 1811 | 0 |  | 
| 1812 | 0 |   if (rhsBits == 1) { | 
| 1813 | 0 |     Quotient = LHS;                   // X / 1 ===> X | 
| 1814 | 0 |     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0 | 
| 1815 | 0 |   } | 
| 1816 | 0 | 
 | 
| 1817 | 0 |   if (lhsWords < rhsWords || LHS.ult(RHS)) { | 
| 1818 | 0 |     Remainder = LHS;                  // X % Y ===> X, iff X < Y | 
| 1819 | 0 |     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y | 
| 1820 | 0 |     return; | 
| 1821 | 0 |   } | 
| 1822 | 0 |  | 
| 1823 | 0 |   if (LHS == RHS) { | 
| 1824 | 0 |     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1 | 
| 1825 | 0 |     Remainder = APInt(BitWidth, 0);   // X % X ===> 0; | 
| 1826 | 0 |     return; | 
| 1827 | 0 |   } | 
| 1828 | 0 |  | 
| 1829 | 0 |   // Make sure there is enough space to hold the results. | 
| 1830 | 0 |   // NOTE: This assumes that reallocate won't affect any bits if it doesn't | 
| 1831 | 0 |   // change the size. This is necessary if Quotient or Remainder is aliased | 
| 1832 | 0 |   // with LHS or RHS. | 
| 1833 | 0 |   Quotient.reallocate(BitWidth); | 
| 1834 | 0 |   Remainder.reallocate(BitWidth); | 
| 1835 | 0 | 
 | 
| 1836 | 0 |   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | 
| 1837 | 0 |     // There is only one word to consider so use the native versions. | 
| 1838 | 0 |     uint64_t lhsValue = LHS.U.pVal[0]; | 
| 1839 | 0 |     uint64_t rhsValue = RHS.U.pVal[0]; | 
| 1840 | 0 |     Quotient = lhsValue / rhsValue; | 
| 1841 | 0 |     Remainder = lhsValue % rhsValue; | 
| 1842 | 0 |     return; | 
| 1843 | 0 |   } | 
| 1844 | 0 |  | 
| 1845 | 0 |   // Okay, lets do it the long way | 
| 1846 | 0 |   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, | 
| 1847 | 0 |          Remainder.U.pVal); | 
| 1848 | 0 |   // Clear the rest of the Quotient and Remainder. | 
| 1849 | 0 |   std::memset(Quotient.U.pVal + lhsWords, 0, | 
| 1850 | 0 |               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | 
| 1851 | 0 |   std::memset(Remainder.U.pVal + rhsWords, 0, | 
| 1852 | 0 |               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); | 
| 1853 | 0 | } | 
| 1854 |  |  | 
| 1855 |  | void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | 
| 1856 | 0 |                     uint64_t &Remainder) { | 
| 1857 | 0 |   assert(RHS != 0 && "Divide by zero?"); | 
| 1858 | 0 |   unsigned BitWidth = LHS.BitWidth; | 
| 1859 | 0 | 
 | 
| 1860 | 0 |   // First, deal with the easy case | 
| 1861 | 0 |   if (LHS.isSingleWord()) { | 
| 1862 | 0 |     uint64_t QuotVal = LHS.U.VAL / RHS; | 
| 1863 | 0 |     Remainder = LHS.U.VAL % RHS; | 
| 1864 | 0 |     Quotient = APInt(BitWidth, QuotVal); | 
| 1865 | 0 |     return; | 
| 1866 | 0 |   } | 
| 1867 | 0 |  | 
| 1868 | 0 |   // Get some size facts about the dividend and divisor | 
| 1869 | 0 |   unsigned lhsWords = getNumWords(LHS.getActiveBits()); | 
| 1870 | 0 | 
 | 
| 1871 | 0 |   // Check the degenerate cases | 
| 1872 | 0 |   if (lhsWords == 0) { | 
| 1873 | 0 |     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0 | 
| 1874 | 0 |     Remainder = 0;                    // 0 % Y ===> 0 | 
| 1875 | 0 |     return; | 
| 1876 | 0 |   } | 
| 1877 | 0 |  | 
| 1878 | 0 |   if (RHS == 1) { | 
| 1879 | 0 |     Quotient = LHS;                   // X / 1 ===> X | 
| 1880 | 0 |     Remainder = 0;                    // X % 1 ===> 0 | 
| 1881 | 0 |     return; | 
| 1882 | 0 |   } | 
| 1883 | 0 |  | 
| 1884 | 0 |   if (LHS.ult(RHS)) { | 
| 1885 | 0 |     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y | 
| 1886 | 0 |     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y | 
| 1887 | 0 |     return; | 
| 1888 | 0 |   } | 
| 1889 | 0 |  | 
| 1890 | 0 |   if (LHS == RHS) { | 
| 1891 | 0 |     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1 | 
| 1892 | 0 |     Remainder = 0;                    // X % X ===> 0; | 
| 1893 | 0 |     return; | 
| 1894 | 0 |   } | 
| 1895 | 0 |  | 
| 1896 | 0 |   // Make sure there is enough space to hold the results. | 
| 1897 | 0 |   // NOTE: This assumes that reallocate won't affect any bits if it doesn't | 
| 1898 | 0 |   // change the size. This is necessary if Quotient is aliased with LHS. | 
| 1899 | 0 |   Quotient.reallocate(BitWidth); | 
| 1900 | 0 | 
 | 
| 1901 | 0 |   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | 
| 1902 | 0 |     // There is only one word to consider so use the native versions. | 
| 1903 | 0 |     uint64_t lhsValue = LHS.U.pVal[0]; | 
| 1904 | 0 |     Quotient = lhsValue / RHS; | 
| 1905 | 0 |     Remainder = lhsValue % RHS; | 
| 1906 | 0 |     return; | 
| 1907 | 0 |   } | 
| 1908 | 0 |  | 
| 1909 | 0 |   // Okay, lets do it the long way | 
| 1910 | 0 |   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); | 
| 1911 | 0 |   // Clear the rest of the Quotient. | 
| 1912 | 0 |   std::memset(Quotient.U.pVal + lhsWords, 0, | 
| 1913 | 0 |               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | 
| 1914 | 0 | } | 
| 1915 |  |  | 
| 1916 |  | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | 
| 1917 | 0 |                     APInt &Quotient, APInt &Remainder) { | 
| 1918 | 0 |   if (LHS.isNegative()) { | 
| 1919 | 0 |     if (RHS.isNegative()) | 
| 1920 | 0 |       APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | 
| 1921 | 0 |     else { | 
| 1922 | 0 |       APInt::udivrem(-LHS, RHS, Quotient, Remainder); | 
| 1923 | 0 |       Quotient.negate(); | 
| 1924 | 0 |     } | 
| 1925 | 0 |     Remainder.negate(); | 
| 1926 | 0 |   } else if (RHS.isNegative()) { | 
| 1927 | 0 |     APInt::udivrem(LHS, -RHS, Quotient, Remainder); | 
| 1928 | 0 |     Quotient.negate(); | 
| 1929 | 0 |   } else { | 
| 1930 | 0 |     APInt::udivrem(LHS, RHS, Quotient, Remainder); | 
| 1931 | 0 |   } | 
| 1932 | 0 | } | 
| 1933 |  |  | 
| 1934 |  | void APInt::sdivrem(const APInt &LHS, int64_t RHS, | 
| 1935 | 0 |                     APInt &Quotient, int64_t &Remainder) { | 
| 1936 | 0 |   uint64_t R = Remainder; | 
| 1937 | 0 |   if (LHS.isNegative()) { | 
| 1938 | 0 |     if (RHS < 0) | 
| 1939 | 0 |       APInt::udivrem(-LHS, -RHS, Quotient, R); | 
| 1940 | 0 |     else { | 
| 1941 | 0 |       APInt::udivrem(-LHS, RHS, Quotient, R); | 
| 1942 | 0 |       Quotient.negate(); | 
| 1943 | 0 |     } | 
| 1944 | 0 |     R = -R; | 
| 1945 | 0 |   } else if (RHS < 0) { | 
| 1946 | 0 |     APInt::udivrem(LHS, -RHS, Quotient, R); | 
| 1947 | 0 |     Quotient.negate(); | 
| 1948 | 0 |   } else { | 
| 1949 | 0 |     APInt::udivrem(LHS, RHS, Quotient, R); | 
| 1950 | 0 |   } | 
| 1951 | 0 |   Remainder = R; | 
| 1952 | 0 | } | 
| 1953 |  |  | 
| 1954 | 0 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | 
| 1955 | 0 |   APInt Res = *this+RHS; | 
| 1956 | 0 |   Overflow = isNonNegative() == RHS.isNonNegative() && | 
| 1957 | 0 |              Res.isNonNegative() != isNonNegative(); | 
| 1958 | 0 |   return Res; | 
| 1959 | 0 | } | 
| 1960 |  |  | 
| 1961 | 0 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | 
| 1962 | 0 |   APInt Res = *this+RHS; | 
| 1963 | 0 |   Overflow = Res.ult(RHS); | 
| 1964 | 0 |   return Res; | 
| 1965 | 0 | } | 
| 1966 |  |  | 
| 1967 | 0 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | 
| 1968 | 0 |   APInt Res = *this - RHS; | 
| 1969 | 0 |   Overflow = isNonNegative() != RHS.isNonNegative() && | 
| 1970 | 0 |              Res.isNonNegative() != isNonNegative(); | 
| 1971 | 0 |   return Res; | 
| 1972 | 0 | } | 
| 1973 |  |  | 
| 1974 | 0 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | 
| 1975 | 0 |   APInt Res = *this-RHS; | 
| 1976 | 0 |   Overflow = Res.ugt(*this); | 
| 1977 | 0 |   return Res; | 
| 1978 | 0 | } | 
| 1979 |  |  | 
| 1980 | 0 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | 
| 1981 | 0 |   // MININT/-1  -->  overflow. | 
| 1982 | 0 |   Overflow = isMinSignedValue() && RHS.isAllOnesValue(); | 
| 1983 | 0 |   return sdiv(RHS); | 
| 1984 | 0 | } | 
| 1985 |  |  | 
| 1986 | 0 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | 
| 1987 | 0 |   APInt Res = *this * RHS; | 
| 1988 | 0 | 
 | 
| 1989 | 0 |   if (*this != 0 && RHS != 0) | 
| 1990 | 0 |     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; | 
| 1991 | 0 |   else | 
| 1992 | 0 |     Overflow = false; | 
| 1993 | 0 |   return Res; | 
| 1994 | 0 | } | 
| 1995 |  |  | 
| 1996 | 0 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | 
| 1997 | 0 |   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { | 
| 1998 | 0 |     Overflow = true; | 
| 1999 | 0 |     return *this * RHS; | 
| 2000 | 0 |   } | 
| 2001 | 0 |  | 
| 2002 | 0 |   APInt Res = lshr(1) * RHS; | 
| 2003 | 0 |   Overflow = Res.isNegative(); | 
| 2004 | 0 |   Res <<= 1; | 
| 2005 | 0 |   if ((*this)[0]) { | 
| 2006 | 0 |     Res += RHS; | 
| 2007 | 0 |     if (Res.ult(RHS)) | 
| 2008 | 0 |       Overflow = true; | 
| 2009 | 0 |   } | 
| 2010 | 0 |   return Res; | 
| 2011 | 0 | } | 
| 2012 |  |  | 
| 2013 | 0 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | 
| 2014 | 0 |   Overflow = ShAmt.uge(getBitWidth()); | 
| 2015 | 0 |   if (Overflow) | 
| 2016 | 0 |     return APInt(BitWidth, 0); | 
| 2017 | 0 |  | 
| 2018 | 0 |   if (isNonNegative()) // Don't allow sign change. | 
| 2019 | 0 |     Overflow = ShAmt.uge(countLeadingZeros()); | 
| 2020 | 0 |   else | 
| 2021 | 0 |     Overflow = ShAmt.uge(countLeadingOnes()); | 
| 2022 | 0 | 
 | 
| 2023 | 0 |   return *this << ShAmt; | 
| 2024 | 0 | } | 
| 2025 |  |  | 
| 2026 | 0 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | 
| 2027 | 0 |   Overflow = ShAmt.uge(getBitWidth()); | 
| 2028 | 0 |   if (Overflow) | 
| 2029 | 0 |     return APInt(BitWidth, 0); | 
| 2030 | 0 |  | 
| 2031 | 0 |   Overflow = ShAmt.ugt(countLeadingZeros()); | 
| 2032 | 0 | 
 | 
| 2033 | 0 |   return *this << ShAmt; | 
| 2034 | 0 | } | 
| 2035 |  |  | 
| 2036 | 0 | APInt APInt::sadd_sat(const APInt &RHS) const { | 
| 2037 | 0 |   bool Overflow; | 
| 2038 | 0 |   APInt Res = sadd_ov(RHS, Overflow); | 
| 2039 | 0 |   if (!Overflow) | 
| 2040 | 0 |     return Res; | 
| 2041 | 0 |  | 
| 2042 | 0 |   return isNegative() ? APInt::getSignedMinValue(BitWidth) | 
| 2043 | 0 |                       : APInt::getSignedMaxValue(BitWidth); | 
| 2044 | 0 | } | 
| 2045 |  |  | 
| 2046 | 0 | APInt APInt::uadd_sat(const APInt &RHS) const { | 
| 2047 | 0 |   bool Overflow; | 
| 2048 | 0 |   APInt Res = uadd_ov(RHS, Overflow); | 
| 2049 | 0 |   if (!Overflow) | 
| 2050 | 0 |     return Res; | 
| 2051 | 0 |  | 
| 2052 | 0 |   return APInt::getMaxValue(BitWidth); | 
| 2053 | 0 | } | 
| 2054 |  |  | 
| 2055 | 0 | APInt APInt::ssub_sat(const APInt &RHS) const { | 
| 2056 | 0 |   bool Overflow; | 
| 2057 | 0 |   APInt Res = ssub_ov(RHS, Overflow); | 
| 2058 | 0 |   if (!Overflow) | 
| 2059 | 0 |     return Res; | 
| 2060 | 0 |  | 
| 2061 | 0 |   return isNegative() ? APInt::getSignedMinValue(BitWidth) | 
| 2062 | 0 |                       : APInt::getSignedMaxValue(BitWidth); | 
| 2063 | 0 | } | 
| 2064 |  |  | 
| 2065 | 0 | APInt APInt::usub_sat(const APInt &RHS) const { | 
| 2066 | 0 |   bool Overflow; | 
| 2067 | 0 |   APInt Res = usub_ov(RHS, Overflow); | 
| 2068 | 0 |   if (!Overflow) | 
| 2069 | 0 |     return Res; | 
| 2070 | 0 |  | 
| 2071 | 0 |   return APInt(BitWidth, 0); | 
| 2072 | 0 | } | 
| 2073 |  |  | 
| 2074 | 0 | APInt APInt::smul_sat(const APInt &RHS) const { | 
| 2075 | 0 |   bool Overflow; | 
| 2076 | 0 |   APInt Res = smul_ov(RHS, Overflow); | 
| 2077 | 0 |   if (!Overflow) | 
| 2078 | 0 |     return Res; | 
| 2079 | 0 |  | 
| 2080 | 0 |   // The result is negative if one and only one of inputs is negative. | 
| 2081 | 0 |   bool ResIsNegative = isNegative() ^ RHS.isNegative(); | 
| 2082 | 0 | 
 | 
| 2083 | 0 |   return ResIsNegative ? APInt::getSignedMinValue(BitWidth) | 
| 2084 | 0 |                        : APInt::getSignedMaxValue(BitWidth); | 
| 2085 | 0 | } | 
| 2086 |  |  | 
| 2087 | 0 | APInt APInt::umul_sat(const APInt &RHS) const { | 
| 2088 | 0 |   bool Overflow; | 
| 2089 | 0 |   APInt Res = umul_ov(RHS, Overflow); | 
| 2090 | 0 |   if (!Overflow) | 
| 2091 | 0 |     return Res; | 
| 2092 | 0 |  | 
| 2093 | 0 |   return APInt::getMaxValue(BitWidth); | 
| 2094 | 0 | } | 
| 2095 |  |  | 
| 2096 | 0 | APInt APInt::sshl_sat(const APInt &RHS) const { | 
| 2097 | 0 |   bool Overflow; | 
| 2098 | 0 |   APInt Res = sshl_ov(RHS, Overflow); | 
| 2099 | 0 |   if (!Overflow) | 
| 2100 | 0 |     return Res; | 
| 2101 | 0 |  | 
| 2102 | 0 |   return isNegative() ? APInt::getSignedMinValue(BitWidth) | 
| 2103 | 0 |                       : APInt::getSignedMaxValue(BitWidth); | 
| 2104 | 0 | } | 
| 2105 |  |  | 
| 2106 | 0 | APInt APInt::ushl_sat(const APInt &RHS) const { | 
| 2107 | 0 |   bool Overflow; | 
| 2108 | 0 |   APInt Res = ushl_ov(RHS, Overflow); | 
| 2109 | 0 |   if (!Overflow) | 
| 2110 | 0 |     return Res; | 
| 2111 | 0 |  | 
| 2112 | 0 |   return APInt::getMaxValue(BitWidth); | 
| 2113 | 0 | } | 
| 2114 |  |  | 
| 2115 | 0 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | 
| 2116 | 0 |   // Check our assumptions here | 
| 2117 | 0 |   assert(!str.empty() && "Invalid string length"); | 
| 2118 | 0 |   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
| 2119 | 0 |           radix == 36) && | 
| 2120 | 0 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
| 2121 | 0 | 
 | 
| 2122 | 0 |   StringRef::iterator p = str.begin(); | 
| 2123 | 0 |   size_t slen = str.size(); | 
| 2124 | 0 |   bool isNeg = *p == '-'; | 
| 2125 | 0 |   if (*p == '-' || *p == '+') { | 
| 2126 | 0 |     p++; | 
| 2127 | 0 |     slen--; | 
| 2128 | 0 |     assert(slen && "String is only a sign, needs a value."); | 
| 2129 | 0 |   } | 
| 2130 | 0 |   assert((slen <= numbits || radix != 2) && "Insufficient bit width"); | 
| 2131 | 0 |   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); | 
| 2132 | 0 |   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); | 
| 2133 | 0 |   assert((((slen-1)*64)/22 <= numbits || radix != 10) && | 
| 2134 | 0 |          "Insufficient bit width"); | 
| 2135 | 0 | 
 | 
| 2136 | 0 |   // Allocate memory if needed | 
| 2137 | 0 |   if (isSingleWord()) | 
| 2138 | 0 |     U.VAL = 0; | 
| 2139 | 0 |   else | 
| 2140 | 0 |     U.pVal = getClearedMemory(getNumWords()); | 
| 2141 | 0 | 
 | 
| 2142 | 0 |   // Figure out if we can shift instead of multiply | 
| 2143 | 0 |   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | 
| 2144 | 0 | 
 | 
| 2145 | 0 |   // Enter digit traversal loop | 
| 2146 | 0 |   for (StringRef::iterator e = str.end(); p != e; ++p) { | 
| 2147 | 0 |     unsigned digit = getDigit(*p, radix); | 
| 2148 | 0 |     assert(digit < radix && "Invalid character in digit string"); | 
| 2149 | 0 | 
 | 
| 2150 | 0 |     // Shift or multiply the value by the radix | 
| 2151 | 0 |     if (slen > 1) { | 
| 2152 | 0 |       if (shift) | 
| 2153 | 0 |         *this <<= shift; | 
| 2154 | 0 |       else | 
| 2155 | 0 |         *this *= radix; | 
| 2156 | 0 |     } | 
| 2157 | 0 | 
 | 
| 2158 | 0 |     // Add in the digit we just interpreted | 
| 2159 | 0 |     *this += digit; | 
| 2160 | 0 |   } | 
| 2161 | 0 |   // If its negative, put it in two's complement form | 
| 2162 | 0 |   if (isNeg) | 
| 2163 | 0 |     this->negate(); | 
| 2164 | 0 | } | 
| 2165 |  |  | 
| 2166 |  | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | 
| 2167 | 0 |                      bool Signed, bool formatAsCLiteral) const { | 
| 2168 | 0 |   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || | 
| 2169 | 0 |           Radix == 36) && | 
| 2170 | 0 |          "Radix should be 2, 8, 10, 16, or 36!"); | 
| 2171 | 0 | 
 | 
| 2172 | 0 |   const char *Prefix = ""; | 
| 2173 | 0 |   if (formatAsCLiteral) { | 
| 2174 | 0 |     switch (Radix) { | 
| 2175 | 0 |       case 2: | 
| 2176 | 0 |         // Binary literals are a non-standard extension added in gcc 4.3: | 
| 2177 | 0 |         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | 
| 2178 | 0 |         Prefix = "0b"; | 
| 2179 | 0 |         break; | 
| 2180 | 0 |       case 8: | 
| 2181 | 0 |         Prefix = "0"; | 
| 2182 | 0 |         break; | 
| 2183 | 0 |       case 10: | 
| 2184 | 0 |         break; // No prefix | 
| 2185 | 0 |       case 16: | 
| 2186 | 0 |         Prefix = "0x"; | 
| 2187 | 0 |         break; | 
| 2188 | 0 |       default: | 
| 2189 | 0 |         llvm_unreachable("Invalid radix!"); | 
| 2190 | 0 |     } | 
| 2191 | 0 |   } | 
| 2192 | 0 |  | 
| 2193 | 0 |   // First, check for a zero value and just short circuit the logic below. | 
| 2194 | 0 |   if (*this == 0) { | 
| 2195 | 0 |     while (*Prefix) { | 
| 2196 | 0 |       Str.push_back(*Prefix); | 
| 2197 | 0 |       ++Prefix; | 
| 2198 | 0 |     }; | 
| 2199 | 0 |     Str.push_back('0'); | 
| 2200 | 0 |     return; | 
| 2201 | 0 |   } | 
| 2202 | 0 | 
 | 
| 2203 | 0 |   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | 
| 2204 | 0 | 
 | 
| 2205 | 0 |   if (isSingleWord()) { | 
| 2206 | 0 |     char Buffer[65]; | 
| 2207 | 0 |     char *BufPtr = std::end(Buffer); | 
| 2208 | 0 | 
 | 
| 2209 | 0 |     uint64_t N; | 
| 2210 | 0 |     if (!Signed) { | 
| 2211 | 0 |       N = getZExtValue(); | 
| 2212 | 0 |     } else { | 
| 2213 | 0 |       int64_t I = getSExtValue(); | 
| 2214 | 0 |       if (I >= 0) { | 
| 2215 | 0 |         N = I; | 
| 2216 | 0 |       } else { | 
| 2217 | 0 |         Str.push_back('-'); | 
| 2218 | 0 |         N = -(uint64_t)I; | 
| 2219 | 0 |       } | 
| 2220 | 0 |     } | 
| 2221 | 0 | 
 | 
| 2222 | 0 |     while (*Prefix) { | 
| 2223 | 0 |       Str.push_back(*Prefix); | 
| 2224 | 0 |       ++Prefix; | 
| 2225 | 0 |     }; | 
| 2226 | 0 | 
 | 
| 2227 | 0 |     while (N) { | 
| 2228 | 0 |       *--BufPtr = Digits[N % Radix]; | 
| 2229 | 0 |       N /= Radix; | 
| 2230 | 0 |     } | 
| 2231 | 0 |     Str.append(BufPtr, std::end(Buffer)); | 
| 2232 | 0 |     return; | 
| 2233 | 0 |   } | 
| 2234 | 0 | 
 | 
| 2235 | 0 |   APInt Tmp(*this); | 
| 2236 | 0 | 
 | 
| 2237 | 0 |   if (Signed && isNegative()) { | 
| 2238 | 0 |     // They want to print the signed version and it is a negative value | 
| 2239 | 0 |     // Flip the bits and add one to turn it into the equivalent positive | 
| 2240 | 0 |     // value and put a '-' in the result. | 
| 2241 | 0 |     Tmp.negate(); | 
| 2242 | 0 |     Str.push_back('-'); | 
| 2243 | 0 |   } | 
| 2244 | 0 | 
 | 
| 2245 | 0 |   while (*Prefix) { | 
| 2246 | 0 |     Str.push_back(*Prefix); | 
| 2247 | 0 |     ++Prefix; | 
| 2248 | 0 |   }; | 
| 2249 | 0 | 
 | 
| 2250 | 0 |   // We insert the digits backward, then reverse them to get the right order. | 
| 2251 | 0 |   unsigned StartDig = Str.size(); | 
| 2252 | 0 | 
 | 
| 2253 | 0 |   // For the 2, 8 and 16 bit cases, we can just shift instead of divide | 
| 2254 | 0 |   // because the number of bits per digit (1, 3 and 4 respectively) divides | 
| 2255 | 0 |   // equally.  We just shift until the value is zero. | 
| 2256 | 0 |   if (Radix == 2 || Radix == 8 || Radix == 16) { | 
| 2257 | 0 |     // Just shift tmp right for each digit width until it becomes zero | 
| 2258 | 0 |     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | 
| 2259 | 0 |     unsigned MaskAmt = Radix - 1; | 
| 2260 | 0 | 
 | 
| 2261 | 0 |     while (Tmp.getBoolValue()) { | 
| 2262 | 0 |       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | 
| 2263 | 0 |       Str.push_back(Digits[Digit]); | 
| 2264 | 0 |       Tmp.lshrInPlace(ShiftAmt); | 
| 2265 | 0 |     } | 
| 2266 | 0 |   } else { | 
| 2267 | 0 |     while (Tmp.getBoolValue()) { | 
| 2268 | 0 |       uint64_t Digit; | 
| 2269 | 0 |       udivrem(Tmp, Radix, Tmp, Digit); | 
| 2270 | 0 |       assert(Digit < Radix && "divide failed"); | 
| 2271 | 0 |       Str.push_back(Digits[Digit]); | 
| 2272 | 0 |     } | 
| 2273 | 0 |   } | 
| 2274 | 0 | 
 | 
| 2275 | 0 |   // Reverse the digits before returning. | 
| 2276 | 0 |   std::reverse(Str.begin()+StartDig, Str.end()); | 
| 2277 | 0 | } | 
| 2278 |  |  | 
| 2279 |  | /// Returns the APInt as a std::string. Note that this is an inefficient method. | 
| 2280 |  | /// It is better to pass in a SmallVector/SmallString to the methods above. | 
| 2281 | 0 | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { | 
| 2282 | 0 |   SmallString<40> S; | 
| 2283 | 0 |   toString(S, Radix, Signed, /* formatAsCLiteral = */false); | 
| 2284 | 0 |   return std::string(S.str()); | 
| 2285 | 0 | } | 
| 2286 |  |  | 
| 2287 |  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
| 2288 | 0 | LLVM_DUMP_METHOD void APInt::dump() const { | 
| 2289 | 0 |   SmallString<40> S, U; | 
| 2290 | 0 |   this->toStringUnsigned(U); | 
| 2291 | 0 |   this->toStringSigned(S); | 
| 2292 | 0 |   dbgs() << "APInt(" << BitWidth << "b, " | 
| 2293 | 0 |          << U << "u " << S << "s)\n"; | 
| 2294 | 0 | } | 
| 2295 |  | #endif | 
| 2296 |  |  | 
| 2297 | 0 | void APInt::print(raw_ostream &OS, bool isSigned) const { | 
| 2298 | 0 |   SmallString<40> S; | 
| 2299 | 0 |   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | 
| 2300 | 0 |   OS << S; | 
| 2301 | 0 | } | 
| 2302 |  |  | 
| 2303 |  | // This implements a variety of operations on a representation of | 
| 2304 |  | // arbitrary precision, two's-complement, bignum integer values. | 
| 2305 |  |  | 
| 2306 |  | // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe | 
| 2307 |  | // and unrestricting assumption. | 
| 2308 |  | static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, | 
| 2309 |  |               "Part width must be divisible by 2!"); | 
| 2310 |  |  | 
| 2311 |  | /* Some handy functions local to this file.  */ | 
| 2312 |  |  | 
| 2313 |  | /* Returns the integer part with the least significant BITS set. | 
| 2314 |  |    BITS cannot be zero.  */ | 
| 2315 | 0 | static inline APInt::WordType lowBitMask(unsigned bits) { | 
| 2316 | 0 |   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); | 
| 2317 | 0 | 
 | 
| 2318 | 0 |   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); | 
| 2319 | 0 | } | 
| 2320 |  |  | 
| 2321 |  | /* Returns the value of the lower half of PART.  */ | 
| 2322 | 0 | static inline APInt::WordType lowHalf(APInt::WordType part) { | 
| 2323 | 0 |   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); | 
| 2324 | 0 | } | 
| 2325 |  |  | 
| 2326 |  | /* Returns the value of the upper half of PART.  */ | 
| 2327 | 0 | static inline APInt::WordType highHalf(APInt::WordType part) { | 
| 2328 | 0 |   return part >> (APInt::APINT_BITS_PER_WORD / 2); | 
| 2329 | 0 | } | 
| 2330 |  |  | 
| 2331 |  | /* Returns the bit number of the most significant set bit of a part. | 
| 2332 |  |    If the input number has no bits set -1U is returned.  */ | 
| 2333 | 0 | static unsigned partMSB(APInt::WordType value) { | 
| 2334 | 0 |   return findLastSet(value, ZB_Max); | 
| 2335 | 0 | } | 
| 2336 |  |  | 
| 2337 |  | /* Returns the bit number of the least significant set bit of a | 
| 2338 |  |    part.  If the input number has no bits set -1U is returned.  */ | 
| 2339 | 0 | static unsigned partLSB(APInt::WordType value) { | 
| 2340 | 0 |   return findFirstSet(value, ZB_Max); | 
| 2341 | 0 | } | 
| 2342 |  |  | 
| 2343 |  | /* Sets the least significant part of a bignum to the input value, and | 
| 2344 |  |    zeroes out higher parts.  */ | 
| 2345 | 0 | void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { | 
| 2346 | 0 |   assert(parts > 0); | 
| 2347 | 0 | 
 | 
| 2348 | 0 |   dst[0] = part; | 
| 2349 | 0 |   for (unsigned i = 1; i < parts; i++) | 
| 2350 | 0 |     dst[i] = 0; | 
| 2351 | 0 | } | 
| 2352 |  |  | 
| 2353 |  | /* Assign one bignum to another.  */ | 
| 2354 | 0 | void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { | 
| 2355 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2356 | 0 |     dst[i] = src[i]; | 
| 2357 | 0 | } | 
| 2358 |  |  | 
| 2359 |  | /* Returns true if a bignum is zero, false otherwise.  */ | 
| 2360 | 0 | bool APInt::tcIsZero(const WordType *src, unsigned parts) { | 
| 2361 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2362 | 0 |     if (src[i]) | 
| 2363 | 0 |       return false; | 
| 2364 | 0 | 
 | 
| 2365 | 0 |   return true; | 
| 2366 | 0 | } | 
| 2367 |  |  | 
| 2368 |  | /* Extract the given bit of a bignum; returns 0 or 1.  */ | 
| 2369 | 0 | int APInt::tcExtractBit(const WordType *parts, unsigned bit) { | 
| 2370 | 0 |   return (parts[whichWord(bit)] & maskBit(bit)) != 0; | 
| 2371 | 0 | } | 
| 2372 |  |  | 
| 2373 |  | /* Set the given bit of a bignum. */ | 
| 2374 | 0 | void APInt::tcSetBit(WordType *parts, unsigned bit) { | 
| 2375 | 0 |   parts[whichWord(bit)] |= maskBit(bit); | 
| 2376 | 0 | } | 
| 2377 |  |  | 
| 2378 |  | /* Clears the given bit of a bignum. */ | 
| 2379 | 0 | void APInt::tcClearBit(WordType *parts, unsigned bit) { | 
| 2380 | 0 |   parts[whichWord(bit)] &= ~maskBit(bit); | 
| 2381 | 0 | } | 
| 2382 |  |  | 
| 2383 |  | /* Returns the bit number of the least significant set bit of a | 
| 2384 |  |    number.  If the input number has no bits set -1U is returned.  */ | 
| 2385 | 0 | unsigned APInt::tcLSB(const WordType *parts, unsigned n) { | 
| 2386 | 0 |   for (unsigned i = 0; i < n; i++) { | 
| 2387 | 0 |     if (parts[i] != 0) { | 
| 2388 | 0 |       unsigned lsb = partLSB(parts[i]); | 
| 2389 | 0 | 
 | 
| 2390 | 0 |       return lsb + i * APINT_BITS_PER_WORD; | 
| 2391 | 0 |     } | 
| 2392 | 0 |   } | 
| 2393 | 0 | 
 | 
| 2394 | 0 |   return -1U; | 
| 2395 | 0 | } | 
| 2396 |  |  | 
| 2397 |  | /* Returns the bit number of the most significant set bit of a number. | 
| 2398 |  |    If the input number has no bits set -1U is returned.  */ | 
| 2399 | 0 | unsigned APInt::tcMSB(const WordType *parts, unsigned n) { | 
| 2400 | 0 |   do { | 
| 2401 | 0 |     --n; | 
| 2402 | 0 | 
 | 
| 2403 | 0 |     if (parts[n] != 0) { | 
| 2404 | 0 |       unsigned msb = partMSB(parts[n]); | 
| 2405 | 0 | 
 | 
| 2406 | 0 |       return msb + n * APINT_BITS_PER_WORD; | 
| 2407 | 0 |     } | 
| 2408 | 0 |   } while (n); | 
| 2409 | 0 | 
 | 
| 2410 | 0 |   return -1U; | 
| 2411 | 0 | } | 
| 2412 |  |  | 
| 2413 |  | /* Copy the bit vector of width srcBITS from SRC, starting at bit | 
| 2414 |  |    srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes | 
| 2415 |  |    the least significant bit of DST.  All high bits above srcBITS in | 
| 2416 |  |    DST are zero-filled.  */ | 
| 2417 |  | void | 
| 2418 |  | APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, | 
| 2419 | 0 |                  unsigned srcBits, unsigned srcLSB) { | 
| 2420 | 0 |   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | 
| 2421 | 0 |   assert(dstParts <= dstCount); | 
| 2422 | 0 | 
 | 
| 2423 | 0 |   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; | 
| 2424 | 0 |   tcAssign (dst, src + firstSrcPart, dstParts); | 
| 2425 | 0 | 
 | 
| 2426 | 0 |   unsigned shift = srcLSB % APINT_BITS_PER_WORD; | 
| 2427 | 0 |   tcShiftRight (dst, dstParts, shift); | 
| 2428 | 0 | 
 | 
| 2429 | 0 |   /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC | 
| 2430 | 0 |      in DST.  If this is less that srcBits, append the rest, else | 
| 2431 | 0 |      clear the high bits.  */ | 
| 2432 | 0 |   unsigned n = dstParts * APINT_BITS_PER_WORD - shift; | 
| 2433 | 0 |   if (n < srcBits) { | 
| 2434 | 0 |     WordType mask = lowBitMask (srcBits - n); | 
| 2435 | 0 |     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | 
| 2436 | 0 |                           << n % APINT_BITS_PER_WORD); | 
| 2437 | 0 |   } else if (n > srcBits) { | 
| 2438 | 0 |     if (srcBits % APINT_BITS_PER_WORD) | 
| 2439 | 0 |       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); | 
| 2440 | 0 |   } | 
| 2441 | 0 | 
 | 
| 2442 | 0 |   /* Clear high parts.  */ | 
| 2443 | 0 |   while (dstParts < dstCount) | 
| 2444 | 0 |     dst[dstParts++] = 0; | 
| 2445 | 0 | } | 
| 2446 |  |  | 
| 2447 |  | /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */ | 
| 2448 |  | APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, | 
| 2449 | 0 |                              WordType c, unsigned parts) { | 
| 2450 | 0 |   assert(c <= 1); | 
| 2451 | 0 | 
 | 
| 2452 | 0 |   for (unsigned i = 0; i < parts; i++) { | 
| 2453 | 0 |     WordType l = dst[i]; | 
| 2454 | 0 |     if (c) { | 
| 2455 | 0 |       dst[i] += rhs[i] + 1; | 
| 2456 | 0 |       c = (dst[i] <= l); | 
| 2457 | 0 |     } else { | 
| 2458 | 0 |       dst[i] += rhs[i]; | 
| 2459 | 0 |       c = (dst[i] < l); | 
| 2460 | 0 |     } | 
| 2461 | 0 |   } | 
| 2462 | 0 | 
 | 
| 2463 | 0 |   return c; | 
| 2464 | 0 | } | 
| 2465 |  |  | 
| 2466 |  | /// This function adds a single "word" integer, src, to the multiple | 
| 2467 |  | /// "word" integer array, dst[]. dst[] is modified to reflect the addition and | 
| 2468 |  | /// 1 is returned if there is a carry out, otherwise 0 is returned. | 
| 2469 |  | /// @returns the carry of the addition. | 
| 2470 |  | APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, | 
| 2471 | 0 |                                  unsigned parts) { | 
| 2472 | 0 |   for (unsigned i = 0; i < parts; ++i) { | 
| 2473 | 0 |     dst[i] += src; | 
| 2474 | 0 |     if (dst[i] >= src) | 
| 2475 | 0 |       return 0; // No need to carry so exit early. | 
| 2476 | 0 |     src = 1; // Carry one to next digit. | 
| 2477 | 0 |   } | 
| 2478 | 0 | 
 | 
| 2479 | 0 |   return 1; | 
| 2480 | 0 | } | 
| 2481 |  |  | 
| 2482 |  | /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */ | 
| 2483 |  | APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, | 
| 2484 | 0 |                                   WordType c, unsigned parts) { | 
| 2485 | 0 |   assert(c <= 1); | 
| 2486 | 0 | 
 | 
| 2487 | 0 |   for (unsigned i = 0; i < parts; i++) { | 
| 2488 | 0 |     WordType l = dst[i]; | 
| 2489 | 0 |     if (c) { | 
| 2490 | 0 |       dst[i] -= rhs[i] + 1; | 
| 2491 | 0 |       c = (dst[i] >= l); | 
| 2492 | 0 |     } else { | 
| 2493 | 0 |       dst[i] -= rhs[i]; | 
| 2494 | 0 |       c = (dst[i] > l); | 
| 2495 | 0 |     } | 
| 2496 | 0 |   } | 
| 2497 | 0 | 
 | 
| 2498 | 0 |   return c; | 
| 2499 | 0 | } | 
| 2500 |  |  | 
| 2501 |  | /// This function subtracts a single "word" (64-bit word), src, from | 
| 2502 |  | /// the multi-word integer array, dst[], propagating the borrowed 1 value until | 
| 2503 |  | /// no further borrowing is needed or it runs out of "words" in dst.  The result | 
| 2504 |  | /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not | 
| 2505 |  | /// exhausted. In other words, if src > dst then this function returns 1, | 
| 2506 |  | /// otherwise 0. | 
| 2507 |  | /// @returns the borrow out of the subtraction | 
| 2508 |  | APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, | 
| 2509 | 0 |                                       unsigned parts) { | 
| 2510 | 0 |   for (unsigned i = 0; i < parts; ++i) { | 
| 2511 | 0 |     WordType Dst = dst[i]; | 
| 2512 | 0 |     dst[i] -= src; | 
| 2513 | 0 |     if (src <= Dst) | 
| 2514 | 0 |       return 0; // No need to borrow so exit early. | 
| 2515 | 0 |     src = 1; // We have to "borrow 1" from next "word" | 
| 2516 | 0 |   } | 
| 2517 | 0 | 
 | 
| 2518 | 0 |   return 1; | 
| 2519 | 0 | } | 
| 2520 |  |  | 
| 2521 |  | /* Negate a bignum in-place.  */ | 
| 2522 | 0 | void APInt::tcNegate(WordType *dst, unsigned parts) { | 
| 2523 | 0 |   tcComplement(dst, parts); | 
| 2524 | 0 |   tcIncrement(dst, parts); | 
| 2525 | 0 | } | 
| 2526 |  |  | 
| 2527 |  | /*  DST += SRC * MULTIPLIER + CARRY   if add is true | 
| 2528 |  |     DST  = SRC * MULTIPLIER + CARRY   if add is false | 
| 2529 |  |  | 
| 2530 |  |     Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC | 
| 2531 |  |     they must start at the same point, i.e. DST == SRC. | 
| 2532 |  |  | 
| 2533 |  |     If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | 
| 2534 |  |     returned.  Otherwise DST is filled with the least significant | 
| 2535 |  |     DSTPARTS parts of the result, and if all of the omitted higher | 
| 2536 |  |     parts were zero return zero, otherwise overflow occurred and | 
| 2537 |  |     return one.  */ | 
| 2538 |  | int APInt::tcMultiplyPart(WordType *dst, const WordType *src, | 
| 2539 |  |                           WordType multiplier, WordType carry, | 
| 2540 |  |                           unsigned srcParts, unsigned dstParts, | 
| 2541 | 0 |                           bool add) { | 
| 2542 | 0 |   /* Otherwise our writes of DST kill our later reads of SRC.  */ | 
| 2543 | 0 |   assert(dst <= src || dst >= src + srcParts); | 
| 2544 | 0 |   assert(dstParts <= srcParts + 1); | 
| 2545 | 0 | 
 | 
| 2546 | 0 |   /* N loops; minimum of dstParts and srcParts.  */ | 
| 2547 | 0 |   unsigned n = std::min(dstParts, srcParts); | 
| 2548 | 0 | 
 | 
| 2549 | 0 |   for (unsigned i = 0; i < n; i++) { | 
| 2550 | 0 |     WordType low, mid, high, srcPart; | 
| 2551 | 0 | 
 | 
| 2552 | 0 |       /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | 
| 2553 | 0 | 
 | 
| 2554 | 0 |          This cannot overflow, because | 
| 2555 | 0 | 
 | 
| 2556 | 0 |          (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | 
| 2557 | 0 | 
 | 
| 2558 | 0 |          which is less than n^2.  */ | 
| 2559 | 0 | 
 | 
| 2560 | 0 |     srcPart = src[i]; | 
| 2561 | 0 | 
 | 
| 2562 | 0 |     if (multiplier == 0 || srcPart == 0) { | 
| 2563 | 0 |       low = carry; | 
| 2564 | 0 |       high = 0; | 
| 2565 | 0 |     } else { | 
| 2566 | 0 |       low = lowHalf(srcPart) * lowHalf(multiplier); | 
| 2567 | 0 |       high = highHalf(srcPart) * highHalf(multiplier); | 
| 2568 | 0 | 
 | 
| 2569 | 0 |       mid = lowHalf(srcPart) * highHalf(multiplier); | 
| 2570 | 0 |       high += highHalf(mid); | 
| 2571 | 0 |       mid <<= APINT_BITS_PER_WORD / 2; | 
| 2572 | 0 |       if (low + mid < low) | 
| 2573 | 0 |         high++; | 
| 2574 | 0 |       low += mid; | 
| 2575 | 0 | 
 | 
| 2576 | 0 |       mid = highHalf(srcPart) * lowHalf(multiplier); | 
| 2577 | 0 |       high += highHalf(mid); | 
| 2578 | 0 |       mid <<= APINT_BITS_PER_WORD / 2; | 
| 2579 | 0 |       if (low + mid < low) | 
| 2580 | 0 |         high++; | 
| 2581 | 0 |       low += mid; | 
| 2582 | 0 | 
 | 
| 2583 | 0 |       /* Now add carry.  */ | 
| 2584 | 0 |       if (low + carry < low) | 
| 2585 | 0 |         high++; | 
| 2586 | 0 |       low += carry; | 
| 2587 | 0 |     } | 
| 2588 | 0 | 
 | 
| 2589 | 0 |     if (add) { | 
| 2590 | 0 |       /* And now DST[i], and store the new low part there.  */ | 
| 2591 | 0 |       if (low + dst[i] < low) | 
| 2592 | 0 |         high++; | 
| 2593 | 0 |       dst[i] += low; | 
| 2594 | 0 |     } else | 
| 2595 | 0 |       dst[i] = low; | 
| 2596 | 0 | 
 | 
| 2597 | 0 |     carry = high; | 
| 2598 | 0 |   } | 
| 2599 | 0 | 
 | 
| 2600 | 0 |   if (srcParts < dstParts) { | 
| 2601 | 0 |     /* Full multiplication, there is no overflow.  */ | 
| 2602 | 0 |     assert(srcParts + 1 == dstParts); | 
| 2603 | 0 |     dst[srcParts] = carry; | 
| 2604 | 0 |     return 0; | 
| 2605 | 0 |   } | 
| 2606 | 0 |  | 
| 2607 | 0 |   /* We overflowed if there is carry.  */ | 
| 2608 | 0 |   if (carry) | 
| 2609 | 0 |     return 1; | 
| 2610 | 0 |  | 
| 2611 | 0 |   /* We would overflow if any significant unwritten parts would be | 
| 2612 | 0 |      non-zero.  This is true if any remaining src parts are non-zero | 
| 2613 | 0 |      and the multiplier is non-zero.  */ | 
| 2614 | 0 |   if (multiplier) | 
| 2615 | 0 |     for (unsigned i = dstParts; i < srcParts; i++) | 
| 2616 | 0 |       if (src[i]) | 
| 2617 | 0 |         return 1; | 
| 2618 | 0 | 
 | 
| 2619 | 0 |   /* We fitted in the narrow destination.  */ | 
| 2620 | 0 |   return 0; | 
| 2621 | 0 | } | 
| 2622 |  |  | 
| 2623 |  | /* DST = LHS * RHS, where DST has the same width as the operands and | 
| 2624 |  |    is filled with the least significant parts of the result.  Returns | 
| 2625 |  |    one if overflow occurred, otherwise zero.  DST must be disjoint | 
| 2626 |  |    from both operands.  */ | 
| 2627 |  | int APInt::tcMultiply(WordType *dst, const WordType *lhs, | 
| 2628 | 0 |                       const WordType *rhs, unsigned parts) { | 
| 2629 | 0 |   assert(dst != lhs && dst != rhs); | 
| 2630 | 0 | 
 | 
| 2631 | 0 |   int overflow = 0; | 
| 2632 | 0 |   tcSet(dst, 0, parts); | 
| 2633 | 0 | 
 | 
| 2634 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2635 | 0 |     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | 
| 2636 | 0 |                                parts - i, true); | 
| 2637 | 0 | 
 | 
| 2638 | 0 |   return overflow; | 
| 2639 | 0 | } | 
| 2640 |  |  | 
| 2641 |  | /// DST = LHS * RHS, where DST has width the sum of the widths of the | 
| 2642 |  | /// operands. No overflow occurs. DST must be disjoint from both operands. | 
| 2643 |  | void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, | 
| 2644 |  |                            const WordType *rhs, unsigned lhsParts, | 
| 2645 | 0 |                            unsigned rhsParts) { | 
| 2646 | 0 |   /* Put the narrower number on the LHS for less loops below.  */ | 
| 2647 | 0 |   if (lhsParts > rhsParts) | 
| 2648 | 0 |     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | 
| 2649 | 0 |  | 
| 2650 | 0 |   assert(dst != lhs && dst != rhs); | 
| 2651 | 0 | 
 | 
| 2652 | 0 |   tcSet(dst, 0, rhsParts); | 
| 2653 | 0 | 
 | 
| 2654 | 0 |   for (unsigned i = 0; i < lhsParts; i++) | 
| 2655 | 0 |     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); | 
| 2656 | 0 | } | 
| 2657 |  |  | 
| 2658 |  | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. | 
| 2659 |  |    Otherwise set LHS to LHS / RHS with the fractional part discarded, | 
| 2660 |  |    set REMAINDER to the remainder, return zero.  i.e. | 
| 2661 |  |  | 
| 2662 |  |    OLD_LHS = RHS * LHS + REMAINDER | 
| 2663 |  |  | 
| 2664 |  |    SCRATCH is a bignum of the same size as the operands and result for | 
| 2665 |  |    use by the routine; its contents need not be initialized and are | 
| 2666 |  |    destroyed.  LHS, REMAINDER and SCRATCH must be distinct. | 
| 2667 |  | */ | 
| 2668 |  | int APInt::tcDivide(WordType *lhs, const WordType *rhs, | 
| 2669 |  |                     WordType *remainder, WordType *srhs, | 
| 2670 | 0 |                     unsigned parts) { | 
| 2671 | 0 |   assert(lhs != remainder && lhs != srhs && remainder != srhs); | 
| 2672 | 0 | 
 | 
| 2673 | 0 |   unsigned shiftCount = tcMSB(rhs, parts) + 1; | 
| 2674 | 0 |   if (shiftCount == 0) | 
| 2675 | 0 |     return true; | 
| 2676 | 0 |  | 
| 2677 | 0 |   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; | 
| 2678 | 0 |   unsigned n = shiftCount / APINT_BITS_PER_WORD; | 
| 2679 | 0 |   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); | 
| 2680 | 0 | 
 | 
| 2681 | 0 |   tcAssign(srhs, rhs, parts); | 
| 2682 | 0 |   tcShiftLeft(srhs, parts, shiftCount); | 
| 2683 | 0 |   tcAssign(remainder, lhs, parts); | 
| 2684 | 0 |   tcSet(lhs, 0, parts); | 
| 2685 | 0 | 
 | 
| 2686 | 0 |   /* Loop, subtracting SRHS if REMAINDER is greater and adding that to | 
| 2687 | 0 |      the total.  */ | 
| 2688 | 0 |   for (;;) { | 
| 2689 | 0 |     int compare = tcCompare(remainder, srhs, parts); | 
| 2690 | 0 |     if (compare >= 0) { | 
| 2691 | 0 |       tcSubtract(remainder, srhs, 0, parts); | 
| 2692 | 0 |       lhs[n] |= mask; | 
| 2693 | 0 |     } | 
| 2694 | 0 | 
 | 
| 2695 | 0 |     if (shiftCount == 0) | 
| 2696 | 0 |       break; | 
| 2697 | 0 |     shiftCount--; | 
| 2698 | 0 |     tcShiftRight(srhs, parts, 1); | 
| 2699 | 0 |     if ((mask >>= 1) == 0) { | 
| 2700 | 0 |       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); | 
| 2701 | 0 |       n--; | 
| 2702 | 0 |     } | 
| 2703 | 0 |   } | 
| 2704 | 0 | 
 | 
| 2705 | 0 |   return false; | 
| 2706 | 0 | } | 
| 2707 |  |  | 
| 2708 |  | /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are | 
| 2709 |  | /// no restrictions on Count. | 
| 2710 | 0 | void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { | 
| 2711 | 0 |   // Don't bother performing a no-op shift. | 
| 2712 | 0 |   if (!Count) | 
| 2713 | 0 |     return; | 
| 2714 | 0 |  | 
| 2715 | 0 |   // WordShift is the inter-part shift; BitShift is the intra-part shift. | 
| 2716 | 0 |   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | 
| 2717 | 0 |   unsigned BitShift = Count % APINT_BITS_PER_WORD; | 
| 2718 | 0 | 
 | 
| 2719 | 0 |   // Fastpath for moving by whole words. | 
| 2720 | 0 |   if (BitShift == 0) { | 
| 2721 | 0 |     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); | 
| 2722 | 0 |   } else { | 
| 2723 | 0 |     while (Words-- > WordShift) { | 
| 2724 | 0 |       Dst[Words] = Dst[Words - WordShift] << BitShift; | 
| 2725 | 0 |       if (Words > WordShift) | 
| 2726 | 0 |         Dst[Words] |= | 
| 2727 | 0 |           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); | 
| 2728 | 0 |     } | 
| 2729 | 0 |   } | 
| 2730 | 0 | 
 | 
| 2731 | 0 |   // Fill in the remainder with 0s. | 
| 2732 | 0 |   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); | 
| 2733 | 0 | } | 
| 2734 |  |  | 
| 2735 |  | /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There | 
| 2736 |  | /// are no restrictions on Count. | 
| 2737 | 0 | void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { | 
| 2738 | 0 |   // Don't bother performing a no-op shift. | 
| 2739 | 0 |   if (!Count) | 
| 2740 | 0 |     return; | 
| 2741 | 0 |  | 
| 2742 | 0 |   // WordShift is the inter-part shift; BitShift is the intra-part shift. | 
| 2743 | 0 |   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | 
| 2744 | 0 |   unsigned BitShift = Count % APINT_BITS_PER_WORD; | 
| 2745 | 0 | 
 | 
| 2746 | 0 |   unsigned WordsToMove = Words - WordShift; | 
| 2747 | 0 |   // Fastpath for moving by whole words. | 
| 2748 | 0 |   if (BitShift == 0) { | 
| 2749 | 0 |     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); | 
| 2750 | 0 |   } else { | 
| 2751 | 0 |     for (unsigned i = 0; i != WordsToMove; ++i) { | 
| 2752 | 0 |       Dst[i] = Dst[i + WordShift] >> BitShift; | 
| 2753 | 0 |       if (i + 1 != WordsToMove) | 
| 2754 | 0 |         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); | 
| 2755 | 0 |     } | 
| 2756 | 0 |   } | 
| 2757 | 0 | 
 | 
| 2758 | 0 |   // Fill in the remainder with 0s. | 
| 2759 | 0 |   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); | 
| 2760 | 0 | } | 
| 2761 |  |  | 
| 2762 |  | /* Bitwise and of two bignums.  */ | 
| 2763 | 0 | void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { | 
| 2764 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2765 | 0 |     dst[i] &= rhs[i]; | 
| 2766 | 0 | } | 
| 2767 |  |  | 
| 2768 |  | /* Bitwise inclusive or of two bignums.  */ | 
| 2769 | 0 | void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { | 
| 2770 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2771 | 0 |     dst[i] |= rhs[i]; | 
| 2772 | 0 | } | 
| 2773 |  |  | 
| 2774 |  | /* Bitwise exclusive or of two bignums.  */ | 
| 2775 | 0 | void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { | 
| 2776 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2777 | 0 |     dst[i] ^= rhs[i]; | 
| 2778 | 0 | } | 
| 2779 |  |  | 
| 2780 |  | /* Complement a bignum in-place.  */ | 
| 2781 | 0 | void APInt::tcComplement(WordType *dst, unsigned parts) { | 
| 2782 | 0 |   for (unsigned i = 0; i < parts; i++) | 
| 2783 | 0 |     dst[i] = ~dst[i]; | 
| 2784 | 0 | } | 
| 2785 |  |  | 
| 2786 |  | /* Comparison (unsigned) of two bignums.  */ | 
| 2787 |  | int APInt::tcCompare(const WordType *lhs, const WordType *rhs, | 
| 2788 | 0 |                      unsigned parts) { | 
| 2789 | 0 |   while (parts) { | 
| 2790 | 0 |     parts--; | 
| 2791 | 0 |     if (lhs[parts] != rhs[parts]) | 
| 2792 | 0 |       return (lhs[parts] > rhs[parts]) ? 1 : -1; | 
| 2793 | 0 |   } | 
| 2794 | 0 | 
 | 
| 2795 | 0 |   return 0; | 
| 2796 | 0 | } | 
| 2797 |  |  | 
| 2798 |  | /* Set the least significant BITS bits of a bignum, clear the | 
| 2799 |  |    rest.  */ | 
| 2800 |  | void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, | 
| 2801 | 0 |                                       unsigned bits) { | 
| 2802 | 0 |   unsigned i = 0; | 
| 2803 | 0 |   while (bits > APINT_BITS_PER_WORD) { | 
| 2804 | 0 |     dst[i++] = ~(WordType) 0; | 
| 2805 | 0 |     bits -= APINT_BITS_PER_WORD; | 
| 2806 | 0 |   } | 
| 2807 | 0 | 
 | 
| 2808 | 0 |   if (bits) | 
| 2809 | 0 |     dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); | 
| 2810 | 0 | 
 | 
| 2811 | 0 |   while (i < parts) | 
| 2812 | 0 |     dst[i++] = 0; | 
| 2813 | 0 | } | 
| 2814 |  |  | 
| 2815 |  | APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, | 
| 2816 | 0 |                                    APInt::Rounding RM) { | 
| 2817 | 0 |   // Currently udivrem always rounds down. | 
| 2818 | 0 |   switch (RM) { | 
| 2819 | 0 |   case APInt::Rounding::DOWN: | 
| 2820 | 0 |   case APInt::Rounding::TOWARD_ZERO: | 
| 2821 | 0 |     return A.udiv(B); | 
| 2822 | 0 |   case APInt::Rounding::UP: { | 
| 2823 | 0 |     APInt Quo, Rem; | 
| 2824 | 0 |     APInt::udivrem(A, B, Quo, Rem); | 
| 2825 | 0 |     if (Rem == 0) | 
| 2826 | 0 |       return Quo; | 
| 2827 | 0 |     return Quo + 1; | 
| 2828 | 0 |   } | 
| 2829 | 0 |   } | 
| 2830 | 0 |   llvm_unreachable("Unknown APInt::Rounding enum"); | 
| 2831 | 0 | } | 
| 2832 |  |  | 
| 2833 |  | APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, | 
| 2834 | 0 |                                    APInt::Rounding RM) { | 
| 2835 | 0 |   switch (RM) { | 
| 2836 | 0 |   case APInt::Rounding::DOWN: | 
| 2837 | 0 |   case APInt::Rounding::UP: { | 
| 2838 | 0 |     APInt Quo, Rem; | 
| 2839 | 0 |     APInt::sdivrem(A, B, Quo, Rem); | 
| 2840 | 0 |     if (Rem == 0) | 
| 2841 | 0 |       return Quo; | 
| 2842 | 0 |     // This algorithm deals with arbitrary rounding mode used by sdivrem. | 
| 2843 | 0 |     // We want to check whether the non-integer part of the mathematical value | 
| 2844 | 0 |     // is negative or not. If the non-integer part is negative, we need to round | 
| 2845 | 0 |     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's | 
| 2846 | 0 |     // already rounded down. | 
| 2847 | 0 |     if (RM == APInt::Rounding::DOWN) { | 
| 2848 | 0 |       if (Rem.isNegative() != B.isNegative()) | 
| 2849 | 0 |         return Quo - 1; | 
| 2850 | 0 |       return Quo; | 
| 2851 | 0 |     } | 
| 2852 | 0 |     if (Rem.isNegative() != B.isNegative()) | 
| 2853 | 0 |       return Quo; | 
| 2854 | 0 |     return Quo + 1; | 
| 2855 | 0 |   } | 
| 2856 | 0 |   // Currently sdiv rounds towards zero. | 
| 2857 | 0 |   case APInt::Rounding::TOWARD_ZERO: | 
| 2858 | 0 |     return A.sdiv(B); | 
| 2859 | 0 |   } | 
| 2860 | 0 |   llvm_unreachable("Unknown APInt::Rounding enum"); | 
| 2861 | 0 | } | 
| 2862 |  |  | 
| 2863 |  | Optional<APInt> | 
| 2864 |  | llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | 
| 2865 | 0 |                                            unsigned RangeWidth) { | 
| 2866 | 0 |   unsigned CoeffWidth = A.getBitWidth(); | 
| 2867 | 0 |   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); | 
| 2868 | 0 |   assert(RangeWidth <= CoeffWidth && | 
| 2869 | 0 |          "Value range width should be less than coefficient width"); | 
| 2870 | 0 |   assert(RangeWidth > 1 && "Value range bit width should be > 1"); | 
| 2871 | 0 | 
 | 
| 2872 | 0 |   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B | 
| 2873 | 0 |                     << "x + " << C << ", rw:" << RangeWidth << '\n'); | 
| 2874 | 0 | 
 | 
| 2875 | 0 |   // Identify 0 as a (non)solution immediately. | 
| 2876 | 0 |   if (C.sextOrTrunc(RangeWidth).isNullValue() ) { | 
| 2877 | 0 |     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); | 
| 2878 | 0 |     return APInt(CoeffWidth, 0); | 
| 2879 | 0 |   } | 
| 2880 | 0 | 
 | 
| 2881 | 0 |   // The result of APInt arithmetic has the same bit width as the operands, | 
| 2882 | 0 |   // so it can actually lose high bits. A product of two n-bit integers needs | 
| 2883 | 0 |   // 2n-1 bits to represent the full value. | 
| 2884 | 0 |   // The operation done below (on quadratic coefficients) that can produce | 
| 2885 | 0 |   // the largest value is the evaluation of the equation during bisection, | 
| 2886 | 0 |   // which needs 3 times the bitwidth of the coefficient, so the total number | 
| 2887 | 0 |   // of required bits is 3n. | 
| 2888 | 0 |   // | 
| 2889 | 0 |   // The purpose of this extension is to simulate the set Z of all integers, | 
| 2890 | 0 |   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive | 
| 2891 | 0 |   // and negative numbers (not so much in a modulo arithmetic). The method | 
| 2892 | 0 |   // used to solve the equation is based on the standard formula for real | 
| 2893 | 0 |   // numbers, and uses the concepts of "positive" and "negative" with their | 
| 2894 | 0 |   // usual meanings. | 
| 2895 | 0 |   CoeffWidth *= 3; | 
| 2896 | 0 |   A = A.sext(CoeffWidth); | 
| 2897 | 0 |   B = B.sext(CoeffWidth); | 
| 2898 | 0 |   C = C.sext(CoeffWidth); | 
| 2899 | 0 | 
 | 
| 2900 | 0 |   // Make A > 0 for simplicity. Negate cannot overflow at this point because | 
| 2901 | 0 |   // the bit width has increased. | 
| 2902 | 0 |   if (A.isNegative()) { | 
| 2903 | 0 |     A.negate(); | 
| 2904 | 0 |     B.negate(); | 
| 2905 | 0 |     C.negate(); | 
| 2906 | 0 |   } | 
| 2907 | 0 | 
 | 
| 2908 | 0 |   // Solving an equation q(x) = 0 with coefficients in modular arithmetic | 
| 2909 | 0 |   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., | 
| 2910 | 0 |   // and R = 2^BitWidth. | 
| 2911 | 0 |   // Since we're trying not only to find exact solutions, but also values | 
| 2912 | 0 |   // that "wrap around", such a set will always have a solution, i.e. an x | 
| 2913 | 0 |   // that satisfies at least one of the equations, or such that |q(x)| | 
| 2914 | 0 |   // exceeds kR, while |q(x-1)| for the same k does not. | 
| 2915 | 0 |   // | 
| 2916 | 0 |   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a | 
| 2917 | 0 |   // positive solution n (in the above sense), and also such that the n | 
| 2918 | 0 |   // will be the least among all solutions corresponding to k = 0, 1, ... | 
| 2919 | 0 |   // (more precisely, the least element in the set | 
| 2920 | 0 |   //   { n(k) | k is such that a solution n(k) exists }). | 
| 2921 | 0 |   // | 
| 2922 | 0 |   // Consider the parabola (over real numbers) that corresponds to the | 
| 2923 | 0 |   // quadratic equation. Since A > 0, the arms of the parabola will point | 
| 2924 | 0 |   // up. Picking different values of k will shift it up and down by R. | 
| 2925 | 0 |   // | 
| 2926 | 0 |   // We want to shift the parabola in such a way as to reduce the problem | 
| 2927 | 0 |   // of solving q(x) = kR to solving shifted_q(x) = 0. | 
| 2928 | 0 |   // (The interesting solutions are the ceilings of the real number | 
| 2929 | 0 |   // solutions.) | 
| 2930 | 0 |   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); | 
| 2931 | 0 |   APInt TwoA = 2 * A; | 
| 2932 | 0 |   APInt SqrB = B * B; | 
| 2933 | 0 |   bool PickLow; | 
| 2934 | 0 | 
 | 
| 2935 | 0 |   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { | 
| 2936 | 0 |     assert(A.isStrictlyPositive()); | 
| 2937 | 0 |     APInt T = V.abs().urem(A); | 
| 2938 | 0 |     if (T.isNullValue()) | 
| 2939 | 0 |       return V; | 
| 2940 | 0 |     return V.isNegative() ? V+T : V+(A-T); | 
| 2941 | 0 |   }; | 
| 2942 | 0 | 
 | 
| 2943 | 0 |   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative | 
| 2944 | 0 |   // iff B is positive. | 
| 2945 | 0 |   if (B.isNonNegative()) { | 
| 2946 | 0 |     // If B >= 0, the vertex it at a negative location (or at 0), so in | 
| 2947 | 0 |     // order to have a non-negative solution we need to pick k that makes | 
| 2948 | 0 |     // C-kR negative. To satisfy all the requirements for the solution | 
| 2949 | 0 |     // that we are looking for, it needs to be closest to 0 of all k. | 
| 2950 | 0 |     C = C.srem(R); | 
| 2951 | 0 |     if (C.isStrictlyPositive()) | 
| 2952 | 0 |       C -= R; | 
| 2953 | 0 |     // Pick the greater solution. | 
| 2954 | 0 |     PickLow = false; | 
| 2955 | 0 |   } else { | 
| 2956 | 0 |     // If B < 0, the vertex is at a positive location. For any solution | 
| 2957 | 0 |     // to exist, the discriminant must be non-negative. This means that | 
| 2958 | 0 |     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a | 
| 2959 | 0 |     // lower bound on values of k: kR >= C - B^2/4A. | 
| 2960 | 0 |     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. | 
| 2961 | 0 |     // Round LowkR up (towards +inf) to the nearest kR. | 
| 2962 | 0 |     LowkR = RoundUp(LowkR, R); | 
| 2963 | 0 | 
 | 
| 2964 | 0 |     // If there exists k meeting the condition above, and such that | 
| 2965 | 0 |     // C-kR > 0, there will be two positive real number solutions of | 
| 2966 | 0 |     // q(x) = kR. Out of all such values of k, pick the one that makes | 
| 2967 | 0 |     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). | 
| 2968 | 0 |     // In other words, find maximum k such that LowkR <= kR < C. | 
| 2969 | 0 |     if (C.sgt(LowkR)) { | 
| 2970 | 0 |       // If LowkR < C, then such a k is guaranteed to exist because | 
| 2971 | 0 |       // LowkR itself is a multiple of R. | 
| 2972 | 0 |       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R) | 
| 2973 | 0 |       // Pick the smaller solution. | 
| 2974 | 0 |       PickLow = true; | 
| 2975 | 0 |     } else { | 
| 2976 | 0 |       // If C-kR < 0 for all potential k's, it means that one solution | 
| 2977 | 0 |       // will be negative, while the other will be positive. The positive | 
| 2978 | 0 |       // solution will shift towards 0 if the parabola is moved up. | 
| 2979 | 0 |       // Pick the kR closest to the lower bound (i.e. make C-kR closest | 
| 2980 | 0 |       // to 0, or in other words, out of all parabolas that have solutions, | 
| 2981 | 0 |       // pick the one that is the farthest "up"). | 
| 2982 | 0 |       // Since LowkR is itself a multiple of R, simply take C-LowkR. | 
| 2983 | 0 |       C -= LowkR; | 
| 2984 | 0 |       // Pick the greater solution. | 
| 2985 | 0 |       PickLow = false; | 
| 2986 | 0 |     } | 
| 2987 | 0 |   } | 
| 2988 | 0 | 
 | 
| 2989 | 0 |   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " | 
| 2990 | 0 |                     << B << "x + " << C << ", rw:" << RangeWidth << '\n'); | 
| 2991 | 0 | 
 | 
| 2992 | 0 |   APInt D = SqrB - 4*A*C; | 
| 2993 | 0 |   assert(D.isNonNegative() && "Negative discriminant"); | 
| 2994 | 0 |   APInt SQ = D.sqrt(); | 
| 2995 | 0 | 
 | 
| 2996 | 0 |   APInt Q = SQ * SQ; | 
| 2997 | 0 |   bool InexactSQ = Q != D; | 
| 2998 | 0 |   // The calculated SQ may actually be greater than the exact (non-integer) | 
| 2999 | 0 |   // value. If that's the case, decrement SQ to get a value that is lower. | 
| 3000 | 0 |   if (Q.sgt(D)) | 
| 3001 | 0 |     SQ -= 1; | 
| 3002 | 0 | 
 | 
| 3003 | 0 |   APInt X; | 
| 3004 | 0 |   APInt Rem; | 
| 3005 | 0 | 
 | 
| 3006 | 0 |   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. | 
| 3007 | 0 |   // When using the quadratic formula directly, the calculated low root | 
| 3008 | 0 |   // may be greater than the exact one, since we would be subtracting SQ. | 
| 3009 | 0 |   // To make sure that the calculated root is not greater than the exact | 
| 3010 | 0 |   // one, subtract SQ+1 when calculating the low root (for inexact value | 
| 3011 | 0 |   // of SQ). | 
| 3012 | 0 |   if (PickLow) | 
| 3013 | 0 |     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); | 
| 3014 | 0 |   else | 
| 3015 | 0 |     APInt::sdivrem(-B + SQ, TwoA, X, Rem); | 
| 3016 | 0 | 
 | 
| 3017 | 0 |   // The updated coefficients should be such that the (exact) solution is | 
| 3018 | 0 |   // positive. Since APInt division rounds towards 0, the calculated one | 
| 3019 | 0 |   // can be 0, but cannot be negative. | 
| 3020 | 0 |   assert(X.isNonNegative() && "Solution should be non-negative"); | 
| 3021 | 0 | 
 | 
| 3022 | 0 |   if (!InexactSQ && Rem.isNullValue()) { | 
| 3023 | 0 |     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); | 
| 3024 | 0 |     return X; | 
| 3025 | 0 |   } | 
| 3026 | 0 | 
 | 
| 3027 | 0 |   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); | 
| 3028 | 0 |   // The exact value of the square root of D should be between SQ and SQ+1. | 
| 3029 | 0 |   // This implies that the solution should be between that corresponding to | 
| 3030 | 0 |   // SQ (i.e. X) and that corresponding to SQ+1. | 
| 3031 | 0 |   // | 
| 3032 | 0 |   // The calculated X cannot be greater than the exact (real) solution. | 
| 3033 | 0 |   // Actually it must be strictly less than the exact solution, while | 
| 3034 | 0 |   // X+1 will be greater than or equal to it. | 
| 3035 | 0 | 
 | 
| 3036 | 0 |   APInt VX = (A*X + B)*X + C; | 
| 3037 | 0 |   APInt VY = VX + TwoA*X + A + B; | 
| 3038 | 0 |   bool SignChange = VX.isNegative() != VY.isNegative() || | 
| 3039 | 0 |                     VX.isNullValue() != VY.isNullValue(); | 
| 3040 | 0 |   // If the sign did not change between X and X+1, X is not a valid solution. | 
| 3041 | 0 |   // This could happen when the actual (exact) roots don't have an integer | 
| 3042 | 0 |   // between them, so they would both be contained between X and X+1. | 
| 3043 | 0 |   if (!SignChange) { | 
| 3044 | 0 |     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); | 
| 3045 | 0 |     return None; | 
| 3046 | 0 |   } | 
| 3047 | 0 | 
 | 
| 3048 | 0 |   X += 1; | 
| 3049 | 0 |   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); | 
| 3050 | 0 |   return X; | 
| 3051 | 0 | } | 
| 3052 |  |  | 
| 3053 |  | Optional<unsigned> | 
| 3054 | 0 | llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { | 
| 3055 | 0 |   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); | 
| 3056 | 0 |   if (A == B) | 
| 3057 | 0 |     return llvm::None; | 
| 3058 | 0 |   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); | 
| 3059 | 0 | } | 
| 3060 |  |  | 
| 3061 |  | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | 
| 3062 |  | /// with the integer held in IntVal. | 
| 3063 |  | void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | 
| 3064 | 0 |                             unsigned StoreBytes) { | 
| 3065 | 0 |   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); | 
| 3066 | 0 |   const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); | 
| 3067 | 0 | 
 | 
| 3068 | 0 |   if (sys::IsLittleEndianHost) { | 
| 3069 | 0 |     // Little-endian host - the source is ordered from LSB to MSB.  Order the | 
| 3070 | 0 |     // destination from LSB to MSB: Do a straight copy. | 
| 3071 | 0 |     memcpy(Dst, Src, StoreBytes); | 
| 3072 | 0 |   } else { | 
| 3073 | 0 |     // Big-endian host - the source is an array of 64 bit words ordered from | 
| 3074 | 0 |     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination | 
| 3075 | 0 |     // from MSB to LSB: Reverse the word order, but not the bytes in a word. | 
| 3076 | 0 |     while (StoreBytes > sizeof(uint64_t)) { | 
| 3077 | 0 |       StoreBytes -= sizeof(uint64_t); | 
| 3078 | 0 |       // May not be aligned so use memcpy. | 
| 3079 | 0 |       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | 
| 3080 | 0 |       Src += sizeof(uint64_t); | 
| 3081 | 0 |     } | 
| 3082 | 0 | 
 | 
| 3083 | 0 |     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | 
| 3084 | 0 |   } | 
| 3085 | 0 | } | 
| 3086 |  |  | 
| 3087 |  | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | 
| 3088 |  | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | 
| 3089 | 0 | void llvm::LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { | 
| 3090 | 0 |   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); | 
| 3091 | 0 |   uint8_t *Dst = reinterpret_cast<uint8_t *>( | 
| 3092 | 0 |                    const_cast<uint64_t *>(IntVal.getRawData())); | 
| 3093 | 0 | 
 | 
| 3094 | 0 |   if (sys::IsLittleEndianHost) | 
| 3095 | 0 |     // Little-endian host - the destination must be ordered from LSB to MSB. | 
| 3096 | 0 |     // The source is ordered from LSB to MSB: Do a straight copy. | 
| 3097 | 0 |     memcpy(Dst, Src, LoadBytes); | 
| 3098 | 0 |   else { | 
| 3099 | 0 |     // Big-endian - the destination is an array of 64 bit words ordered from | 
| 3100 | 0 |     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is | 
| 3101 | 0 |     // ordered from MSB to LSB: Reverse the word order, but not the bytes in | 
| 3102 | 0 |     // a word. | 
| 3103 | 0 |     while (LoadBytes > sizeof(uint64_t)) { | 
| 3104 | 0 |       LoadBytes -= sizeof(uint64_t); | 
| 3105 | 0 |       // May not be aligned so use memcpy. | 
| 3106 | 0 |       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | 
| 3107 | 0 |       Dst += sizeof(uint64_t); | 
| 3108 | 0 |     } | 
| 3109 | 0 | 
 | 
| 3110 | 0 |     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | 
| 3111 | 0 |   } | 
| 3112 | 0 | } |