Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/lib/Support/APInt.cpp
Line
Count
Source (jump to first uncovered line)
1
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements a class to represent arbitrary precision integer
10
// constant values and provide a variety of arithmetic operations on them.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/ADT/APInt.h"
15
#include "llvm/ADT/ArrayRef.h"
16
#include "llvm/ADT/FoldingSet.h"
17
#include "llvm/ADT/Hashing.h"
18
#include "llvm/ADT/Optional.h"
19
#include "llvm/ADT/SmallString.h"
20
#include "llvm/ADT/StringRef.h"
21
#include "llvm/ADT/bit.h"
22
#include "llvm/Config/llvm-config.h"
23
#include "llvm/Support/Debug.h"
24
#include "llvm/Support/ErrorHandling.h"
25
#include "llvm/Support/MathExtras.h"
26
#include "llvm/Support/raw_ostream.h"
27
#include <climits>
28
#include <cmath>
29
#include <cstdlib>
30
#include <cstring>
31
using namespace llvm;
32
33
#define DEBUG_TYPE "apint"
34
35
/// A utility function for allocating memory, checking for allocation failures,
36
/// and ensuring the contents are zeroed.
37
0
inline static uint64_t* getClearedMemory(unsigned numWords) {
38
0
  uint64_t *result = new uint64_t[numWords];
39
0
  memset(result, 0, numWords * sizeof(uint64_t));
40
0
  return result;
41
0
}
42
43
/// A utility function for allocating memory and checking for allocation
44
/// failure.  The content is not zeroed.
45
0
inline static uint64_t* getMemory(unsigned numWords) {
46
0
  return new uint64_t[numWords];
47
0
}
48
49
/// A utility function that converts a character to a digit.
50
0
inline static unsigned getDigit(char cdigit, uint8_t radix) {
51
0
  unsigned r;
52
0
53
0
  if (radix == 16 || radix == 36) {
54
0
    r = cdigit - '0';
55
0
    if (r <= 9)
56
0
      return r;
57
0
58
0
    r = cdigit - 'A';
59
0
    if (r <= radix - 11U)
60
0
      return r + 10;
61
0
62
0
    r = cdigit - 'a';
63
0
    if (r <= radix - 11U)
64
0
      return r + 10;
65
0
66
0
    radix = 10;
67
0
  }
68
0
69
0
  r = cdigit - '0';
70
0
  if (r < radix)
71
0
    return r;
72
0
73
0
  return -1U;
74
0
}
75
76
77
0
void APInt::initSlowCase(uint64_t val, bool isSigned) {
78
0
  U.pVal = getClearedMemory(getNumWords());
79
0
  U.pVal[0] = val;
80
0
  if (isSigned && int64_t(val) < 0)
81
0
    for (unsigned i = 1; i < getNumWords(); ++i)
82
0
      U.pVal[i] = WORDTYPE_MAX;
83
0
  clearUnusedBits();
84
0
}
85
86
0
void APInt::initSlowCase(const APInt& that) {
87
0
  U.pVal = getMemory(getNumWords());
88
0
  memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89
0
}
90
91
0
void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92
0
  assert(BitWidth && "Bitwidth too small");
93
0
  assert(bigVal.data() && "Null pointer detected!");
94
0
  if (isSingleWord())
95
0
    U.VAL = bigVal[0];
96
0
  else {
97
0
    // Get memory, cleared to 0
98
0
    U.pVal = getClearedMemory(getNumWords());
99
0
    // Calculate the number of words to copy
100
0
    unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
101
0
    // Copy the words from bigVal to pVal
102
0
    memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
103
0
  }
104
0
  // Make sure unused high bits are cleared
105
0
  clearUnusedBits();
106
0
}
107
108
APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
109
0
  : BitWidth(numBits) {
110
0
  initFromArray(bigVal);
111
0
}
112
113
APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
114
0
  : BitWidth(numBits) {
115
0
  initFromArray(makeArrayRef(bigVal, numWords));
116
0
}
117
118
APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
119
0
  : BitWidth(numbits) {
120
0
  assert(BitWidth && "Bitwidth too small");
121
0
  fromString(numbits, Str, radix);
122
0
}
123
124
0
void APInt::reallocate(unsigned NewBitWidth) {
125
0
  // If the number of words is the same we can just change the width and stop.
126
0
  if (getNumWords() == getNumWords(NewBitWidth)) {
127
0
    BitWidth = NewBitWidth;
128
0
    return;
129
0
  }
130
0
131
0
  // If we have an allocation, delete it.
132
0
  if (!isSingleWord())
133
0
    delete [] U.pVal;
134
0
135
0
  // Update BitWidth.
136
0
  BitWidth = NewBitWidth;
137
0
138
0
  // If we are supposed to have an allocation, create it.
139
0
  if (!isSingleWord())
140
0
    U.pVal = getMemory(getNumWords());
141
0
}
142
143
0
void APInt::AssignSlowCase(const APInt& RHS) {
144
0
  // Don't do anything for X = X
145
0
  if (this == &RHS)
146
0
    return;
147
0
148
0
  // Adjust the bit width and handle allocations as necessary.
149
0
  reallocate(RHS.getBitWidth());
150
0
151
0
  // Copy the data.
152
0
  if (isSingleWord())
153
0
    U.VAL = RHS.U.VAL;
154
0
  else
155
0
    memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
156
0
}
157
158
/// This method 'profiles' an APInt for use with FoldingSet.
159
0
void APInt::Profile(FoldingSetNodeID& ID) const {
160
0
  ID.AddInteger(BitWidth);
161
0
162
0
  if (isSingleWord()) {
163
0
    ID.AddInteger(U.VAL);
164
0
    return;
165
0
  }
166
0
167
0
  unsigned NumWords = getNumWords();
168
0
  for (unsigned i = 0; i < NumWords; ++i)
169
0
    ID.AddInteger(U.pVal[i]);
170
0
}
171
172
/// Prefix increment operator. Increments the APInt by one.
173
0
APInt& APInt::operator++() {
174
0
  if (isSingleWord())
175
0
    ++U.VAL;
176
0
  else
177
0
    tcIncrement(U.pVal, getNumWords());
178
0
  return clearUnusedBits();
179
0
}
180
181
/// Prefix decrement operator. Decrements the APInt by one.
182
0
APInt& APInt::operator--() {
183
0
  if (isSingleWord())
184
0
    --U.VAL;
185
0
  else
186
0
    tcDecrement(U.pVal, getNumWords());
187
0
  return clearUnusedBits();
188
0
}
189
190
/// Adds the RHS APInt to this APInt.
191
/// @returns this, after addition of RHS.
192
/// Addition assignment operator.
193
0
APInt& APInt::operator+=(const APInt& RHS) {
194
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
195
0
  if (isSingleWord())
196
0
    U.VAL += RHS.U.VAL;
197
0
  else
198
0
    tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
199
0
  return clearUnusedBits();
200
0
}
201
202
0
APInt& APInt::operator+=(uint64_t RHS) {
203
0
  if (isSingleWord())
204
0
    U.VAL += RHS;
205
0
  else
206
0
    tcAddPart(U.pVal, RHS, getNumWords());
207
0
  return clearUnusedBits();
208
0
}
209
210
/// Subtracts the RHS APInt from this APInt
211
/// @returns this, after subtraction
212
/// Subtraction assignment operator.
213
0
APInt& APInt::operator-=(const APInt& RHS) {
214
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
215
0
  if (isSingleWord())
216
0
    U.VAL -= RHS.U.VAL;
217
0
  else
218
0
    tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
219
0
  return clearUnusedBits();
220
0
}
221
222
0
APInt& APInt::operator-=(uint64_t RHS) {
223
0
  if (isSingleWord())
224
0
    U.VAL -= RHS;
225
0
  else
226
0
    tcSubtractPart(U.pVal, RHS, getNumWords());
227
0
  return clearUnusedBits();
228
0
}
229
230
0
APInt APInt::operator*(const APInt& RHS) const {
231
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
232
0
  if (isSingleWord())
233
0
    return APInt(BitWidth, U.VAL * RHS.U.VAL);
234
0
235
0
  APInt Result(getMemory(getNumWords()), getBitWidth());
236
0
237
0
  tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
238
0
239
0
  Result.clearUnusedBits();
240
0
  return Result;
241
0
}
242
243
0
void APInt::AndAssignSlowCase(const APInt& RHS) {
244
0
  tcAnd(U.pVal, RHS.U.pVal, getNumWords());
245
0
}
246
247
0
void APInt::OrAssignSlowCase(const APInt& RHS) {
248
0
  tcOr(U.pVal, RHS.U.pVal, getNumWords());
249
0
}
250
251
0
void APInt::XorAssignSlowCase(const APInt& RHS) {
252
0
  tcXor(U.pVal, RHS.U.pVal, getNumWords());
253
0
}
254
255
0
APInt& APInt::operator*=(const APInt& RHS) {
256
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
257
0
  *this = *this * RHS;
258
0
  return *this;
259
0
}
260
261
0
APInt& APInt::operator*=(uint64_t RHS) {
262
0
  if (isSingleWord()) {
263
0
    U.VAL *= RHS;
264
0
  } else {
265
0
    unsigned NumWords = getNumWords();
266
0
    tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267
0
  }
268
0
  return clearUnusedBits();
269
0
}
270
271
0
bool APInt::EqualSlowCase(const APInt& RHS) const {
272
0
  return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273
0
}
274
275
0
int APInt::compare(const APInt& RHS) const {
276
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277
0
  if (isSingleWord())
278
0
    return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279
0
280
0
  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281
0
}
282
283
0
int APInt::compareSigned(const APInt& RHS) const {
284
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285
0
  if (isSingleWord()) {
286
0
    int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287
0
    int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288
0
    return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289
0
  }
290
0
291
0
  bool lhsNeg = isNegative();
292
0
  bool rhsNeg = RHS.isNegative();
293
0
294
0
  // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295
0
  if (lhsNeg != rhsNeg)
296
0
    return lhsNeg ? -1 : 1;
297
0
298
0
  // Otherwise we can just use an unsigned comparison, because even negative
299
0
  // numbers compare correctly this way if both have the same signed-ness.
300
0
  return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301
0
}
302
303
0
void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304
0
  unsigned loWord = whichWord(loBit);
305
0
  unsigned hiWord = whichWord(hiBit);
306
0
307
0
  // Create an initial mask for the low word with zeros below loBit.
308
0
  uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309
0
310
0
  // If hiBit is not aligned, we need a high mask.
311
0
  unsigned hiShiftAmt = whichBit(hiBit);
312
0
  if (hiShiftAmt != 0) {
313
0
    // Create a high mask with zeros above hiBit.
314
0
    uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315
0
    // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316
0
    // set the bits in hiWord.
317
0
    if (hiWord == loWord)
318
0
      loMask &= hiMask;
319
0
    else
320
0
      U.pVal[hiWord] |= hiMask;
321
0
  }
322
0
  // Apply the mask to the low word.
323
0
  U.pVal[loWord] |= loMask;
324
0
325
0
  // Fill any words between loWord and hiWord with all ones.
326
0
  for (unsigned word = loWord + 1; word < hiWord; ++word)
327
0
    U.pVal[word] = WORDTYPE_MAX;
328
0
}
329
330
/// Toggle every bit to its opposite value.
331
0
void APInt::flipAllBitsSlowCase() {
332
0
  tcComplement(U.pVal, getNumWords());
333
0
  clearUnusedBits();
334
0
}
335
336
/// Toggle a given bit to its opposite value whose position is given
337
/// as "bitPosition".
338
/// Toggles a given bit to its opposite value.
339
0
void APInt::flipBit(unsigned bitPosition) {
340
0
  assert(bitPosition < BitWidth && "Out of the bit-width range!");
341
0
  if ((*this)[bitPosition]) clearBit(bitPosition);
342
0
  else setBit(bitPosition);
343
0
}
344
345
0
void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
346
0
  unsigned subBitWidth = subBits.getBitWidth();
347
0
  assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&
348
0
         "Illegal bit insertion");
349
0
350
0
  // Insertion is a direct copy.
351
0
  if (subBitWidth == BitWidth) {
352
0
    *this = subBits;
353
0
    return;
354
0
  }
355
0
356
0
  // Single word result can be done as a direct bitmask.
357
0
  if (isSingleWord()) {
358
0
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
359
0
    U.VAL &= ~(mask << bitPosition);
360
0
    U.VAL |= (subBits.U.VAL << bitPosition);
361
0
    return;
362
0
  }
363
0
364
0
  unsigned loBit = whichBit(bitPosition);
365
0
  unsigned loWord = whichWord(bitPosition);
366
0
  unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
367
0
368
0
  // Insertion within a single word can be done as a direct bitmask.
369
0
  if (loWord == hi1Word) {
370
0
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
371
0
    U.pVal[loWord] &= ~(mask << loBit);
372
0
    U.pVal[loWord] |= (subBits.U.VAL << loBit);
373
0
    return;
374
0
  }
375
0
376
0
  // Insert on word boundaries.
377
0
  if (loBit == 0) {
378
0
    // Direct copy whole words.
379
0
    unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
380
0
    memcpy(U.pVal + loWord, subBits.getRawData(),
381
0
           numWholeSubWords * APINT_WORD_SIZE);
382
0
383
0
    // Mask+insert remaining bits.
384
0
    unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
385
0
    if (remainingBits != 0) {
386
0
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
387
0
      U.pVal[hi1Word] &= ~mask;
388
0
      U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
389
0
    }
390
0
    return;
391
0
  }
392
0
393
0
  // General case - set/clear individual bits in dst based on src.
394
0
  // TODO - there is scope for optimization here, but at the moment this code
395
0
  // path is barely used so prefer readability over performance.
396
0
  for (unsigned i = 0; i != subBitWidth; ++i) {
397
0
    if (subBits[i])
398
0
      setBit(bitPosition + i);
399
0
    else
400
0
      clearBit(bitPosition + i);
401
0
  }
402
0
}
403
404
0
void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
405
0
  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
406
0
  subBits &= maskBits;
407
0
  if (isSingleWord()) {
408
0
    U.VAL &= ~(maskBits << bitPosition);
409
0
    U.VAL |= subBits << bitPosition;
410
0
    return;
411
0
  }
412
0
413
0
  unsigned loBit = whichBit(bitPosition);
414
0
  unsigned loWord = whichWord(bitPosition);
415
0
  unsigned hiWord = whichWord(bitPosition + numBits - 1);
416
0
  if (loWord == hiWord) {
417
0
    U.pVal[loWord] &= ~(maskBits << loBit);
418
0
    U.pVal[loWord] |= subBits << loBit;
419
0
    return;
420
0
  }
421
0
422
0
  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
423
0
  unsigned wordBits = 8 * sizeof(WordType);
424
0
  U.pVal[loWord] &= ~(maskBits << loBit);
425
0
  U.pVal[loWord] |= subBits << loBit;
426
0
427
0
  U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
428
0
  U.pVal[hiWord] |= subBits >> (wordBits - loBit);
429
0
}
430
431
0
APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
432
0
  assert(numBits > 0 && "Can't extract zero bits");
433
0
  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
434
0
         "Illegal bit extraction");
435
0
436
0
  if (isSingleWord())
437
0
    return APInt(numBits, U.VAL >> bitPosition);
438
0
439
0
  unsigned loBit = whichBit(bitPosition);
440
0
  unsigned loWord = whichWord(bitPosition);
441
0
  unsigned hiWord = whichWord(bitPosition + numBits - 1);
442
0
443
0
  // Single word result extracting bits from a single word source.
444
0
  if (loWord == hiWord)
445
0
    return APInt(numBits, U.pVal[loWord] >> loBit);
446
0
447
0
  // Extracting bits that start on a source word boundary can be done
448
0
  // as a fast memory copy.
449
0
  if (loBit == 0)
450
0
    return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
451
0
452
0
  // General case - shift + copy source words directly into place.
453
0
  APInt Result(numBits, 0);
454
0
  unsigned NumSrcWords = getNumWords();
455
0
  unsigned NumDstWords = Result.getNumWords();
456
0
457
0
  uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
458
0
  for (unsigned word = 0; word < NumDstWords; ++word) {
459
0
    uint64_t w0 = U.pVal[loWord + word];
460
0
    uint64_t w1 =
461
0
        (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
462
0
    DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
463
0
  }
464
0
465
0
  return Result.clearUnusedBits();
466
0
}
467
468
uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
469
0
                                       unsigned bitPosition) const {
470
0
  assert(numBits > 0 && "Can't extract zero bits");
471
0
  assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
472
0
         "Illegal bit extraction");
473
0
  assert(numBits <= 64 && "Illegal bit extraction");
474
0
475
0
  uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
476
0
  if (isSingleWord())
477
0
    return (U.VAL >> bitPosition) & maskBits;
478
0
479
0
  unsigned loBit = whichBit(bitPosition);
480
0
  unsigned loWord = whichWord(bitPosition);
481
0
  unsigned hiWord = whichWord(bitPosition + numBits - 1);
482
0
  if (loWord == hiWord)
483
0
    return (U.pVal[loWord] >> loBit) & maskBits;
484
0
485
0
  static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
486
0
  unsigned wordBits = 8 * sizeof(WordType);
487
0
  uint64_t retBits = U.pVal[loWord] >> loBit;
488
0
  retBits |= U.pVal[hiWord] << (wordBits - loBit);
489
0
  retBits &= maskBits;
490
0
  return retBits;
491
0
}
492
493
0
unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
494
0
  assert(!str.empty() && "Invalid string length");
495
0
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
496
0
          radix == 36) &&
497
0
         "Radix should be 2, 8, 10, 16, or 36!");
498
0
499
0
  size_t slen = str.size();
500
0
501
0
  // Each computation below needs to know if it's negative.
502
0
  StringRef::iterator p = str.begin();
503
0
  unsigned isNegative = *p == '-';
504
0
  if (*p == '-' || *p == '+') {
505
0
    p++;
506
0
    slen--;
507
0
    assert(slen && "String is only a sign, needs a value.");
508
0
  }
509
0
510
0
  // For radixes of power-of-two values, the bits required is accurately and
511
0
  // easily computed
512
0
  if (radix == 2)
513
0
    return slen + isNegative;
514
0
  if (radix == 8)
515
0
    return slen * 3 + isNegative;
516
0
  if (radix == 16)
517
0
    return slen * 4 + isNegative;
518
0
519
0
  // FIXME: base 36
520
0
521
0
  // This is grossly inefficient but accurate. We could probably do something
522
0
  // with a computation of roughly slen*64/20 and then adjust by the value of
523
0
  // the first few digits. But, I'm not sure how accurate that could be.
524
0
525
0
  // Compute a sufficient number of bits that is always large enough but might
526
0
  // be too large. This avoids the assertion in the constructor. This
527
0
  // calculation doesn't work appropriately for the numbers 0-9, so just use 4
528
0
  // bits in that case.
529
0
  unsigned sufficient
530
0
    = radix == 10? (slen == 1 ? 4 : slen * 64/18)
531
0
                 : (slen == 1 ? 7 : slen * 16/3);
532
0
533
0
  // Convert to the actual binary value.
534
0
  APInt tmp(sufficient, StringRef(p, slen), radix);
535
0
536
0
  // Compute how many bits are required. If the log is infinite, assume we need
537
0
  // just bit. If the log is exact and value is negative, then the value is
538
0
  // MinSignedValue with (log + 1) bits.
539
0
  unsigned log = tmp.logBase2();
540
0
  if (log == (unsigned)-1) {
541
0
    return isNegative + 1;
542
0
  } else if (isNegative && tmp.isPowerOf2()) {
543
0
    return isNegative + log;
544
0
  } else {
545
0
    return isNegative + log + 1;
546
0
  }
547
0
}
548
549
0
hash_code llvm::hash_value(const APInt &Arg) {
550
0
  if (Arg.isSingleWord())
551
0
    return hash_combine(Arg.BitWidth, Arg.U.VAL);
552
0
553
0
  return hash_combine(
554
0
      Arg.BitWidth,
555
0
      hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
556
0
}
557
558
0
bool APInt::isSplat(unsigned SplatSizeInBits) const {
559
0
  assert(getBitWidth() % SplatSizeInBits == 0 &&
560
0
         "SplatSizeInBits must divide width!");
561
0
  // We can check that all parts of an integer are equal by making use of a
562
0
  // little trick: rotate and check if it's still the same value.
563
0
  return *this == rotl(SplatSizeInBits);
564
0
}
565
566
/// This function returns the high "numBits" bits of this APInt.
567
0
APInt APInt::getHiBits(unsigned numBits) const {
568
0
  return this->lshr(BitWidth - numBits);
569
0
}
570
571
/// This function returns the low "numBits" bits of this APInt.
572
0
APInt APInt::getLoBits(unsigned numBits) const {
573
0
  APInt Result(getLowBitsSet(BitWidth, numBits));
574
0
  Result &= *this;
575
0
  return Result;
576
0
}
577
578
/// Return a value containing V broadcasted over NewLen bits.
579
0
APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
580
0
  assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
581
0
582
0
  APInt Val = V.zextOrSelf(NewLen);
583
0
  for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
584
0
    Val |= Val << I;
585
0
586
0
  return Val;
587
0
}
588
589
0
unsigned APInt::countLeadingZerosSlowCase() const {
590
0
  unsigned Count = 0;
591
0
  for (int i = getNumWords()-1; i >= 0; --i) {
592
0
    uint64_t V = U.pVal[i];
593
0
    if (V == 0)
594
0
      Count += APINT_BITS_PER_WORD;
595
0
    else {
596
0
      Count += llvm::countLeadingZeros(V);
597
0
      break;
598
0
    }
599
0
  }
600
0
  // Adjust for unused bits in the most significant word (they are zero).
601
0
  unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
602
0
  Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
603
0
  return Count;
604
0
}
605
606
0
unsigned APInt::countLeadingOnesSlowCase() const {
607
0
  unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
608
0
  unsigned shift;
609
0
  if (!highWordBits) {
610
0
    highWordBits = APINT_BITS_PER_WORD;
611
0
    shift = 0;
612
0
  } else {
613
0
    shift = APINT_BITS_PER_WORD - highWordBits;
614
0
  }
615
0
  int i = getNumWords() - 1;
616
0
  unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
617
0
  if (Count == highWordBits) {
618
0
    for (i--; i >= 0; --i) {
619
0
      if (U.pVal[i] == WORDTYPE_MAX)
620
0
        Count += APINT_BITS_PER_WORD;
621
0
      else {
622
0
        Count += llvm::countLeadingOnes(U.pVal[i]);
623
0
        break;
624
0
      }
625
0
    }
626
0
  }
627
0
  return Count;
628
0
}
629
630
0
unsigned APInt::countTrailingZerosSlowCase() const {
631
0
  unsigned Count = 0;
632
0
  unsigned i = 0;
633
0
  for (; i < getNumWords() && U.pVal[i] == 0; ++i)
634
0
    Count += APINT_BITS_PER_WORD;
635
0
  if (i < getNumWords())
636
0
    Count += llvm::countTrailingZeros(U.pVal[i]);
637
0
  return std::min(Count, BitWidth);
638
0
}
639
640
0
unsigned APInt::countTrailingOnesSlowCase() const {
641
0
  unsigned Count = 0;
642
0
  unsigned i = 0;
643
0
  for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
644
0
    Count += APINT_BITS_PER_WORD;
645
0
  if (i < getNumWords())
646
0
    Count += llvm::countTrailingOnes(U.pVal[i]);
647
0
  assert(Count <= BitWidth);
648
0
  return Count;
649
0
}
650
651
0
unsigned APInt::countPopulationSlowCase() const {
652
0
  unsigned Count = 0;
653
0
  for (unsigned i = 0; i < getNumWords(); ++i)
654
0
    Count += llvm::countPopulation(U.pVal[i]);
655
0
  return Count;
656
0
}
657
658
0
bool APInt::intersectsSlowCase(const APInt &RHS) const {
659
0
  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
660
0
    if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
661
0
      return true;
662
0
663
0
  return false;
664
0
}
665
666
0
bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
667
0
  for (unsigned i = 0, e = getNumWords(); i != e; ++i)
668
0
    if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
669
0
      return false;
670
0
671
0
  return true;
672
0
}
673
674
0
APInt APInt::byteSwap() const {
675
0
  assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
676
0
  if (BitWidth == 16)
677
0
    return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
678
0
  if (BitWidth == 32)
679
0
    return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
680
0
  if (BitWidth <= 64) {
681
0
    uint64_t Tmp1 = ByteSwap_64(U.VAL);
682
0
    Tmp1 >>= (64 - BitWidth);
683
0
    return APInt(BitWidth, Tmp1);
684
0
  }
685
0
686
0
  APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
687
0
  for (unsigned I = 0, N = getNumWords(); I != N; ++I)
688
0
    Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
689
0
  if (Result.BitWidth != BitWidth) {
690
0
    Result.lshrInPlace(Result.BitWidth - BitWidth);
691
0
    Result.BitWidth = BitWidth;
692
0
  }
693
0
  return Result;
694
0
}
695
696
0
APInt APInt::reverseBits() const {
697
0
  switch (BitWidth) {
698
0
  case 64:
699
0
    return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
700
0
  case 32:
701
0
    return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
702
0
  case 16:
703
0
    return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
704
0
  case 8:
705
0
    return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
706
0
  default:
707
0
    break;
708
0
  }
709
0
710
0
  APInt Val(*this);
711
0
  APInt Reversed(BitWidth, 0);
712
0
  unsigned S = BitWidth;
713
0
714
0
  for (; Val != 0; Val.lshrInPlace(1)) {
715
0
    Reversed <<= 1;
716
0
    Reversed |= Val[0];
717
0
    --S;
718
0
  }
719
0
720
0
  Reversed <<= S;
721
0
  return Reversed;
722
0
}
723
724
0
APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
725
0
  // Fast-path a common case.
726
0
  if (A == B) return A;
727
0
728
0
  // Corner cases: if either operand is zero, the other is the gcd.
729
0
  if (!A) return B;
730
0
  if (!B) return A;
731
0
732
0
  // Count common powers of 2 and remove all other powers of 2.
733
0
  unsigned Pow2;
734
0
  {
735
0
    unsigned Pow2_A = A.countTrailingZeros();
736
0
    unsigned Pow2_B = B.countTrailingZeros();
737
0
    if (Pow2_A > Pow2_B) {
738
0
      A.lshrInPlace(Pow2_A - Pow2_B);
739
0
      Pow2 = Pow2_B;
740
0
    } else if (Pow2_B > Pow2_A) {
741
0
      B.lshrInPlace(Pow2_B - Pow2_A);
742
0
      Pow2 = Pow2_A;
743
0
    } else {
744
0
      Pow2 = Pow2_A;
745
0
    }
746
0
  }
747
0
748
0
  // Both operands are odd multiples of 2^Pow_2:
749
0
  //
750
0
  //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
751
0
  //
752
0
  // This is a modified version of Stein's algorithm, taking advantage of
753
0
  // efficient countTrailingZeros().
754
0
  while (A != B) {
755
0
    if (A.ugt(B)) {
756
0
      A -= B;
757
0
      A.lshrInPlace(A.countTrailingZeros() - Pow2);
758
0
    } else {
759
0
      B -= A;
760
0
      B.lshrInPlace(B.countTrailingZeros() - Pow2);
761
0
    }
762
0
  }
763
0
764
0
  return A;
765
0
}
766
767
0
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
768
0
  uint64_t I = bit_cast<uint64_t>(Double);
769
0
770
0
  // Get the sign bit from the highest order bit
771
0
  bool isNeg = I >> 63;
772
0
773
0
  // Get the 11-bit exponent and adjust for the 1023 bit bias
774
0
  int64_t exp = ((I >> 52) & 0x7ff) - 1023;
775
0
776
0
  // If the exponent is negative, the value is < 0 so just return 0.
777
0
  if (exp < 0)
778
0
    return APInt(width, 0u);
779
0
780
0
  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
781
0
  uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
782
0
783
0
  // If the exponent doesn't shift all bits out of the mantissa
784
0
  if (exp < 52)
785
0
    return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
786
0
                    APInt(width, mantissa >> (52 - exp));
787
0
788
0
  // If the client didn't provide enough bits for us to shift the mantissa into
789
0
  // then the result is undefined, just return 0
790
0
  if (width <= exp - 52)
791
0
    return APInt(width, 0);
792
0
793
0
  // Otherwise, we have to shift the mantissa bits up to the right location
794
0
  APInt Tmp(width, mantissa);
795
0
  Tmp <<= (unsigned)exp - 52;
796
0
  return isNeg ? -Tmp : Tmp;
797
0
}
798
799
/// This function converts this APInt to a double.
800
/// The layout for double is as following (IEEE Standard 754):
801
///  --------------------------------------
802
/// |  Sign    Exponent    Fraction    Bias |
803
/// |-------------------------------------- |
804
/// |  1[63]   11[62-52]   52[51-00]   1023 |
805
///  --------------------------------------
806
0
double APInt::roundToDouble(bool isSigned) const {
807
0
808
0
  // Handle the simple case where the value is contained in one uint64_t.
809
0
  // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
810
0
  if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
811
0
    if (isSigned) {
812
0
      int64_t sext = SignExtend64(getWord(0), BitWidth);
813
0
      return double(sext);
814
0
    } else
815
0
      return double(getWord(0));
816
0
  }
817
0
818
0
  // Determine if the value is negative.
819
0
  bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
820
0
821
0
  // Construct the absolute value if we're negative.
822
0
  APInt Tmp(isNeg ? -(*this) : (*this));
823
0
824
0
  // Figure out how many bits we're using.
825
0
  unsigned n = Tmp.getActiveBits();
826
0
827
0
  // The exponent (without bias normalization) is just the number of bits
828
0
  // we are using. Note that the sign bit is gone since we constructed the
829
0
  // absolute value.
830
0
  uint64_t exp = n;
831
0
832
0
  // Return infinity for exponent overflow
833
0
  if (exp > 1023) {
834
0
    if (!isSigned || !isNeg)
835
0
      return std::numeric_limits<double>::infinity();
836
0
    else
837
0
      return -std::numeric_limits<double>::infinity();
838
0
  }
839
0
  exp += 1023; // Increment for 1023 bias
840
0
841
0
  // Number of bits in mantissa is 52. To obtain the mantissa value, we must
842
0
  // extract the high 52 bits from the correct words in pVal.
843
0
  uint64_t mantissa;
844
0
  unsigned hiWord = whichWord(n-1);
845
0
  if (hiWord == 0) {
846
0
    mantissa = Tmp.U.pVal[0];
847
0
    if (n > 52)
848
0
      mantissa >>= n - 52; // shift down, we want the top 52 bits.
849
0
  } else {
850
0
    assert(hiWord > 0 && "huh?");
851
0
    uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
852
0
    uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
853
0
    mantissa = hibits | lobits;
854
0
  }
855
0
856
0
  // The leading bit of mantissa is implicit, so get rid of it.
857
0
  uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
858
0
  uint64_t I = sign | (exp << 52) | mantissa;
859
0
  return bit_cast<double>(I);
860
0
}
861
862
// Truncate to new width.
863
0
APInt APInt::trunc(unsigned width) const {
864
0
  assert(width < BitWidth && "Invalid APInt Truncate request");
865
0
  assert(width && "Can't truncate to 0 bits");
866
0
867
0
  if (width <= APINT_BITS_PER_WORD)
868
0
    return APInt(width, getRawData()[0]);
869
0
870
0
  APInt Result(getMemory(getNumWords(width)), width);
871
0
872
0
  // Copy full words.
873
0
  unsigned i;
874
0
  for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
875
0
    Result.U.pVal[i] = U.pVal[i];
876
0
877
0
  // Truncate and copy any partial word.
878
0
  unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
879
0
  if (bits != 0)
880
0
    Result.U.pVal[i] = U.pVal[i] << bits >> bits;
881
0
882
0
  return Result;
883
0
}
884
885
// Truncate to new width with unsigned saturation.
886
0
APInt APInt::truncUSat(unsigned width) const {
887
0
  assert(width < BitWidth && "Invalid APInt Truncate request");
888
0
  assert(width && "Can't truncate to 0 bits");
889
0
890
0
  // Can we just losslessly truncate it?
891
0
  if (isIntN(width))
892
0
    return trunc(width);
893
0
  // If not, then just return the new limit.
894
0
  return APInt::getMaxValue(width);
895
0
}
896
897
// Truncate to new width with signed saturation.
898
0
APInt APInt::truncSSat(unsigned width) const {
899
0
  assert(width < BitWidth && "Invalid APInt Truncate request");
900
0
  assert(width && "Can't truncate to 0 bits");
901
0
902
0
  // Can we just losslessly truncate it?
903
0
  if (isSignedIntN(width))
904
0
    return trunc(width);
905
0
  // If not, then just return the new limits.
906
0
  return isNegative() ? APInt::getSignedMinValue(width)
907
0
                      : APInt::getSignedMaxValue(width);
908
0
}
909
910
// Sign extend to a new width.
911
0
APInt APInt::sext(unsigned Width) const {
912
0
  assert(Width > BitWidth && "Invalid APInt SignExtend request");
913
0
914
0
  if (Width <= APINT_BITS_PER_WORD)
915
0
    return APInt(Width, SignExtend64(U.VAL, BitWidth));
916
0
917
0
  APInt Result(getMemory(getNumWords(Width)), Width);
918
0
919
0
  // Copy words.
920
0
  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
921
0
922
0
  // Sign extend the last word since there may be unused bits in the input.
923
0
  Result.U.pVal[getNumWords() - 1] =
924
0
      SignExtend64(Result.U.pVal[getNumWords() - 1],
925
0
                   ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
926
0
927
0
  // Fill with sign bits.
928
0
  std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
929
0
              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
930
0
  Result.clearUnusedBits();
931
0
  return Result;
932
0
}
933
934
//  Zero extend to a new width.
935
0
APInt APInt::zext(unsigned width) const {
936
0
  assert(width > BitWidth && "Invalid APInt ZeroExtend request");
937
0
938
0
  if (width <= APINT_BITS_PER_WORD)
939
0
    return APInt(width, U.VAL);
940
0
941
0
  APInt Result(getMemory(getNumWords(width)), width);
942
0
943
0
  // Copy words.
944
0
  std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
945
0
946
0
  // Zero remaining words.
947
0
  std::memset(Result.U.pVal + getNumWords(), 0,
948
0
              (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
949
0
950
0
  return Result;
951
0
}
952
953
0
APInt APInt::zextOrTrunc(unsigned width) const {
954
0
  if (BitWidth < width)
955
0
    return zext(width);
956
0
  if (BitWidth > width)
957
0
    return trunc(width);
958
0
  return *this;
959
0
}
960
961
0
APInt APInt::sextOrTrunc(unsigned width) const {
962
0
  if (BitWidth < width)
963
0
    return sext(width);
964
0
  if (BitWidth > width)
965
0
    return trunc(width);
966
0
  return *this;
967
0
}
968
969
0
APInt APInt::zextOrSelf(unsigned width) const {
970
0
  if (BitWidth < width)
971
0
    return zext(width);
972
0
  return *this;
973
0
}
974
975
0
APInt APInt::sextOrSelf(unsigned width) const {
976
0
  if (BitWidth < width)
977
0
    return sext(width);
978
0
  return *this;
979
0
}
980
981
/// Arithmetic right-shift this APInt by shiftAmt.
982
/// Arithmetic right-shift function.
983
0
void APInt::ashrInPlace(const APInt &shiftAmt) {
984
0
  ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
985
0
}
986
987
/// Arithmetic right-shift this APInt by shiftAmt.
988
/// Arithmetic right-shift function.
989
0
void APInt::ashrSlowCase(unsigned ShiftAmt) {
990
0
  // Don't bother performing a no-op shift.
991
0
  if (!ShiftAmt)
992
0
    return;
993
0
994
0
  // Save the original sign bit for later.
995
0
  bool Negative = isNegative();
996
0
997
0
  // WordShift is the inter-part shift; BitShift is intra-part shift.
998
0
  unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
999
0
  unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1000
0
1001
0
  unsigned WordsToMove = getNumWords() - WordShift;
1002
0
  if (WordsToMove != 0) {
1003
0
    // Sign extend the last word to fill in the unused bits.
1004
0
    U.pVal[getNumWords() - 1] = SignExtend64(
1005
0
        U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1006
0
1007
0
    // Fastpath for moving by whole words.
1008
0
    if (BitShift == 0) {
1009
0
      std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1010
0
    } else {
1011
0
      // Move the words containing significant bits.
1012
0
      for (unsigned i = 0; i != WordsToMove - 1; ++i)
1013
0
        U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1014
0
                    (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1015
0
1016
0
      // Handle the last word which has no high bits to copy.
1017
0
      U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1018
0
      // Sign extend one more time.
1019
0
      U.pVal[WordsToMove - 1] =
1020
0
          SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1021
0
    }
1022
0
  }
1023
0
1024
0
  // Fill in the remainder based on the original sign.
1025
0
  std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1026
0
              WordShift * APINT_WORD_SIZE);
1027
0
  clearUnusedBits();
1028
0
}
1029
1030
/// Logical right-shift this APInt by shiftAmt.
1031
/// Logical right-shift function.
1032
0
void APInt::lshrInPlace(const APInt &shiftAmt) {
1033
0
  lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1034
0
}
1035
1036
/// Logical right-shift this APInt by shiftAmt.
1037
/// Logical right-shift function.
1038
0
void APInt::lshrSlowCase(unsigned ShiftAmt) {
1039
0
  tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1040
0
}
1041
1042
/// Left-shift this APInt by shiftAmt.
1043
/// Left-shift function.
1044
0
APInt &APInt::operator<<=(const APInt &shiftAmt) {
1045
0
  // It's undefined behavior in C to shift by BitWidth or greater.
1046
0
  *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1047
0
  return *this;
1048
0
}
1049
1050
0
void APInt::shlSlowCase(unsigned ShiftAmt) {
1051
0
  tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1052
0
  clearUnusedBits();
1053
0
}
1054
1055
// Calculate the rotate amount modulo the bit width.
1056
0
static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1057
0
  unsigned rotBitWidth = rotateAmt.getBitWidth();
1058
0
  APInt rot = rotateAmt;
1059
0
  if (rotBitWidth < BitWidth) {
1060
0
    // Extend the rotate APInt, so that the urem doesn't divide by 0.
1061
0
    // e.g. APInt(1, 32) would give APInt(1, 0).
1062
0
    rot = rotateAmt.zext(BitWidth);
1063
0
  }
1064
0
  rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1065
0
  return rot.getLimitedValue(BitWidth);
1066
0
}
1067
1068
0
APInt APInt::rotl(const APInt &rotateAmt) const {
1069
0
  return rotl(rotateModulo(BitWidth, rotateAmt));
1070
0
}
1071
1072
0
APInt APInt::rotl(unsigned rotateAmt) const {
1073
0
  rotateAmt %= BitWidth;
1074
0
  if (rotateAmt == 0)
1075
0
    return *this;
1076
0
  return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1077
0
}
1078
1079
0
APInt APInt::rotr(const APInt &rotateAmt) const {
1080
0
  return rotr(rotateModulo(BitWidth, rotateAmt));
1081
0
}
1082
1083
0
APInt APInt::rotr(unsigned rotateAmt) const {
1084
0
  rotateAmt %= BitWidth;
1085
0
  if (rotateAmt == 0)
1086
0
    return *this;
1087
0
  return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1088
0
}
1089
1090
// Square Root - this method computes and returns the square root of "this".
1091
// Three mechanisms are used for computation. For small values (<= 5 bits),
1092
// a table lookup is done. This gets some performance for common cases. For
1093
// values using less than 52 bits, the value is converted to double and then
1094
// the libc sqrt function is called. The result is rounded and then converted
1095
// back to a uint64_t which is then used to construct the result. Finally,
1096
// the Babylonian method for computing square roots is used.
1097
0
APInt APInt::sqrt() const {
1098
0
1099
0
  // Determine the magnitude of the value.
1100
0
  unsigned magnitude = getActiveBits();
1101
0
1102
0
  // Use a fast table for some small values. This also gets rid of some
1103
0
  // rounding errors in libc sqrt for small values.
1104
0
  if (magnitude <= 5) {
1105
0
    static const uint8_t results[32] = {
1106
0
      /*     0 */ 0,
1107
0
      /*  1- 2 */ 1, 1,
1108
0
      /*  3- 6 */ 2, 2, 2, 2,
1109
0
      /*  7-12 */ 3, 3, 3, 3, 3, 3,
1110
0
      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1111
0
      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1112
0
      /*    31 */ 6
1113
0
    };
1114
0
    return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1115
0
  }
1116
0
1117
0
  // If the magnitude of the value fits in less than 52 bits (the precision of
1118
0
  // an IEEE double precision floating point value), then we can use the
1119
0
  // libc sqrt function which will probably use a hardware sqrt computation.
1120
0
  // This should be faster than the algorithm below.
1121
0
  if (magnitude < 52) {
1122
0
    return APInt(BitWidth,
1123
0
                 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1124
0
                                                               : U.pVal[0])))));
1125
0
  }
1126
0
1127
0
  // Okay, all the short cuts are exhausted. We must compute it. The following
1128
0
  // is a classical Babylonian method for computing the square root. This code
1129
0
  // was adapted to APInt from a wikipedia article on such computations.
1130
0
  // See http://www.wikipedia.org/ and go to the page named
1131
0
  // Calculate_an_integer_square_root.
1132
0
  unsigned nbits = BitWidth, i = 4;
1133
0
  APInt testy(BitWidth, 16);
1134
0
  APInt x_old(BitWidth, 1);
1135
0
  APInt x_new(BitWidth, 0);
1136
0
  APInt two(BitWidth, 2);
1137
0
1138
0
  // Select a good starting value using binary logarithms.
1139
0
  for (;; i += 2, testy = testy.shl(2))
1140
0
    if (i >= nbits || this->ule(testy)) {
1141
0
      x_old = x_old.shl(i / 2);
1142
0
      break;
1143
0
    }
1144
0
1145
0
  // Use the Babylonian method to arrive at the integer square root:
1146
0
  for (;;) {
1147
0
    x_new = (this->udiv(x_old) + x_old).udiv(two);
1148
0
    if (x_old.ule(x_new))
1149
0
      break;
1150
0
    x_old = x_new;
1151
0
  }
1152
0
1153
0
  // Make sure we return the closest approximation
1154
0
  // NOTE: The rounding calculation below is correct. It will produce an
1155
0
  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1156
0
  // determined to be a rounding issue with pari/gp as it begins to use a
1157
0
  // floating point representation after 192 bits. There are no discrepancies
1158
0
  // between this algorithm and pari/gp for bit widths < 192 bits.
1159
0
  APInt square(x_old * x_old);
1160
0
  APInt nextSquare((x_old + 1) * (x_old +1));
1161
0
  if (this->ult(square))
1162
0
    return x_old;
1163
0
  assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1164
0
  APInt midpoint((nextSquare - square).udiv(two));
1165
0
  APInt offset(*this - square);
1166
0
  if (offset.ult(midpoint))
1167
0
    return x_old;
1168
0
  return x_old + 1;
1169
0
}
1170
1171
/// Computes the multiplicative inverse of this APInt for a given modulo. The
1172
/// iterative extended Euclidean algorithm is used to solve for this value,
1173
/// however we simplify it to speed up calculating only the inverse, and take
1174
/// advantage of div+rem calculations. We also use some tricks to avoid copying
1175
/// (potentially large) APInts around.
1176
/// WARNING: a value of '0' may be returned,
1177
///          signifying that no multiplicative inverse exists!
1178
0
APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1179
0
  assert(ult(modulo) && "This APInt must be smaller than the modulo");
1180
0
1181
0
  // Using the properties listed at the following web page (accessed 06/21/08):
1182
0
  //   http://www.numbertheory.org/php/euclid.html
1183
0
  // (especially the properties numbered 3, 4 and 9) it can be proved that
1184
0
  // BitWidth bits suffice for all the computations in the algorithm implemented
1185
0
  // below. More precisely, this number of bits suffice if the multiplicative
1186
0
  // inverse exists, but may not suffice for the general extended Euclidean
1187
0
  // algorithm.
1188
0
1189
0
  APInt r[2] = { modulo, *this };
1190
0
  APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1191
0
  APInt q(BitWidth, 0);
1192
0
1193
0
  unsigned i;
1194
0
  for (i = 0; r[i^1] != 0; i ^= 1) {
1195
0
    // An overview of the math without the confusing bit-flipping:
1196
0
    // q = r[i-2] / r[i-1]
1197
0
    // r[i] = r[i-2] % r[i-1]
1198
0
    // t[i] = t[i-2] - t[i-1] * q
1199
0
    udivrem(r[i], r[i^1], q, r[i]);
1200
0
    t[i] -= t[i^1] * q;
1201
0
  }
1202
0
1203
0
  // If this APInt and the modulo are not coprime, there is no multiplicative
1204
0
  // inverse, so return 0. We check this by looking at the next-to-last
1205
0
  // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1206
0
  // algorithm.
1207
0
  if (r[i] != 1)
1208
0
    return APInt(BitWidth, 0);
1209
0
1210
0
  // The next-to-last t is the multiplicative inverse.  However, we are
1211
0
  // interested in a positive inverse. Calculate a positive one from a negative
1212
0
  // one if necessary. A simple addition of the modulo suffices because
1213
0
  // abs(t[i]) is known to be less than *this/2 (see the link above).
1214
0
  if (t[i].isNegative())
1215
0
    t[i] += modulo;
1216
0
1217
0
  return std::move(t[i]);
1218
0
}
1219
1220
/// Calculate the magic numbers required to implement a signed integer division
1221
/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
1222
/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
1223
/// Warren, Jr., chapter 10.
1224
0
APInt::ms APInt::magic() const {
1225
0
  const APInt& d = *this;
1226
0
  unsigned p;
1227
0
  APInt ad, anc, delta, q1, r1, q2, r2, t;
1228
0
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1229
0
  struct ms mag;
1230
0
1231
0
  ad = d.abs();
1232
0
  t = signedMin + (d.lshr(d.getBitWidth() - 1));
1233
0
  anc = t - 1 - t.urem(ad);   // absolute value of nc
1234
0
  p = d.getBitWidth() - 1;    // initialize p
1235
0
  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
1236
0
  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
1237
0
  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
1238
0
  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
1239
0
  do {
1240
0
    p = p + 1;
1241
0
    q1 = q1<<1;          // update q1 = 2p/abs(nc)
1242
0
    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
1243
0
    if (r1.uge(anc)) {  // must be unsigned comparison
1244
0
      q1 = q1 + 1;
1245
0
      r1 = r1 - anc;
1246
0
    }
1247
0
    q2 = q2<<1;          // update q2 = 2p/abs(d)
1248
0
    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
1249
0
    if (r2.uge(ad)) {   // must be unsigned comparison
1250
0
      q2 = q2 + 1;
1251
0
      r2 = r2 - ad;
1252
0
    }
1253
0
    delta = ad - r2;
1254
0
  } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1255
0
1256
0
  mag.m = q2 + 1;
1257
0
  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
1258
0
  mag.s = p - d.getBitWidth();          // resulting shift
1259
0
  return mag;
1260
0
}
1261
1262
/// Calculate the magic numbers required to implement an unsigned integer
1263
/// division by a constant as a sequence of multiplies, adds and shifts.
1264
/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
1265
/// S. Warren, Jr., chapter 10.
1266
/// LeadingZeros can be used to simplify the calculation if the upper bits
1267
/// of the divided value are known zero.
1268
0
APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1269
0
  const APInt& d = *this;
1270
0
  unsigned p;
1271
0
  APInt nc, delta, q1, r1, q2, r2;
1272
0
  struct mu magu;
1273
0
  magu.a = 0;               // initialize "add" indicator
1274
0
  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1275
0
  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1276
0
  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1277
0
1278
0
  nc = allOnes - (allOnes - d).urem(d);
1279
0
  p = d.getBitWidth() - 1;  // initialize p
1280
0
  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
1281
0
  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
1282
0
  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
1283
0
  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
1284
0
  do {
1285
0
    p = p + 1;
1286
0
    if (r1.uge(nc - r1)) {
1287
0
      q1 = q1 + q1 + 1;  // update q1
1288
0
      r1 = r1 + r1 - nc; // update r1
1289
0
    }
1290
0
    else {
1291
0
      q1 = q1+q1; // update q1
1292
0
      r1 = r1+r1; // update r1
1293
0
    }
1294
0
    if ((r2 + 1).uge(d - r2)) {
1295
0
      if (q2.uge(signedMax)) magu.a = 1;
1296
0
      q2 = q2+q2 + 1;     // update q2
1297
0
      r2 = r2+r2 + 1 - d; // update r2
1298
0
    }
1299
0
    else {
1300
0
      if (q2.uge(signedMin)) magu.a = 1;
1301
0
      q2 = q2+q2;     // update q2
1302
0
      r2 = r2+r2 + 1; // update r2
1303
0
    }
1304
0
    delta = d - 1 - r2;
1305
0
  } while (p < d.getBitWidth()*2 &&
1306
0
           (q1.ult(delta) || (q1 == delta && r1 == 0)));
1307
0
  magu.m = q2 + 1; // resulting magic number
1308
0
  magu.s = p - d.getBitWidth();  // resulting shift
1309
0
  return magu;
1310
0
}
1311
1312
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1313
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1314
/// variables here have the same names as in the algorithm. Comments explain
1315
/// the algorithm and any deviation from it.
1316
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1317
0
                     unsigned m, unsigned n) {
1318
0
  assert(u && "Must provide dividend");
1319
0
  assert(v && "Must provide divisor");
1320
0
  assert(q && "Must provide quotient");
1321
0
  assert(u != v && u != q && v != q && "Must use different memory");
1322
0
  assert(n>1 && "n must be > 1");
1323
0
1324
0
  // b denotes the base of the number system. In our case b is 2^32.
1325
0
  const uint64_t b = uint64_t(1) << 32;
1326
0
1327
0
// The DEBUG macros here tend to be spam in the debug output if you're not
1328
0
// debugging this code. Disable them unless KNUTH_DEBUG is defined.
1329
#ifdef KNUTH_DEBUG
1330
#define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1331
#else
1332
0
#define DEBUG_KNUTH(X) do {} while(false)
1333
0
#endif
1334
0
1335
0
  DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1336
0
  DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1337
0
  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1338
0
  DEBUG_KNUTH(dbgs() << " by");
1339
0
  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1340
0
  DEBUG_KNUTH(dbgs() << '\n');
1341
0
  // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1342
0
  // u and v by d. Note that we have taken Knuth's advice here to use a power
1343
0
  // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1344
0
  // 2 allows us to shift instead of multiply and it is easy to determine the
1345
0
  // shift amount from the leading zeros.  We are basically normalizing the u
1346
0
  // and v so that its high bits are shifted to the top of v's range without
1347
0
  // overflow. Note that this can require an extra word in u so that u must
1348
0
  // be of length m+n+1.
1349
0
  unsigned shift = countLeadingZeros(v[n-1]);
1350
0
  uint32_t v_carry = 0;
1351
0
  uint32_t u_carry = 0;
1352
0
  if (shift) {
1353
0
    for (unsigned i = 0; i < m+n; ++i) {
1354
0
      uint32_t u_tmp = u[i] >> (32 - shift);
1355
0
      u[i] = (u[i] << shift) | u_carry;
1356
0
      u_carry = u_tmp;
1357
0
    }
1358
0
    for (unsigned i = 0; i < n; ++i) {
1359
0
      uint32_t v_tmp = v[i] >> (32 - shift);
1360
0
      v[i] = (v[i] << shift) | v_carry;
1361
0
      v_carry = v_tmp;
1362
0
    }
1363
0
  }
1364
0
  u[m+n] = u_carry;
1365
0
1366
0
  DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1367
0
  DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1368
0
  DEBUG_KNUTH(dbgs() << " by");
1369
0
  DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1370
0
  DEBUG_KNUTH(dbgs() << '\n');
1371
0
1372
0
  // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1373
0
  int j = m;
1374
0
  do {
1375
0
    DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1376
0
    // D3. [Calculate q'.].
1377
0
    //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1378
0
    //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1379
0
    // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1380
0
    // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1381
0
    // on v[n-2] determines at high speed most of the cases in which the trial
1382
0
    // value qp is one too large, and it eliminates all cases where qp is two
1383
0
    // too large.
1384
0
    uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1385
0
    DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1386
0
    uint64_t qp = dividend / v[n-1];
1387
0
    uint64_t rp = dividend % v[n-1];
1388
0
    if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1389
0
      qp--;
1390
0
      rp += v[n-1];
1391
0
      if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1392
0
        qp--;
1393
0
    }
1394
0
    DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1395
0
1396
0
    // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1397
0
    // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1398
0
    // consists of a simple multiplication by a one-place number, combined with
1399
0
    // a subtraction.
1400
0
    // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1401
0
    // this step is actually negative, (u[j+n]...u[j]) should be left as the
1402
0
    // true value plus b**(n+1), namely as the b's complement of
1403
0
    // the true value, and a "borrow" to the left should be remembered.
1404
0
    int64_t borrow = 0;
1405
0
    for (unsigned i = 0; i < n; ++i) {
1406
0
      uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1407
0
      int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1408
0
      u[j+i] = Lo_32(subres);
1409
0
      borrow = Hi_32(p) - Hi_32(subres);
1410
0
      DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1411
0
                        << ", borrow = " << borrow << '\n');
1412
0
    }
1413
0
    bool isNeg = u[j+n] < borrow;
1414
0
    u[j+n] -= Lo_32(borrow);
1415
0
1416
0
    DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1417
0
    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1418
0
    DEBUG_KNUTH(dbgs() << '\n');
1419
0
1420
0
    // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1421
0
    // negative, go to step D6; otherwise go on to step D7.
1422
0
    q[j] = Lo_32(qp);
1423
0
    if (isNeg) {
1424
0
      // D6. [Add back]. The probability that this step is necessary is very
1425
0
      // small, on the order of only 2/b. Make sure that test data accounts for
1426
0
      // this possibility. Decrease q[j] by 1
1427
0
      q[j]--;
1428
0
      // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1429
0
      // A carry will occur to the left of u[j+n], and it should be ignored
1430
0
      // since it cancels with the borrow that occurred in D4.
1431
0
      bool carry = false;
1432
0
      for (unsigned i = 0; i < n; i++) {
1433
0
        uint32_t limit = std::min(u[j+i],v[i]);
1434
0
        u[j+i] += v[i] + carry;
1435
0
        carry = u[j+i] < limit || (carry && u[j+i] == limit);
1436
0
      }
1437
0
      u[j+n] += carry;
1438
0
    }
1439
0
    DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1440
0
    DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1441
0
    DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1442
0
1443
0
    // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1444
0
  } while (--j >= 0);
1445
0
1446
0
  DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1447
0
  DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1448
0
  DEBUG_KNUTH(dbgs() << '\n');
1449
0
1450
0
  // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1451
0
  // remainder may be obtained by dividing u[...] by d. If r is non-null we
1452
0
  // compute the remainder (urem uses this).
1453
0
  if (r) {
1454
0
    // The value d is expressed by the "shift" value above since we avoided
1455
0
    // multiplication by d by using a shift left. So, all we have to do is
1456
0
    // shift right here.
1457
0
    if (shift) {
1458
0
      uint32_t carry = 0;
1459
0
      DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1460
0
      for (int i = n-1; i >= 0; i--) {
1461
0
        r[i] = (u[i] >> shift) | carry;
1462
0
        carry = u[i] << (32 - shift);
1463
0
        DEBUG_KNUTH(dbgs() << " " << r[i]);
1464
0
      }
1465
0
    } else {
1466
0
      for (int i = n-1; i >= 0; i--) {
1467
0
        r[i] = u[i];
1468
0
        DEBUG_KNUTH(dbgs() << " " << r[i]);
1469
0
      }
1470
0
    }
1471
0
    DEBUG_KNUTH(dbgs() << '\n');
1472
0
  }
1473
0
  DEBUG_KNUTH(dbgs() << '\n');
1474
0
}
1475
1476
void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1477
0
                   unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1478
0
  assert(lhsWords >= rhsWords && "Fractional result");
1479
0
1480
0
  // First, compose the values into an array of 32-bit words instead of
1481
0
  // 64-bit words. This is a necessity of both the "short division" algorithm
1482
0
  // and the Knuth "classical algorithm" which requires there to be native
1483
0
  // operations for +, -, and * on an m bit value with an m*2 bit result. We
1484
0
  // can't use 64-bit operands here because we don't have native results of
1485
0
  // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1486
0
  // work on large-endian machines.
1487
0
  unsigned n = rhsWords * 2;
1488
0
  unsigned m = (lhsWords * 2) - n;
1489
0
1490
0
  // Allocate space for the temporary values we need either on the stack, if
1491
0
  // it will fit, or on the heap if it won't.
1492
0
  uint32_t SPACE[128];
1493
0
  uint32_t *U = nullptr;
1494
0
  uint32_t *V = nullptr;
1495
0
  uint32_t *Q = nullptr;
1496
0
  uint32_t *R = nullptr;
1497
0
  if ((Remainder?4:3)*n+2*m+1 <= 128) {
1498
0
    U = &SPACE[0];
1499
0
    V = &SPACE[m+n+1];
1500
0
    Q = &SPACE[(m+n+1) + n];
1501
0
    if (Remainder)
1502
0
      R = &SPACE[(m+n+1) + n + (m+n)];
1503
0
  } else {
1504
0
    U = new uint32_t[m + n + 1];
1505
0
    V = new uint32_t[n];
1506
0
    Q = new uint32_t[m+n];
1507
0
    if (Remainder)
1508
0
      R = new uint32_t[n];
1509
0
  }
1510
0
1511
0
  // Initialize the dividend
1512
0
  memset(U, 0, (m+n+1)*sizeof(uint32_t));
1513
0
  for (unsigned i = 0; i < lhsWords; ++i) {
1514
0
    uint64_t tmp = LHS[i];
1515
0
    U[i * 2] = Lo_32(tmp);
1516
0
    U[i * 2 + 1] = Hi_32(tmp);
1517
0
  }
1518
0
  U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1519
0
1520
0
  // Initialize the divisor
1521
0
  memset(V, 0, (n)*sizeof(uint32_t));
1522
0
  for (unsigned i = 0; i < rhsWords; ++i) {
1523
0
    uint64_t tmp = RHS[i];
1524
0
    V[i * 2] = Lo_32(tmp);
1525
0
    V[i * 2 + 1] = Hi_32(tmp);
1526
0
  }
1527
0
1528
0
  // initialize the quotient and remainder
1529
0
  memset(Q, 0, (m+n) * sizeof(uint32_t));
1530
0
  if (Remainder)
1531
0
    memset(R, 0, n * sizeof(uint32_t));
1532
0
1533
0
  // Now, adjust m and n for the Knuth division. n is the number of words in
1534
0
  // the divisor. m is the number of words by which the dividend exceeds the
1535
0
  // divisor (i.e. m+n is the length of the dividend). These sizes must not
1536
0
  // contain any zero words or the Knuth algorithm fails.
1537
0
  for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1538
0
    n--;
1539
0
    m++;
1540
0
  }
1541
0
  for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1542
0
    m--;
1543
0
1544
0
  // If we're left with only a single word for the divisor, Knuth doesn't work
1545
0
  // so we implement the short division algorithm here. This is much simpler
1546
0
  // and faster because we are certain that we can divide a 64-bit quantity
1547
0
  // by a 32-bit quantity at hardware speed and short division is simply a
1548
0
  // series of such operations. This is just like doing short division but we
1549
0
  // are using base 2^32 instead of base 10.
1550
0
  assert(n != 0 && "Divide by zero?");
1551
0
  if (n == 1) {
1552
0
    uint32_t divisor = V[0];
1553
0
    uint32_t remainder = 0;
1554
0
    for (int i = m; i >= 0; i--) {
1555
0
      uint64_t partial_dividend = Make_64(remainder, U[i]);
1556
0
      if (partial_dividend == 0) {
1557
0
        Q[i] = 0;
1558
0
        remainder = 0;
1559
0
      } else if (partial_dividend < divisor) {
1560
0
        Q[i] = 0;
1561
0
        remainder = Lo_32(partial_dividend);
1562
0
      } else if (partial_dividend == divisor) {
1563
0
        Q[i] = 1;
1564
0
        remainder = 0;
1565
0
      } else {
1566
0
        Q[i] = Lo_32(partial_dividend / divisor);
1567
0
        remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1568
0
      }
1569
0
    }
1570
0
    if (R)
1571
0
      R[0] = remainder;
1572
0
  } else {
1573
0
    // Now we're ready to invoke the Knuth classical divide algorithm. In this
1574
0
    // case n > 1.
1575
0
    KnuthDiv(U, V, Q, R, m, n);
1576
0
  }
1577
0
1578
0
  // If the caller wants the quotient
1579
0
  if (Quotient) {
1580
0
    for (unsigned i = 0; i < lhsWords; ++i)
1581
0
      Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1582
0
  }
1583
0
1584
0
  // If the caller wants the remainder
1585
0
  if (Remainder) {
1586
0
    for (unsigned i = 0; i < rhsWords; ++i)
1587
0
      Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1588
0
  }
1589
0
1590
0
  // Clean up the memory we allocated.
1591
0
  if (U != &SPACE[0]) {
1592
0
    delete [] U;
1593
0
    delete [] V;
1594
0
    delete [] Q;
1595
0
    delete [] R;
1596
0
  }
1597
0
}
1598
1599
0
APInt APInt::udiv(const APInt &RHS) const {
1600
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1601
0
1602
0
  // First, deal with the easy case
1603
0
  if (isSingleWord()) {
1604
0
    assert(RHS.U.VAL != 0 && "Divide by zero?");
1605
0
    return APInt(BitWidth, U.VAL / RHS.U.VAL);
1606
0
  }
1607
0
1608
0
  // Get some facts about the LHS and RHS number of bits and words
1609
0
  unsigned lhsWords = getNumWords(getActiveBits());
1610
0
  unsigned rhsBits  = RHS.getActiveBits();
1611
0
  unsigned rhsWords = getNumWords(rhsBits);
1612
0
  assert(rhsWords && "Divided by zero???");
1613
0
1614
0
  // Deal with some degenerate cases
1615
0
  if (!lhsWords)
1616
0
    // 0 / X ===> 0
1617
0
    return APInt(BitWidth, 0);
1618
0
  if (rhsBits == 1)
1619
0
    // X / 1 ===> X
1620
0
    return *this;
1621
0
  if (lhsWords < rhsWords || this->ult(RHS))
1622
0
    // X / Y ===> 0, iff X < Y
1623
0
    return APInt(BitWidth, 0);
1624
0
  if (*this == RHS)
1625
0
    // X / X ===> 1
1626
0
    return APInt(BitWidth, 1);
1627
0
  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1628
0
    // All high words are zero, just use native divide
1629
0
    return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1630
0
1631
0
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1632
0
  APInt Quotient(BitWidth, 0); // to hold result.
1633
0
  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1634
0
  return Quotient;
1635
0
}
1636
1637
0
APInt APInt::udiv(uint64_t RHS) const {
1638
0
  assert(RHS != 0 && "Divide by zero?");
1639
0
1640
0
  // First, deal with the easy case
1641
0
  if (isSingleWord())
1642
0
    return APInt(BitWidth, U.VAL / RHS);
1643
0
1644
0
  // Get some facts about the LHS words.
1645
0
  unsigned lhsWords = getNumWords(getActiveBits());
1646
0
1647
0
  // Deal with some degenerate cases
1648
0
  if (!lhsWords)
1649
0
    // 0 / X ===> 0
1650
0
    return APInt(BitWidth, 0);
1651
0
  if (RHS == 1)
1652
0
    // X / 1 ===> X
1653
0
    return *this;
1654
0
  if (this->ult(RHS))
1655
0
    // X / Y ===> 0, iff X < Y
1656
0
    return APInt(BitWidth, 0);
1657
0
  if (*this == RHS)
1658
0
    // X / X ===> 1
1659
0
    return APInt(BitWidth, 1);
1660
0
  if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1661
0
    // All high words are zero, just use native divide
1662
0
    return APInt(BitWidth, this->U.pVal[0] / RHS);
1663
0
1664
0
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1665
0
  APInt Quotient(BitWidth, 0); // to hold result.
1666
0
  divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1667
0
  return Quotient;
1668
0
}
1669
1670
0
APInt APInt::sdiv(const APInt &RHS) const {
1671
0
  if (isNegative()) {
1672
0
    if (RHS.isNegative())
1673
0
      return (-(*this)).udiv(-RHS);
1674
0
    return -((-(*this)).udiv(RHS));
1675
0
  }
1676
0
  if (RHS.isNegative())
1677
0
    return -(this->udiv(-RHS));
1678
0
  return this->udiv(RHS);
1679
0
}
1680
1681
0
APInt APInt::sdiv(int64_t RHS) const {
1682
0
  if (isNegative()) {
1683
0
    if (RHS < 0)
1684
0
      return (-(*this)).udiv(-RHS);
1685
0
    return -((-(*this)).udiv(RHS));
1686
0
  }
1687
0
  if (RHS < 0)
1688
0
    return -(this->udiv(-RHS));
1689
0
  return this->udiv(RHS);
1690
0
}
1691
1692
0
APInt APInt::urem(const APInt &RHS) const {
1693
0
  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1694
0
  if (isSingleWord()) {
1695
0
    assert(RHS.U.VAL != 0 && "Remainder by zero?");
1696
0
    return APInt(BitWidth, U.VAL % RHS.U.VAL);
1697
0
  }
1698
0
1699
0
  // Get some facts about the LHS
1700
0
  unsigned lhsWords = getNumWords(getActiveBits());
1701
0
1702
0
  // Get some facts about the RHS
1703
0
  unsigned rhsBits = RHS.getActiveBits();
1704
0
  unsigned rhsWords = getNumWords(rhsBits);
1705
0
  assert(rhsWords && "Performing remainder operation by zero ???");
1706
0
1707
0
  // Check the degenerate cases
1708
0
  if (lhsWords == 0)
1709
0
    // 0 % Y ===> 0
1710
0
    return APInt(BitWidth, 0);
1711
0
  if (rhsBits == 1)
1712
0
    // X % 1 ===> 0
1713
0
    return APInt(BitWidth, 0);
1714
0
  if (lhsWords < rhsWords || this->ult(RHS))
1715
0
    // X % Y ===> X, iff X < Y
1716
0
    return *this;
1717
0
  if (*this == RHS)
1718
0
    // X % X == 0;
1719
0
    return APInt(BitWidth, 0);
1720
0
  if (lhsWords == 1)
1721
0
    // All high words are zero, just use native remainder
1722
0
    return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1723
0
1724
0
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1725
0
  APInt Remainder(BitWidth, 0);
1726
0
  divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1727
0
  return Remainder;
1728
0
}
1729
1730
0
uint64_t APInt::urem(uint64_t RHS) const {
1731
0
  assert(RHS != 0 && "Remainder by zero?");
1732
0
1733
0
  if (isSingleWord())
1734
0
    return U.VAL % RHS;
1735
0
1736
0
  // Get some facts about the LHS
1737
0
  unsigned lhsWords = getNumWords(getActiveBits());
1738
0
1739
0
  // Check the degenerate cases
1740
0
  if (lhsWords == 0)
1741
0
    // 0 % Y ===> 0
1742
0
    return 0;
1743
0
  if (RHS == 1)
1744
0
    // X % 1 ===> 0
1745
0
    return 0;
1746
0
  if (this->ult(RHS))
1747
0
    // X % Y ===> X, iff X < Y
1748
0
    return getZExtValue();
1749
0
  if (*this == RHS)
1750
0
    // X % X == 0;
1751
0
    return 0;
1752
0
  if (lhsWords == 1)
1753
0
    // All high words are zero, just use native remainder
1754
0
    return U.pVal[0] % RHS;
1755
0
1756
0
  // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1757
0
  uint64_t Remainder;
1758
0
  divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1759
0
  return Remainder;
1760
0
}
1761
1762
0
APInt APInt::srem(const APInt &RHS) const {
1763
0
  if (isNegative()) {
1764
0
    if (RHS.isNegative())
1765
0
      return -((-(*this)).urem(-RHS));
1766
0
    return -((-(*this)).urem(RHS));
1767
0
  }
1768
0
  if (RHS.isNegative())
1769
0
    return this->urem(-RHS);
1770
0
  return this->urem(RHS);
1771
0
}
1772
1773
0
int64_t APInt::srem(int64_t RHS) const {
1774
0
  if (isNegative()) {
1775
0
    if (RHS < 0)
1776
0
      return -((-(*this)).urem(-RHS));
1777
0
    return -((-(*this)).urem(RHS));
1778
0
  }
1779
0
  if (RHS < 0)
1780
0
    return this->urem(-RHS);
1781
0
  return this->urem(RHS);
1782
0
}
1783
1784
void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1785
0
                    APInt &Quotient, APInt &Remainder) {
1786
0
  assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1787
0
  unsigned BitWidth = LHS.BitWidth;
1788
0
1789
0
  // First, deal with the easy case
1790
0
  if (LHS.isSingleWord()) {
1791
0
    assert(RHS.U.VAL != 0 && "Divide by zero?");
1792
0
    uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1793
0
    uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1794
0
    Quotient = APInt(BitWidth, QuotVal);
1795
0
    Remainder = APInt(BitWidth, RemVal);
1796
0
    return;
1797
0
  }
1798
0
1799
0
  // Get some size facts about the dividend and divisor
1800
0
  unsigned lhsWords = getNumWords(LHS.getActiveBits());
1801
0
  unsigned rhsBits  = RHS.getActiveBits();
1802
0
  unsigned rhsWords = getNumWords(rhsBits);
1803
0
  assert(rhsWords && "Performing divrem operation by zero ???");
1804
0
1805
0
  // Check the degenerate cases
1806
0
  if (lhsWords == 0) {
1807
0
    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1808
0
    Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1809
0
    return;
1810
0
  }
1811
0
1812
0
  if (rhsBits == 1) {
1813
0
    Quotient = LHS;                   // X / 1 ===> X
1814
0
    Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1815
0
  }
1816
0
1817
0
  if (lhsWords < rhsWords || LHS.ult(RHS)) {
1818
0
    Remainder = LHS;                  // X % Y ===> X, iff X < Y
1819
0
    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1820
0
    return;
1821
0
  }
1822
0
1823
0
  if (LHS == RHS) {
1824
0
    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1825
0
    Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1826
0
    return;
1827
0
  }
1828
0
1829
0
  // Make sure there is enough space to hold the results.
1830
0
  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1831
0
  // change the size. This is necessary if Quotient or Remainder is aliased
1832
0
  // with LHS or RHS.
1833
0
  Quotient.reallocate(BitWidth);
1834
0
  Remainder.reallocate(BitWidth);
1835
0
1836
0
  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1837
0
    // There is only one word to consider so use the native versions.
1838
0
    uint64_t lhsValue = LHS.U.pVal[0];
1839
0
    uint64_t rhsValue = RHS.U.pVal[0];
1840
0
    Quotient = lhsValue / rhsValue;
1841
0
    Remainder = lhsValue % rhsValue;
1842
0
    return;
1843
0
  }
1844
0
1845
0
  // Okay, lets do it the long way
1846
0
  divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1847
0
         Remainder.U.pVal);
1848
0
  // Clear the rest of the Quotient and Remainder.
1849
0
  std::memset(Quotient.U.pVal + lhsWords, 0,
1850
0
              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1851
0
  std::memset(Remainder.U.pVal + rhsWords, 0,
1852
0
              (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1853
0
}
1854
1855
void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1856
0
                    uint64_t &Remainder) {
1857
0
  assert(RHS != 0 && "Divide by zero?");
1858
0
  unsigned BitWidth = LHS.BitWidth;
1859
0
1860
0
  // First, deal with the easy case
1861
0
  if (LHS.isSingleWord()) {
1862
0
    uint64_t QuotVal = LHS.U.VAL / RHS;
1863
0
    Remainder = LHS.U.VAL % RHS;
1864
0
    Quotient = APInt(BitWidth, QuotVal);
1865
0
    return;
1866
0
  }
1867
0
1868
0
  // Get some size facts about the dividend and divisor
1869
0
  unsigned lhsWords = getNumWords(LHS.getActiveBits());
1870
0
1871
0
  // Check the degenerate cases
1872
0
  if (lhsWords == 0) {
1873
0
    Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1874
0
    Remainder = 0;                    // 0 % Y ===> 0
1875
0
    return;
1876
0
  }
1877
0
1878
0
  if (RHS == 1) {
1879
0
    Quotient = LHS;                   // X / 1 ===> X
1880
0
    Remainder = 0;                    // X % 1 ===> 0
1881
0
    return;
1882
0
  }
1883
0
1884
0
  if (LHS.ult(RHS)) {
1885
0
    Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1886
0
    Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1887
0
    return;
1888
0
  }
1889
0
1890
0
  if (LHS == RHS) {
1891
0
    Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1892
0
    Remainder = 0;                    // X % X ===> 0;
1893
0
    return;
1894
0
  }
1895
0
1896
0
  // Make sure there is enough space to hold the results.
1897
0
  // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1898
0
  // change the size. This is necessary if Quotient is aliased with LHS.
1899
0
  Quotient.reallocate(BitWidth);
1900
0
1901
0
  if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1902
0
    // There is only one word to consider so use the native versions.
1903
0
    uint64_t lhsValue = LHS.U.pVal[0];
1904
0
    Quotient = lhsValue / RHS;
1905
0
    Remainder = lhsValue % RHS;
1906
0
    return;
1907
0
  }
1908
0
1909
0
  // Okay, lets do it the long way
1910
0
  divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1911
0
  // Clear the rest of the Quotient.
1912
0
  std::memset(Quotient.U.pVal + lhsWords, 0,
1913
0
              (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1914
0
}
1915
1916
void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1917
0
                    APInt &Quotient, APInt &Remainder) {
1918
0
  if (LHS.isNegative()) {
1919
0
    if (RHS.isNegative())
1920
0
      APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1921
0
    else {
1922
0
      APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1923
0
      Quotient.negate();
1924
0
    }
1925
0
    Remainder.negate();
1926
0
  } else if (RHS.isNegative()) {
1927
0
    APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1928
0
    Quotient.negate();
1929
0
  } else {
1930
0
    APInt::udivrem(LHS, RHS, Quotient, Remainder);
1931
0
  }
1932
0
}
1933
1934
void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1935
0
                    APInt &Quotient, int64_t &Remainder) {
1936
0
  uint64_t R = Remainder;
1937
0
  if (LHS.isNegative()) {
1938
0
    if (RHS < 0)
1939
0
      APInt::udivrem(-LHS, -RHS, Quotient, R);
1940
0
    else {
1941
0
      APInt::udivrem(-LHS, RHS, Quotient, R);
1942
0
      Quotient.negate();
1943
0
    }
1944
0
    R = -R;
1945
0
  } else if (RHS < 0) {
1946
0
    APInt::udivrem(LHS, -RHS, Quotient, R);
1947
0
    Quotient.negate();
1948
0
  } else {
1949
0
    APInt::udivrem(LHS, RHS, Quotient, R);
1950
0
  }
1951
0
  Remainder = R;
1952
0
}
1953
1954
0
APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1955
0
  APInt Res = *this+RHS;
1956
0
  Overflow = isNonNegative() == RHS.isNonNegative() &&
1957
0
             Res.isNonNegative() != isNonNegative();
1958
0
  return Res;
1959
0
}
1960
1961
0
APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1962
0
  APInt Res = *this+RHS;
1963
0
  Overflow = Res.ult(RHS);
1964
0
  return Res;
1965
0
}
1966
1967
0
APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1968
0
  APInt Res = *this - RHS;
1969
0
  Overflow = isNonNegative() != RHS.isNonNegative() &&
1970
0
             Res.isNonNegative() != isNonNegative();
1971
0
  return Res;
1972
0
}
1973
1974
0
APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1975
0
  APInt Res = *this-RHS;
1976
0
  Overflow = Res.ugt(*this);
1977
0
  return Res;
1978
0
}
1979
1980
0
APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1981
0
  // MININT/-1  -->  overflow.
1982
0
  Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1983
0
  return sdiv(RHS);
1984
0
}
1985
1986
0
APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1987
0
  APInt Res = *this * RHS;
1988
0
1989
0
  if (*this != 0 && RHS != 0)
1990
0
    Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1991
0
  else
1992
0
    Overflow = false;
1993
0
  return Res;
1994
0
}
1995
1996
0
APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1997
0
  if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1998
0
    Overflow = true;
1999
0
    return *this * RHS;
2000
0
  }
2001
0
2002
0
  APInt Res = lshr(1) * RHS;
2003
0
  Overflow = Res.isNegative();
2004
0
  Res <<= 1;
2005
0
  if ((*this)[0]) {
2006
0
    Res += RHS;
2007
0
    if (Res.ult(RHS))
2008
0
      Overflow = true;
2009
0
  }
2010
0
  return Res;
2011
0
}
2012
2013
0
APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
2014
0
  Overflow = ShAmt.uge(getBitWidth());
2015
0
  if (Overflow)
2016
0
    return APInt(BitWidth, 0);
2017
0
2018
0
  if (isNonNegative()) // Don't allow sign change.
2019
0
    Overflow = ShAmt.uge(countLeadingZeros());
2020
0
  else
2021
0
    Overflow = ShAmt.uge(countLeadingOnes());
2022
0
2023
0
  return *this << ShAmt;
2024
0
}
2025
2026
0
APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2027
0
  Overflow = ShAmt.uge(getBitWidth());
2028
0
  if (Overflow)
2029
0
    return APInt(BitWidth, 0);
2030
0
2031
0
  Overflow = ShAmt.ugt(countLeadingZeros());
2032
0
2033
0
  return *this << ShAmt;
2034
0
}
2035
2036
0
APInt APInt::sadd_sat(const APInt &RHS) const {
2037
0
  bool Overflow;
2038
0
  APInt Res = sadd_ov(RHS, Overflow);
2039
0
  if (!Overflow)
2040
0
    return Res;
2041
0
2042
0
  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2043
0
                      : APInt::getSignedMaxValue(BitWidth);
2044
0
}
2045
2046
0
APInt APInt::uadd_sat(const APInt &RHS) const {
2047
0
  bool Overflow;
2048
0
  APInt Res = uadd_ov(RHS, Overflow);
2049
0
  if (!Overflow)
2050
0
    return Res;
2051
0
2052
0
  return APInt::getMaxValue(BitWidth);
2053
0
}
2054
2055
0
APInt APInt::ssub_sat(const APInt &RHS) const {
2056
0
  bool Overflow;
2057
0
  APInt Res = ssub_ov(RHS, Overflow);
2058
0
  if (!Overflow)
2059
0
    return Res;
2060
0
2061
0
  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2062
0
                      : APInt::getSignedMaxValue(BitWidth);
2063
0
}
2064
2065
0
APInt APInt::usub_sat(const APInt &RHS) const {
2066
0
  bool Overflow;
2067
0
  APInt Res = usub_ov(RHS, Overflow);
2068
0
  if (!Overflow)
2069
0
    return Res;
2070
0
2071
0
  return APInt(BitWidth, 0);
2072
0
}
2073
2074
0
APInt APInt::smul_sat(const APInt &RHS) const {
2075
0
  bool Overflow;
2076
0
  APInt Res = smul_ov(RHS, Overflow);
2077
0
  if (!Overflow)
2078
0
    return Res;
2079
0
2080
0
  // The result is negative if one and only one of inputs is negative.
2081
0
  bool ResIsNegative = isNegative() ^ RHS.isNegative();
2082
0
2083
0
  return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2084
0
                       : APInt::getSignedMaxValue(BitWidth);
2085
0
}
2086
2087
0
APInt APInt::umul_sat(const APInt &RHS) const {
2088
0
  bool Overflow;
2089
0
  APInt Res = umul_ov(RHS, Overflow);
2090
0
  if (!Overflow)
2091
0
    return Res;
2092
0
2093
0
  return APInt::getMaxValue(BitWidth);
2094
0
}
2095
2096
0
APInt APInt::sshl_sat(const APInt &RHS) const {
2097
0
  bool Overflow;
2098
0
  APInt Res = sshl_ov(RHS, Overflow);
2099
0
  if (!Overflow)
2100
0
    return Res;
2101
0
2102
0
  return isNegative() ? APInt::getSignedMinValue(BitWidth)
2103
0
                      : APInt::getSignedMaxValue(BitWidth);
2104
0
}
2105
2106
0
APInt APInt::ushl_sat(const APInt &RHS) const {
2107
0
  bool Overflow;
2108
0
  APInt Res = ushl_ov(RHS, Overflow);
2109
0
  if (!Overflow)
2110
0
    return Res;
2111
0
2112
0
  return APInt::getMaxValue(BitWidth);
2113
0
}
2114
2115
0
void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2116
0
  // Check our assumptions here
2117
0
  assert(!str.empty() && "Invalid string length");
2118
0
  assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2119
0
          radix == 36) &&
2120
0
         "Radix should be 2, 8, 10, 16, or 36!");
2121
0
2122
0
  StringRef::iterator p = str.begin();
2123
0
  size_t slen = str.size();
2124
0
  bool isNeg = *p == '-';
2125
0
  if (*p == '-' || *p == '+') {
2126
0
    p++;
2127
0
    slen--;
2128
0
    assert(slen && "String is only a sign, needs a value.");
2129
0
  }
2130
0
  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2131
0
  assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2132
0
  assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2133
0
  assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2134
0
         "Insufficient bit width");
2135
0
2136
0
  // Allocate memory if needed
2137
0
  if (isSingleWord())
2138
0
    U.VAL = 0;
2139
0
  else
2140
0
    U.pVal = getClearedMemory(getNumWords());
2141
0
2142
0
  // Figure out if we can shift instead of multiply
2143
0
  unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2144
0
2145
0
  // Enter digit traversal loop
2146
0
  for (StringRef::iterator e = str.end(); p != e; ++p) {
2147
0
    unsigned digit = getDigit(*p, radix);
2148
0
    assert(digit < radix && "Invalid character in digit string");
2149
0
2150
0
    // Shift or multiply the value by the radix
2151
0
    if (slen > 1) {
2152
0
      if (shift)
2153
0
        *this <<= shift;
2154
0
      else
2155
0
        *this *= radix;
2156
0
    }
2157
0
2158
0
    // Add in the digit we just interpreted
2159
0
    *this += digit;
2160
0
  }
2161
0
  // If its negative, put it in two's complement form
2162
0
  if (isNeg)
2163
0
    this->negate();
2164
0
}
2165
2166
void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2167
0
                     bool Signed, bool formatAsCLiteral) const {
2168
0
  assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2169
0
          Radix == 36) &&
2170
0
         "Radix should be 2, 8, 10, 16, or 36!");
2171
0
2172
0
  const char *Prefix = "";
2173
0
  if (formatAsCLiteral) {
2174
0
    switch (Radix) {
2175
0
      case 2:
2176
0
        // Binary literals are a non-standard extension added in gcc 4.3:
2177
0
        // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2178
0
        Prefix = "0b";
2179
0
        break;
2180
0
      case 8:
2181
0
        Prefix = "0";
2182
0
        break;
2183
0
      case 10:
2184
0
        break; // No prefix
2185
0
      case 16:
2186
0
        Prefix = "0x";
2187
0
        break;
2188
0
      default:
2189
0
        llvm_unreachable("Invalid radix!");
2190
0
    }
2191
0
  }
2192
0
2193
0
  // First, check for a zero value and just short circuit the logic below.
2194
0
  if (*this == 0) {
2195
0
    while (*Prefix) {
2196
0
      Str.push_back(*Prefix);
2197
0
      ++Prefix;
2198
0
    };
2199
0
    Str.push_back('0');
2200
0
    return;
2201
0
  }
2202
0
2203
0
  static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2204
0
2205
0
  if (isSingleWord()) {
2206
0
    char Buffer[65];
2207
0
    char *BufPtr = std::end(Buffer);
2208
0
2209
0
    uint64_t N;
2210
0
    if (!Signed) {
2211
0
      N = getZExtValue();
2212
0
    } else {
2213
0
      int64_t I = getSExtValue();
2214
0
      if (I >= 0) {
2215
0
        N = I;
2216
0
      } else {
2217
0
        Str.push_back('-');
2218
0
        N = -(uint64_t)I;
2219
0
      }
2220
0
    }
2221
0
2222
0
    while (*Prefix) {
2223
0
      Str.push_back(*Prefix);
2224
0
      ++Prefix;
2225
0
    };
2226
0
2227
0
    while (N) {
2228
0
      *--BufPtr = Digits[N % Radix];
2229
0
      N /= Radix;
2230
0
    }
2231
0
    Str.append(BufPtr, std::end(Buffer));
2232
0
    return;
2233
0
  }
2234
0
2235
0
  APInt Tmp(*this);
2236
0
2237
0
  if (Signed && isNegative()) {
2238
0
    // They want to print the signed version and it is a negative value
2239
0
    // Flip the bits and add one to turn it into the equivalent positive
2240
0
    // value and put a '-' in the result.
2241
0
    Tmp.negate();
2242
0
    Str.push_back('-');
2243
0
  }
2244
0
2245
0
  while (*Prefix) {
2246
0
    Str.push_back(*Prefix);
2247
0
    ++Prefix;
2248
0
  };
2249
0
2250
0
  // We insert the digits backward, then reverse them to get the right order.
2251
0
  unsigned StartDig = Str.size();
2252
0
2253
0
  // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2254
0
  // because the number of bits per digit (1, 3 and 4 respectively) divides
2255
0
  // equally.  We just shift until the value is zero.
2256
0
  if (Radix == 2 || Radix == 8 || Radix == 16) {
2257
0
    // Just shift tmp right for each digit width until it becomes zero
2258
0
    unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2259
0
    unsigned MaskAmt = Radix - 1;
2260
0
2261
0
    while (Tmp.getBoolValue()) {
2262
0
      unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2263
0
      Str.push_back(Digits[Digit]);
2264
0
      Tmp.lshrInPlace(ShiftAmt);
2265
0
    }
2266
0
  } else {
2267
0
    while (Tmp.getBoolValue()) {
2268
0
      uint64_t Digit;
2269
0
      udivrem(Tmp, Radix, Tmp, Digit);
2270
0
      assert(Digit < Radix && "divide failed");
2271
0
      Str.push_back(Digits[Digit]);
2272
0
    }
2273
0
  }
2274
0
2275
0
  // Reverse the digits before returning.
2276
0
  std::reverse(Str.begin()+StartDig, Str.end());
2277
0
}
2278
2279
/// Returns the APInt as a std::string. Note that this is an inefficient method.
2280
/// It is better to pass in a SmallVector/SmallString to the methods above.
2281
0
std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2282
0
  SmallString<40> S;
2283
0
  toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2284
0
  return std::string(S.str());
2285
0
}
2286
2287
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2288
0
LLVM_DUMP_METHOD void APInt::dump() const {
2289
0
  SmallString<40> S, U;
2290
0
  this->toStringUnsigned(U);
2291
0
  this->toStringSigned(S);
2292
0
  dbgs() << "APInt(" << BitWidth << "b, "
2293
0
         << U << "u " << S << "s)\n";
2294
0
}
2295
#endif
2296
2297
0
void APInt::print(raw_ostream &OS, bool isSigned) const {
2298
0
  SmallString<40> S;
2299
0
  this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2300
0
  OS << S;
2301
0
}
2302
2303
// This implements a variety of operations on a representation of
2304
// arbitrary precision, two's-complement, bignum integer values.
2305
2306
// Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2307
// and unrestricting assumption.
2308
static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2309
              "Part width must be divisible by 2!");
2310
2311
/* Some handy functions local to this file.  */
2312
2313
/* Returns the integer part with the least significant BITS set.
2314
   BITS cannot be zero.  */
2315
0
static inline APInt::WordType lowBitMask(unsigned bits) {
2316
0
  assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2317
0
2318
0
  return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2319
0
}
2320
2321
/* Returns the value of the lower half of PART.  */
2322
0
static inline APInt::WordType lowHalf(APInt::WordType part) {
2323
0
  return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2324
0
}
2325
2326
/* Returns the value of the upper half of PART.  */
2327
0
static inline APInt::WordType highHalf(APInt::WordType part) {
2328
0
  return part >> (APInt::APINT_BITS_PER_WORD / 2);
2329
0
}
2330
2331
/* Returns the bit number of the most significant set bit of a part.
2332
   If the input number has no bits set -1U is returned.  */
2333
0
static unsigned partMSB(APInt::WordType value) {
2334
0
  return findLastSet(value, ZB_Max);
2335
0
}
2336
2337
/* Returns the bit number of the least significant set bit of a
2338
   part.  If the input number has no bits set -1U is returned.  */
2339
0
static unsigned partLSB(APInt::WordType value) {
2340
0
  return findFirstSet(value, ZB_Max);
2341
0
}
2342
2343
/* Sets the least significant part of a bignum to the input value, and
2344
   zeroes out higher parts.  */
2345
0
void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2346
0
  assert(parts > 0);
2347
0
2348
0
  dst[0] = part;
2349
0
  for (unsigned i = 1; i < parts; i++)
2350
0
    dst[i] = 0;
2351
0
}
2352
2353
/* Assign one bignum to another.  */
2354
0
void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2355
0
  for (unsigned i = 0; i < parts; i++)
2356
0
    dst[i] = src[i];
2357
0
}
2358
2359
/* Returns true if a bignum is zero, false otherwise.  */
2360
0
bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2361
0
  for (unsigned i = 0; i < parts; i++)
2362
0
    if (src[i])
2363
0
      return false;
2364
0
2365
0
  return true;
2366
0
}
2367
2368
/* Extract the given bit of a bignum; returns 0 or 1.  */
2369
0
int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2370
0
  return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2371
0
}
2372
2373
/* Set the given bit of a bignum. */
2374
0
void APInt::tcSetBit(WordType *parts, unsigned bit) {
2375
0
  parts[whichWord(bit)] |= maskBit(bit);
2376
0
}
2377
2378
/* Clears the given bit of a bignum. */
2379
0
void APInt::tcClearBit(WordType *parts, unsigned bit) {
2380
0
  parts[whichWord(bit)] &= ~maskBit(bit);
2381
0
}
2382
2383
/* Returns the bit number of the least significant set bit of a
2384
   number.  If the input number has no bits set -1U is returned.  */
2385
0
unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2386
0
  for (unsigned i = 0; i < n; i++) {
2387
0
    if (parts[i] != 0) {
2388
0
      unsigned lsb = partLSB(parts[i]);
2389
0
2390
0
      return lsb + i * APINT_BITS_PER_WORD;
2391
0
    }
2392
0
  }
2393
0
2394
0
  return -1U;
2395
0
}
2396
2397
/* Returns the bit number of the most significant set bit of a number.
2398
   If the input number has no bits set -1U is returned.  */
2399
0
unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2400
0
  do {
2401
0
    --n;
2402
0
2403
0
    if (parts[n] != 0) {
2404
0
      unsigned msb = partMSB(parts[n]);
2405
0
2406
0
      return msb + n * APINT_BITS_PER_WORD;
2407
0
    }
2408
0
  } while (n);
2409
0
2410
0
  return -1U;
2411
0
}
2412
2413
/* Copy the bit vector of width srcBITS from SRC, starting at bit
2414
   srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2415
   the least significant bit of DST.  All high bits above srcBITS in
2416
   DST are zero-filled.  */
2417
void
2418
APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2419
0
                 unsigned srcBits, unsigned srcLSB) {
2420
0
  unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2421
0
  assert(dstParts <= dstCount);
2422
0
2423
0
  unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2424
0
  tcAssign (dst, src + firstSrcPart, dstParts);
2425
0
2426
0
  unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2427
0
  tcShiftRight (dst, dstParts, shift);
2428
0
2429
0
  /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2430
0
     in DST.  If this is less that srcBits, append the rest, else
2431
0
     clear the high bits.  */
2432
0
  unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2433
0
  if (n < srcBits) {
2434
0
    WordType mask = lowBitMask (srcBits - n);
2435
0
    dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2436
0
                          << n % APINT_BITS_PER_WORD);
2437
0
  } else if (n > srcBits) {
2438
0
    if (srcBits % APINT_BITS_PER_WORD)
2439
0
      dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2440
0
  }
2441
0
2442
0
  /* Clear high parts.  */
2443
0
  while (dstParts < dstCount)
2444
0
    dst[dstParts++] = 0;
2445
0
}
2446
2447
/* DST += RHS + C where C is zero or one.  Returns the carry flag.  */
2448
APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2449
0
                             WordType c, unsigned parts) {
2450
0
  assert(c <= 1);
2451
0
2452
0
  for (unsigned i = 0; i < parts; i++) {
2453
0
    WordType l = dst[i];
2454
0
    if (c) {
2455
0
      dst[i] += rhs[i] + 1;
2456
0
      c = (dst[i] <= l);
2457
0
    } else {
2458
0
      dst[i] += rhs[i];
2459
0
      c = (dst[i] < l);
2460
0
    }
2461
0
  }
2462
0
2463
0
  return c;
2464
0
}
2465
2466
/// This function adds a single "word" integer, src, to the multiple
2467
/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2468
/// 1 is returned if there is a carry out, otherwise 0 is returned.
2469
/// @returns the carry of the addition.
2470
APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2471
0
                                 unsigned parts) {
2472
0
  for (unsigned i = 0; i < parts; ++i) {
2473
0
    dst[i] += src;
2474
0
    if (dst[i] >= src)
2475
0
      return 0; // No need to carry so exit early.
2476
0
    src = 1; // Carry one to next digit.
2477
0
  }
2478
0
2479
0
  return 1;
2480
0
}
2481
2482
/* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */
2483
APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2484
0
                                  WordType c, unsigned parts) {
2485
0
  assert(c <= 1);
2486
0
2487
0
  for (unsigned i = 0; i < parts; i++) {
2488
0
    WordType l = dst[i];
2489
0
    if (c) {
2490
0
      dst[i] -= rhs[i] + 1;
2491
0
      c = (dst[i] >= l);
2492
0
    } else {
2493
0
      dst[i] -= rhs[i];
2494
0
      c = (dst[i] > l);
2495
0
    }
2496
0
  }
2497
0
2498
0
  return c;
2499
0
}
2500
2501
/// This function subtracts a single "word" (64-bit word), src, from
2502
/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2503
/// no further borrowing is needed or it runs out of "words" in dst.  The result
2504
/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2505
/// exhausted. In other words, if src > dst then this function returns 1,
2506
/// otherwise 0.
2507
/// @returns the borrow out of the subtraction
2508
APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2509
0
                                      unsigned parts) {
2510
0
  for (unsigned i = 0; i < parts; ++i) {
2511
0
    WordType Dst = dst[i];
2512
0
    dst[i] -= src;
2513
0
    if (src <= Dst)
2514
0
      return 0; // No need to borrow so exit early.
2515
0
    src = 1; // We have to "borrow 1" from next "word"
2516
0
  }
2517
0
2518
0
  return 1;
2519
0
}
2520
2521
/* Negate a bignum in-place.  */
2522
0
void APInt::tcNegate(WordType *dst, unsigned parts) {
2523
0
  tcComplement(dst, parts);
2524
0
  tcIncrement(dst, parts);
2525
0
}
2526
2527
/*  DST += SRC * MULTIPLIER + CARRY   if add is true
2528
    DST  = SRC * MULTIPLIER + CARRY   if add is false
2529
2530
    Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2531
    they must start at the same point, i.e. DST == SRC.
2532
2533
    If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2534
    returned.  Otherwise DST is filled with the least significant
2535
    DSTPARTS parts of the result, and if all of the omitted higher
2536
    parts were zero return zero, otherwise overflow occurred and
2537
    return one.  */
2538
int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2539
                          WordType multiplier, WordType carry,
2540
                          unsigned srcParts, unsigned dstParts,
2541
0
                          bool add) {
2542
0
  /* Otherwise our writes of DST kill our later reads of SRC.  */
2543
0
  assert(dst <= src || dst >= src + srcParts);
2544
0
  assert(dstParts <= srcParts + 1);
2545
0
2546
0
  /* N loops; minimum of dstParts and srcParts.  */
2547
0
  unsigned n = std::min(dstParts, srcParts);
2548
0
2549
0
  for (unsigned i = 0; i < n; i++) {
2550
0
    WordType low, mid, high, srcPart;
2551
0
2552
0
      /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2553
0
2554
0
         This cannot overflow, because
2555
0
2556
0
         (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2557
0
2558
0
         which is less than n^2.  */
2559
0
2560
0
    srcPart = src[i];
2561
0
2562
0
    if (multiplier == 0 || srcPart == 0) {
2563
0
      low = carry;
2564
0
      high = 0;
2565
0
    } else {
2566
0
      low = lowHalf(srcPart) * lowHalf(multiplier);
2567
0
      high = highHalf(srcPart) * highHalf(multiplier);
2568
0
2569
0
      mid = lowHalf(srcPart) * highHalf(multiplier);
2570
0
      high += highHalf(mid);
2571
0
      mid <<= APINT_BITS_PER_WORD / 2;
2572
0
      if (low + mid < low)
2573
0
        high++;
2574
0
      low += mid;
2575
0
2576
0
      mid = highHalf(srcPart) * lowHalf(multiplier);
2577
0
      high += highHalf(mid);
2578
0
      mid <<= APINT_BITS_PER_WORD / 2;
2579
0
      if (low + mid < low)
2580
0
        high++;
2581
0
      low += mid;
2582
0
2583
0
      /* Now add carry.  */
2584
0
      if (low + carry < low)
2585
0
        high++;
2586
0
      low += carry;
2587
0
    }
2588
0
2589
0
    if (add) {
2590
0
      /* And now DST[i], and store the new low part there.  */
2591
0
      if (low + dst[i] < low)
2592
0
        high++;
2593
0
      dst[i] += low;
2594
0
    } else
2595
0
      dst[i] = low;
2596
0
2597
0
    carry = high;
2598
0
  }
2599
0
2600
0
  if (srcParts < dstParts) {
2601
0
    /* Full multiplication, there is no overflow.  */
2602
0
    assert(srcParts + 1 == dstParts);
2603
0
    dst[srcParts] = carry;
2604
0
    return 0;
2605
0
  }
2606
0
2607
0
  /* We overflowed if there is carry.  */
2608
0
  if (carry)
2609
0
    return 1;
2610
0
2611
0
  /* We would overflow if any significant unwritten parts would be
2612
0
     non-zero.  This is true if any remaining src parts are non-zero
2613
0
     and the multiplier is non-zero.  */
2614
0
  if (multiplier)
2615
0
    for (unsigned i = dstParts; i < srcParts; i++)
2616
0
      if (src[i])
2617
0
        return 1;
2618
0
2619
0
  /* We fitted in the narrow destination.  */
2620
0
  return 0;
2621
0
}
2622
2623
/* DST = LHS * RHS, where DST has the same width as the operands and
2624
   is filled with the least significant parts of the result.  Returns
2625
   one if overflow occurred, otherwise zero.  DST must be disjoint
2626
   from both operands.  */
2627
int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2628
0
                      const WordType *rhs, unsigned parts) {
2629
0
  assert(dst != lhs && dst != rhs);
2630
0
2631
0
  int overflow = 0;
2632
0
  tcSet(dst, 0, parts);
2633
0
2634
0
  for (unsigned i = 0; i < parts; i++)
2635
0
    overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2636
0
                               parts - i, true);
2637
0
2638
0
  return overflow;
2639
0
}
2640
2641
/// DST = LHS * RHS, where DST has width the sum of the widths of the
2642
/// operands. No overflow occurs. DST must be disjoint from both operands.
2643
void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2644
                           const WordType *rhs, unsigned lhsParts,
2645
0
                           unsigned rhsParts) {
2646
0
  /* Put the narrower number on the LHS for less loops below.  */
2647
0
  if (lhsParts > rhsParts)
2648
0
    return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2649
0
2650
0
  assert(dst != lhs && dst != rhs);
2651
0
2652
0
  tcSet(dst, 0, rhsParts);
2653
0
2654
0
  for (unsigned i = 0; i < lhsParts; i++)
2655
0
    tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2656
0
}
2657
2658
/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2659
   Otherwise set LHS to LHS / RHS with the fractional part discarded,
2660
   set REMAINDER to the remainder, return zero.  i.e.
2661
2662
   OLD_LHS = RHS * LHS + REMAINDER
2663
2664
   SCRATCH is a bignum of the same size as the operands and result for
2665
   use by the routine; its contents need not be initialized and are
2666
   destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2667
*/
2668
int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2669
                    WordType *remainder, WordType *srhs,
2670
0
                    unsigned parts) {
2671
0
  assert(lhs != remainder && lhs != srhs && remainder != srhs);
2672
0
2673
0
  unsigned shiftCount = tcMSB(rhs, parts) + 1;
2674
0
  if (shiftCount == 0)
2675
0
    return true;
2676
0
2677
0
  shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2678
0
  unsigned n = shiftCount / APINT_BITS_PER_WORD;
2679
0
  WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2680
0
2681
0
  tcAssign(srhs, rhs, parts);
2682
0
  tcShiftLeft(srhs, parts, shiftCount);
2683
0
  tcAssign(remainder, lhs, parts);
2684
0
  tcSet(lhs, 0, parts);
2685
0
2686
0
  /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2687
0
     the total.  */
2688
0
  for (;;) {
2689
0
    int compare = tcCompare(remainder, srhs, parts);
2690
0
    if (compare >= 0) {
2691
0
      tcSubtract(remainder, srhs, 0, parts);
2692
0
      lhs[n] |= mask;
2693
0
    }
2694
0
2695
0
    if (shiftCount == 0)
2696
0
      break;
2697
0
    shiftCount--;
2698
0
    tcShiftRight(srhs, parts, 1);
2699
0
    if ((mask >>= 1) == 0) {
2700
0
      mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2701
0
      n--;
2702
0
    }
2703
0
  }
2704
0
2705
0
  return false;
2706
0
}
2707
2708
/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2709
/// no restrictions on Count.
2710
0
void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2711
0
  // Don't bother performing a no-op shift.
2712
0
  if (!Count)
2713
0
    return;
2714
0
2715
0
  // WordShift is the inter-part shift; BitShift is the intra-part shift.
2716
0
  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2717
0
  unsigned BitShift = Count % APINT_BITS_PER_WORD;
2718
0
2719
0
  // Fastpath for moving by whole words.
2720
0
  if (BitShift == 0) {
2721
0
    std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2722
0
  } else {
2723
0
    while (Words-- > WordShift) {
2724
0
      Dst[Words] = Dst[Words - WordShift] << BitShift;
2725
0
      if (Words > WordShift)
2726
0
        Dst[Words] |=
2727
0
          Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2728
0
    }
2729
0
  }
2730
0
2731
0
  // Fill in the remainder with 0s.
2732
0
  std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2733
0
}
2734
2735
/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2736
/// are no restrictions on Count.
2737
0
void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2738
0
  // Don't bother performing a no-op shift.
2739
0
  if (!Count)
2740
0
    return;
2741
0
2742
0
  // WordShift is the inter-part shift; BitShift is the intra-part shift.
2743
0
  unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2744
0
  unsigned BitShift = Count % APINT_BITS_PER_WORD;
2745
0
2746
0
  unsigned WordsToMove = Words - WordShift;
2747
0
  // Fastpath for moving by whole words.
2748
0
  if (BitShift == 0) {
2749
0
    std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2750
0
  } else {
2751
0
    for (unsigned i = 0; i != WordsToMove; ++i) {
2752
0
      Dst[i] = Dst[i + WordShift] >> BitShift;
2753
0
      if (i + 1 != WordsToMove)
2754
0
        Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2755
0
    }
2756
0
  }
2757
0
2758
0
  // Fill in the remainder with 0s.
2759
0
  std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2760
0
}
2761
2762
/* Bitwise and of two bignums.  */
2763
0
void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2764
0
  for (unsigned i = 0; i < parts; i++)
2765
0
    dst[i] &= rhs[i];
2766
0
}
2767
2768
/* Bitwise inclusive or of two bignums.  */
2769
0
void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2770
0
  for (unsigned i = 0; i < parts; i++)
2771
0
    dst[i] |= rhs[i];
2772
0
}
2773
2774
/* Bitwise exclusive or of two bignums.  */
2775
0
void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2776
0
  for (unsigned i = 0; i < parts; i++)
2777
0
    dst[i] ^= rhs[i];
2778
0
}
2779
2780
/* Complement a bignum in-place.  */
2781
0
void APInt::tcComplement(WordType *dst, unsigned parts) {
2782
0
  for (unsigned i = 0; i < parts; i++)
2783
0
    dst[i] = ~dst[i];
2784
0
}
2785
2786
/* Comparison (unsigned) of two bignums.  */
2787
int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2788
0
                     unsigned parts) {
2789
0
  while (parts) {
2790
0
    parts--;
2791
0
    if (lhs[parts] != rhs[parts])
2792
0
      return (lhs[parts] > rhs[parts]) ? 1 : -1;
2793
0
  }
2794
0
2795
0
  return 0;
2796
0
}
2797
2798
/* Set the least significant BITS bits of a bignum, clear the
2799
   rest.  */
2800
void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2801
0
                                      unsigned bits) {
2802
0
  unsigned i = 0;
2803
0
  while (bits > APINT_BITS_PER_WORD) {
2804
0
    dst[i++] = ~(WordType) 0;
2805
0
    bits -= APINT_BITS_PER_WORD;
2806
0
  }
2807
0
2808
0
  if (bits)
2809
0
    dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2810
0
2811
0
  while (i < parts)
2812
0
    dst[i++] = 0;
2813
0
}
2814
2815
APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2816
0
                                   APInt::Rounding RM) {
2817
0
  // Currently udivrem always rounds down.
2818
0
  switch (RM) {
2819
0
  case APInt::Rounding::DOWN:
2820
0
  case APInt::Rounding::TOWARD_ZERO:
2821
0
    return A.udiv(B);
2822
0
  case APInt::Rounding::UP: {
2823
0
    APInt Quo, Rem;
2824
0
    APInt::udivrem(A, B, Quo, Rem);
2825
0
    if (Rem == 0)
2826
0
      return Quo;
2827
0
    return Quo + 1;
2828
0
  }
2829
0
  }
2830
0
  llvm_unreachable("Unknown APInt::Rounding enum");
2831
0
}
2832
2833
APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2834
0
                                   APInt::Rounding RM) {
2835
0
  switch (RM) {
2836
0
  case APInt::Rounding::DOWN:
2837
0
  case APInt::Rounding::UP: {
2838
0
    APInt Quo, Rem;
2839
0
    APInt::sdivrem(A, B, Quo, Rem);
2840
0
    if (Rem == 0)
2841
0
      return Quo;
2842
0
    // This algorithm deals with arbitrary rounding mode used by sdivrem.
2843
0
    // We want to check whether the non-integer part of the mathematical value
2844
0
    // is negative or not. If the non-integer part is negative, we need to round
2845
0
    // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2846
0
    // already rounded down.
2847
0
    if (RM == APInt::Rounding::DOWN) {
2848
0
      if (Rem.isNegative() != B.isNegative())
2849
0
        return Quo - 1;
2850
0
      return Quo;
2851
0
    }
2852
0
    if (Rem.isNegative() != B.isNegative())
2853
0
      return Quo;
2854
0
    return Quo + 1;
2855
0
  }
2856
0
  // Currently sdiv rounds towards zero.
2857
0
  case APInt::Rounding::TOWARD_ZERO:
2858
0
    return A.sdiv(B);
2859
0
  }
2860
0
  llvm_unreachable("Unknown APInt::Rounding enum");
2861
0
}
2862
2863
Optional<APInt>
2864
llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2865
0
                                           unsigned RangeWidth) {
2866
0
  unsigned CoeffWidth = A.getBitWidth();
2867
0
  assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2868
0
  assert(RangeWidth <= CoeffWidth &&
2869
0
         "Value range width should be less than coefficient width");
2870
0
  assert(RangeWidth > 1 && "Value range bit width should be > 1");
2871
0
2872
0
  LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2873
0
                    << "x + " << C << ", rw:" << RangeWidth << '\n');
2874
0
2875
0
  // Identify 0 as a (non)solution immediately.
2876
0
  if (C.sextOrTrunc(RangeWidth).isNullValue() ) {
2877
0
    LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2878
0
    return APInt(CoeffWidth, 0);
2879
0
  }
2880
0
2881
0
  // The result of APInt arithmetic has the same bit width as the operands,
2882
0
  // so it can actually lose high bits. A product of two n-bit integers needs
2883
0
  // 2n-1 bits to represent the full value.
2884
0
  // The operation done below (on quadratic coefficients) that can produce
2885
0
  // the largest value is the evaluation of the equation during bisection,
2886
0
  // which needs 3 times the bitwidth of the coefficient, so the total number
2887
0
  // of required bits is 3n.
2888
0
  //
2889
0
  // The purpose of this extension is to simulate the set Z of all integers,
2890
0
  // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2891
0
  // and negative numbers (not so much in a modulo arithmetic). The method
2892
0
  // used to solve the equation is based on the standard formula for real
2893
0
  // numbers, and uses the concepts of "positive" and "negative" with their
2894
0
  // usual meanings.
2895
0
  CoeffWidth *= 3;
2896
0
  A = A.sext(CoeffWidth);
2897
0
  B = B.sext(CoeffWidth);
2898
0
  C = C.sext(CoeffWidth);
2899
0
2900
0
  // Make A > 0 for simplicity. Negate cannot overflow at this point because
2901
0
  // the bit width has increased.
2902
0
  if (A.isNegative()) {
2903
0
    A.negate();
2904
0
    B.negate();
2905
0
    C.negate();
2906
0
  }
2907
0
2908
0
  // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2909
0
  // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2910
0
  // and R = 2^BitWidth.
2911
0
  // Since we're trying not only to find exact solutions, but also values
2912
0
  // that "wrap around", such a set will always have a solution, i.e. an x
2913
0
  // that satisfies at least one of the equations, or such that |q(x)|
2914
0
  // exceeds kR, while |q(x-1)| for the same k does not.
2915
0
  //
2916
0
  // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2917
0
  // positive solution n (in the above sense), and also such that the n
2918
0
  // will be the least among all solutions corresponding to k = 0, 1, ...
2919
0
  // (more precisely, the least element in the set
2920
0
  //   { n(k) | k is such that a solution n(k) exists }).
2921
0
  //
2922
0
  // Consider the parabola (over real numbers) that corresponds to the
2923
0
  // quadratic equation. Since A > 0, the arms of the parabola will point
2924
0
  // up. Picking different values of k will shift it up and down by R.
2925
0
  //
2926
0
  // We want to shift the parabola in such a way as to reduce the problem
2927
0
  // of solving q(x) = kR to solving shifted_q(x) = 0.
2928
0
  // (The interesting solutions are the ceilings of the real number
2929
0
  // solutions.)
2930
0
  APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2931
0
  APInt TwoA = 2 * A;
2932
0
  APInt SqrB = B * B;
2933
0
  bool PickLow;
2934
0
2935
0
  auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2936
0
    assert(A.isStrictlyPositive());
2937
0
    APInt T = V.abs().urem(A);
2938
0
    if (T.isNullValue())
2939
0
      return V;
2940
0
    return V.isNegative() ? V+T : V+(A-T);
2941
0
  };
2942
0
2943
0
  // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2944
0
  // iff B is positive.
2945
0
  if (B.isNonNegative()) {
2946
0
    // If B >= 0, the vertex it at a negative location (or at 0), so in
2947
0
    // order to have a non-negative solution we need to pick k that makes
2948
0
    // C-kR negative. To satisfy all the requirements for the solution
2949
0
    // that we are looking for, it needs to be closest to 0 of all k.
2950
0
    C = C.srem(R);
2951
0
    if (C.isStrictlyPositive())
2952
0
      C -= R;
2953
0
    // Pick the greater solution.
2954
0
    PickLow = false;
2955
0
  } else {
2956
0
    // If B < 0, the vertex is at a positive location. For any solution
2957
0
    // to exist, the discriminant must be non-negative. This means that
2958
0
    // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2959
0
    // lower bound on values of k: kR >= C - B^2/4A.
2960
0
    APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2961
0
    // Round LowkR up (towards +inf) to the nearest kR.
2962
0
    LowkR = RoundUp(LowkR, R);
2963
0
2964
0
    // If there exists k meeting the condition above, and such that
2965
0
    // C-kR > 0, there will be two positive real number solutions of
2966
0
    // q(x) = kR. Out of all such values of k, pick the one that makes
2967
0
    // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2968
0
    // In other words, find maximum k such that LowkR <= kR < C.
2969
0
    if (C.sgt(LowkR)) {
2970
0
      // If LowkR < C, then such a k is guaranteed to exist because
2971
0
      // LowkR itself is a multiple of R.
2972
0
      C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2973
0
      // Pick the smaller solution.
2974
0
      PickLow = true;
2975
0
    } else {
2976
0
      // If C-kR < 0 for all potential k's, it means that one solution
2977
0
      // will be negative, while the other will be positive. The positive
2978
0
      // solution will shift towards 0 if the parabola is moved up.
2979
0
      // Pick the kR closest to the lower bound (i.e. make C-kR closest
2980
0
      // to 0, or in other words, out of all parabolas that have solutions,
2981
0
      // pick the one that is the farthest "up").
2982
0
      // Since LowkR is itself a multiple of R, simply take C-LowkR.
2983
0
      C -= LowkR;
2984
0
      // Pick the greater solution.
2985
0
      PickLow = false;
2986
0
    }
2987
0
  }
2988
0
2989
0
  LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2990
0
                    << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2991
0
2992
0
  APInt D = SqrB - 4*A*C;
2993
0
  assert(D.isNonNegative() && "Negative discriminant");
2994
0
  APInt SQ = D.sqrt();
2995
0
2996
0
  APInt Q = SQ * SQ;
2997
0
  bool InexactSQ = Q != D;
2998
0
  // The calculated SQ may actually be greater than the exact (non-integer)
2999
0
  // value. If that's the case, decrement SQ to get a value that is lower.
3000
0
  if (Q.sgt(D))
3001
0
    SQ -= 1;
3002
0
3003
0
  APInt X;
3004
0
  APInt Rem;
3005
0
3006
0
  // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
3007
0
  // When using the quadratic formula directly, the calculated low root
3008
0
  // may be greater than the exact one, since we would be subtracting SQ.
3009
0
  // To make sure that the calculated root is not greater than the exact
3010
0
  // one, subtract SQ+1 when calculating the low root (for inexact value
3011
0
  // of SQ).
3012
0
  if (PickLow)
3013
0
    APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
3014
0
  else
3015
0
    APInt::sdivrem(-B + SQ, TwoA, X, Rem);
3016
0
3017
0
  // The updated coefficients should be such that the (exact) solution is
3018
0
  // positive. Since APInt division rounds towards 0, the calculated one
3019
0
  // can be 0, but cannot be negative.
3020
0
  assert(X.isNonNegative() && "Solution should be non-negative");
3021
0
3022
0
  if (!InexactSQ && Rem.isNullValue()) {
3023
0
    LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
3024
0
    return X;
3025
0
  }
3026
0
3027
0
  assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
3028
0
  // The exact value of the square root of D should be between SQ and SQ+1.
3029
0
  // This implies that the solution should be between that corresponding to
3030
0
  // SQ (i.e. X) and that corresponding to SQ+1.
3031
0
  //
3032
0
  // The calculated X cannot be greater than the exact (real) solution.
3033
0
  // Actually it must be strictly less than the exact solution, while
3034
0
  // X+1 will be greater than or equal to it.
3035
0
3036
0
  APInt VX = (A*X + B)*X + C;
3037
0
  APInt VY = VX + TwoA*X + A + B;
3038
0
  bool SignChange = VX.isNegative() != VY.isNegative() ||
3039
0
                    VX.isNullValue() != VY.isNullValue();
3040
0
  // If the sign did not change between X and X+1, X is not a valid solution.
3041
0
  // This could happen when the actual (exact) roots don't have an integer
3042
0
  // between them, so they would both be contained between X and X+1.
3043
0
  if (!SignChange) {
3044
0
    LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
3045
0
    return None;
3046
0
  }
3047
0
3048
0
  X += 1;
3049
0
  LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
3050
0
  return X;
3051
0
}
3052
3053
Optional<unsigned>
3054
0
llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
3055
0
  assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
3056
0
  if (A == B)
3057
0
    return llvm::None;
3058
0
  return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
3059
0
}
3060
3061
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3062
/// with the integer held in IntVal.
3063
void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3064
0
                            unsigned StoreBytes) {
3065
0
  assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3066
0
  const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3067
0
3068
0
  if (sys::IsLittleEndianHost) {
3069
0
    // Little-endian host - the source is ordered from LSB to MSB.  Order the
3070
0
    // destination from LSB to MSB: Do a straight copy.
3071
0
    memcpy(Dst, Src, StoreBytes);
3072
0
  } else {
3073
0
    // Big-endian host - the source is an array of 64 bit words ordered from
3074
0
    // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3075
0
    // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3076
0
    while (StoreBytes > sizeof(uint64_t)) {
3077
0
      StoreBytes -= sizeof(uint64_t);
3078
0
      // May not be aligned so use memcpy.
3079
0
      memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3080
0
      Src += sizeof(uint64_t);
3081
0
    }
3082
0
3083
0
    memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3084
0
  }
3085
0
}
3086
3087
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3088
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3089
0
void llvm::LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
3090
0
  assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3091
0
  uint8_t *Dst = reinterpret_cast<uint8_t *>(
3092
0
                   const_cast<uint64_t *>(IntVal.getRawData()));
3093
0
3094
0
  if (sys::IsLittleEndianHost)
3095
0
    // Little-endian host - the destination must be ordered from LSB to MSB.
3096
0
    // The source is ordered from LSB to MSB: Do a straight copy.
3097
0
    memcpy(Dst, Src, LoadBytes);
3098
0
  else {
3099
0
    // Big-endian - the destination is an array of 64 bit words ordered from
3100
0
    // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3101
0
    // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3102
0
    // a word.
3103
0
    while (LoadBytes > sizeof(uint64_t)) {
3104
0
      LoadBytes -= sizeof(uint64_t);
3105
0
      // May not be aligned so use memcpy.
3106
0
      memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3107
0
      Dst += sizeof(uint64_t);
3108
0
    }
3109
0
3110
0
    memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3111
0
  }
3112
0
}