Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/include/llvm/Support/MathExtras.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains some functions that are useful for math stuff.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14
#define LLVM_SUPPORT_MATHEXTRAS_H
15
16
#include "llvm/Support/Compiler.h"
17
#include <algorithm>
18
#include <cassert>
19
#include <climits>
20
#include <cmath>
21
#include <cstdint>
22
#include <cstring>
23
#include <limits>
24
#include <type_traits>
25
26
#ifdef __ANDROID_NDK__
27
#include <android/api-level.h>
28
#endif
29
30
#ifdef _MSC_VER
31
// Declare these intrinsics manually rather including intrin.h. It's very
32
// expensive, and MathExtras.h is popular.
33
// #include <intrin.h>
34
extern "C" {
35
unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask);
36
unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask);
37
unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask);
38
unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask);
39
}
40
#endif
41
42
namespace llvm {
43
44
/// The behavior an operation has on an input of 0.
45
enum ZeroBehavior {
46
  /// The returned value is undefined.
47
  ZB_Undefined,
48
  /// The returned value is numeric_limits<T>::max()
49
  ZB_Max,
50
  /// The returned value is numeric_limits<T>::digits
51
  ZB_Width
52
};
53
54
/// Mathematical constants.
55
namespace numbers {
56
// TODO: Track C++20 std::numbers.
57
// TODO: Favor using the hexadecimal FP constants (requires C++17).
58
constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
59
                 egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
60
                 ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
61
                 ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
62
                 log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0)
63
                 log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
64
                 pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
65
                 inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
66
                 sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
67
                 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
68
                 sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
69
                 inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
70
                 sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
71
                 inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1)
72
                 phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
73
constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
74
                egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
75
                ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
76
                ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
77
                log2ef      = 1.44269504F, // (0x1.715476P+0)
78
                log10ef     = .434294482F, // (0x1.bcb7b2P-2)
79
                pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
80
                inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
81
                sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
82
                inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
83
                sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
84
                inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1)
85
                sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
86
                inv_sqrt3f  = .577350269F, // (0x1.279a74P-1)
87
                phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
88
} // namespace numbers
89
90
namespace detail {
91
template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
92
  static unsigned count(T Val, ZeroBehavior) {
93
    if (!Val)
94
      return std::numeric_limits<T>::digits;
95
    if (Val & 0x1)
96
      return 0;
97
98
    // Bisection method.
99
    unsigned ZeroBits = 0;
100
    T Shift = std::numeric_limits<T>::digits >> 1;
101
    T Mask = std::numeric_limits<T>::max() >> Shift;
102
    while (Shift) {
103
      if ((Val & Mask) == 0) {
104
        Val >>= Shift;
105
        ZeroBits |= Shift;
106
      }
107
      Shift >>= 1;
108
      Mask >>= Shift;
109
    }
110
    return ZeroBits;
111
  }
112
};
113
114
#if defined(__GNUC__) || defined(_MSC_VER)
115
template <typename T> struct TrailingZerosCounter<T, 4> {
116
  static unsigned count(T Val, ZeroBehavior ZB) {
117
    if (ZB != ZB_Undefined && Val == 0)
118
      return 32;
119
120
#if __has_builtin(__builtin_ctz) || defined(__GNUC__)
121
    return __builtin_ctz(Val);
122
#elif defined(_MSC_VER)
123
    unsigned long Index;
124
    _BitScanForward(&Index, Val);
125
    return Index;
126
#endif
127
  }
128
};
129
130
#if !defined(_MSC_VER) || defined(_M_X64)
131
template <typename T> struct TrailingZerosCounter<T, 8> {
132
0
  static unsigned count(T Val, ZeroBehavior ZB) {
133
0
    if (ZB != ZB_Undefined && Val == 0)
134
0
      return 64;
135
0
136
0
#if __has_builtin(__builtin_ctzll) || defined(__GNUC__)
137
0
    return __builtin_ctzll(Val);
138
#elif defined(_MSC_VER)
139
    unsigned long Index;
140
    _BitScanForward64(&Index, Val);
141
    return Index;
142
#endif
143
  }
144
};
145
#endif
146
#endif
147
} // namespace detail
148
149
/// Count number of 0's from the least significant bit to the most
150
///   stopping at the first 1.
151
///
152
/// Only unsigned integral types are allowed.
153
///
154
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
155
///   valid arguments.
156
template <typename T>
157
0
unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
158
0
  static_assert(std::numeric_limits<T>::is_integer &&
159
0
                    !std::numeric_limits<T>::is_signed,
160
0
                "Only unsigned integral types are allowed.");
161
0
  return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
162
0
}
163
164
namespace detail {
165
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
166
  static unsigned count(T Val, ZeroBehavior) {
167
    if (!Val)
168
      return std::numeric_limits<T>::digits;
169
170
    // Bisection method.
171
    unsigned ZeroBits = 0;
172
    for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
173
      T Tmp = Val >> Shift;
174
      if (Tmp)
175
        Val = Tmp;
176
      else
177
        ZeroBits |= Shift;
178
    }
179
    return ZeroBits;
180
  }
181
};
182
183
#if defined(__GNUC__) || defined(_MSC_VER)
184
template <typename T> struct LeadingZerosCounter<T, 4> {
185
0
  static unsigned count(T Val, ZeroBehavior ZB) {
186
0
    if (ZB != ZB_Undefined && Val == 0)
187
0
      return 32;
188
0
189
0
#if __has_builtin(__builtin_clz) || defined(__GNUC__)
190
0
    return __builtin_clz(Val);
191
#elif defined(_MSC_VER)
192
    unsigned long Index;
193
    _BitScanReverse(&Index, Val);
194
    return Index ^ 31;
195
#endif
196
  }
197
};
198
199
#if !defined(_MSC_VER) || defined(_M_X64)
200
template <typename T> struct LeadingZerosCounter<T, 8> {
201
0
  static unsigned count(T Val, ZeroBehavior ZB) {
202
0
    if (ZB != ZB_Undefined && Val == 0)
203
0
      return 64;
204
0
205
0
#if __has_builtin(__builtin_clzll) || defined(__GNUC__)
206
0
    return __builtin_clzll(Val);
207
#elif defined(_MSC_VER)
208
    unsigned long Index;
209
    _BitScanReverse64(&Index, Val);
210
    return Index ^ 63;
211
#endif
212
  }
213
};
214
#endif
215
#endif
216
} // namespace detail
217
218
/// Count number of 0's from the most significant bit to the least
219
///   stopping at the first 1.
220
///
221
/// Only unsigned integral types are allowed.
222
///
223
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
224
///   valid arguments.
225
template <typename T>
226
0
unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
227
0
  static_assert(std::numeric_limits<T>::is_integer &&
228
0
                    !std::numeric_limits<T>::is_signed,
229
0
                "Only unsigned integral types are allowed.");
230
0
  return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
231
0
}
Unexecuted instantiation: _ZN4llvm17countLeadingZerosIjEEjT_NS_12ZeroBehaviorE
Unexecuted instantiation: _ZN4llvm17countLeadingZerosImEEjT_NS_12ZeroBehaviorE
232
233
/// Get the index of the first set bit starting from the least
234
///   significant bit.
235
///
236
/// Only unsigned integral types are allowed.
237
///
238
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
239
///   valid arguments.
240
0
template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
241
0
  if (ZB == ZB_Max && Val == 0)
242
0
    return std::numeric_limits<T>::max();
243
0
244
0
  return countTrailingZeros(Val, ZB_Undefined);
245
0
}
246
247
/// Create a bitmask with the N right-most bits set to 1, and all other
248
/// bits set to 0.  Only unsigned types are allowed.
249
0
template <typename T> T maskTrailingOnes(unsigned N) {
250
0
  static_assert(std::is_unsigned<T>::value, "Invalid type!");
251
0
  const unsigned Bits = CHAR_BIT * sizeof(T);
252
0
  assert(N <= Bits && "Invalid bit index");
253
0
  return N == 0 ? 0 : (T(-1) >> (Bits - N));
254
0
}
Unexecuted instantiation: _ZN4llvm16maskTrailingOnesImEET_j
Unexecuted instantiation: _ZN4llvm16maskTrailingOnesIhEET_j
255
256
/// Create a bitmask with the N left-most bits set to 1, and all other
257
/// bits set to 0.  Only unsigned types are allowed.
258
0
template <typename T> T maskLeadingOnes(unsigned N) {
259
0
  return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
260
0
}
261
262
/// Create a bitmask with the N right-most bits set to 0, and all other
263
/// bits set to 1.  Only unsigned types are allowed.
264
0
template <typename T> T maskTrailingZeros(unsigned N) {
265
0
  return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
266
0
}
267
268
/// Create a bitmask with the N left-most bits set to 0, and all other
269
/// bits set to 1.  Only unsigned types are allowed.
270
template <typename T> T maskLeadingZeros(unsigned N) {
271
  return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
272
}
273
274
/// Get the index of the last set bit starting from the least
275
///   significant bit.
276
///
277
/// Only unsigned integral types are allowed.
278
///
279
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
280
///   valid arguments.
281
0
template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
282
0
  if (ZB == ZB_Max && Val == 0)
283
0
    return std::numeric_limits<T>::max();
284
0
285
0
  // Use ^ instead of - because both gcc and llvm can remove the associated ^
286
0
  // in the __builtin_clz intrinsic on x86.
287
0
  return countLeadingZeros(Val, ZB_Undefined) ^
288
0
         (std::numeric_limits<T>::digits - 1);
289
0
}
290
291
/// Macro compressed bit reversal table for 256 bits.
292
///
293
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
294
static const unsigned char BitReverseTable256[256] = {
295
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
296
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
297
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
298
  R6(0), R6(2), R6(1), R6(3)
299
#undef R2
300
#undef R4
301
#undef R6
302
};
303
304
/// Reverse the bits in \p Val.
305
template <typename T>
306
T reverseBits(T Val) {
307
  unsigned char in[sizeof(Val)];
308
  unsigned char out[sizeof(Val)];
309
  std::memcpy(in, &Val, sizeof(Val));
310
  for (unsigned i = 0; i < sizeof(Val); ++i)
311
    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
312
  std::memcpy(&Val, out, sizeof(Val));
313
  return Val;
314
}
315
316
#if __has_builtin(__builtin_bitreverse8)
317
template<>
318
0
inline uint8_t reverseBits<uint8_t>(uint8_t Val) {
319
0
  return __builtin_bitreverse8(Val);
320
0
}
321
#endif
322
323
#if __has_builtin(__builtin_bitreverse16)
324
template<>
325
0
inline uint16_t reverseBits<uint16_t>(uint16_t Val) {
326
0
  return __builtin_bitreverse16(Val);
327
0
}
328
#endif
329
330
#if __has_builtin(__builtin_bitreverse32)
331
template<>
332
0
inline uint32_t reverseBits<uint32_t>(uint32_t Val) {
333
0
  return __builtin_bitreverse32(Val);
334
0
}
335
#endif
336
337
#if __has_builtin(__builtin_bitreverse64)
338
template<>
339
0
inline uint64_t reverseBits<uint64_t>(uint64_t Val) {
340
0
  return __builtin_bitreverse64(Val);
341
0
}
342
#endif
343
344
// NOTE: The following support functions use the _32/_64 extensions instead of
345
// type overloading so that signed and unsigned integers can be used without
346
// ambiguity.
347
348
/// Return the high 32 bits of a 64 bit value.
349
0
constexpr inline uint32_t Hi_32(uint64_t Value) {
350
0
  return static_cast<uint32_t>(Value >> 32);
351
0
}
352
353
/// Return the low 32 bits of a 64 bit value.
354
0
constexpr inline uint32_t Lo_32(uint64_t Value) {
355
0
  return static_cast<uint32_t>(Value);
356
0
}
357
358
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
359
0
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
360
0
  return ((uint64_t)High << 32) | (uint64_t)Low;
361
0
}
362
363
/// Checks if an integer fits into the given bit width.
364
template <unsigned N> constexpr inline bool isInt(int64_t x) {
365
  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
366
}
367
// Template specializations to get better code for common cases.
368
0
template <> constexpr inline bool isInt<8>(int64_t x) {
369
0
  return static_cast<int8_t>(x) == x;
370
0
}
371
0
template <> constexpr inline bool isInt<16>(int64_t x) {
372
0
  return static_cast<int16_t>(x) == x;
373
0
}
374
0
template <> constexpr inline bool isInt<32>(int64_t x) {
375
0
  return static_cast<int32_t>(x) == x;
376
0
}
377
378
/// Checks if a signed integer is an N bit number shifted left by S.
379
template <unsigned N, unsigned S>
380
constexpr inline bool isShiftedInt(int64_t x) {
381
  static_assert(
382
      N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
383
  static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
384
  return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
385
}
386
387
/// Checks if an unsigned integer fits into the given bit width.
388
///
389
/// This is written as two functions rather than as simply
390
///
391
///   return N >= 64 || X < (UINT64_C(1) << N);
392
///
393
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
394
/// left too many places.
395
template <unsigned N>
396
constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) {
397
  static_assert(N > 0, "isUInt<0> doesn't make sense");
398
  return X < (UINT64_C(1) << (N));
399
}
400
template <unsigned N>
401
constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t X) {
402
  return true;
403
}
404
405
// Template specializations to get better code for common cases.
406
0
template <> constexpr inline bool isUInt<8>(uint64_t x) {
407
0
  return static_cast<uint8_t>(x) == x;
408
0
}
409
0
template <> constexpr inline bool isUInt<16>(uint64_t x) {
410
0
  return static_cast<uint16_t>(x) == x;
411
0
}
412
0
template <> constexpr inline bool isUInt<32>(uint64_t x) {
413
0
  return static_cast<uint32_t>(x) == x;
414
0
}
415
416
/// Checks if a unsigned integer is an N bit number shifted left by S.
417
template <unsigned N, unsigned S>
418
constexpr inline bool isShiftedUInt(uint64_t x) {
419
  static_assert(
420
      N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
421
  static_assert(N + S <= 64,
422
                "isShiftedUInt<N, S> with N + S > 64 is too wide.");
423
  // Per the two static_asserts above, S must be strictly less than 64.  So
424
  // 1 << S is not undefined behavior.
425
  return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
426
}
427
428
/// Gets the maximum value for a N-bit unsigned integer.
429
0
inline uint64_t maxUIntN(uint64_t N) {
430
0
  assert(N > 0 && N <= 64 && "integer width out of range");
431
0
432
0
  // uint64_t(1) << 64 is undefined behavior, so we can't do
433
0
  //   (uint64_t(1) << N) - 1
434
0
  // without checking first that N != 64.  But this works and doesn't have a
435
0
  // branch.
436
0
  return UINT64_MAX >> (64 - N);
437
0
}
438
439
/// Gets the minimum value for a N-bit signed integer.
440
0
inline int64_t minIntN(int64_t N) {
441
0
  assert(N > 0 && N <= 64 && "integer width out of range");
442
0
443
0
  return -(UINT64_C(1)<<(N-1));
444
0
}
445
446
/// Gets the maximum value for a N-bit signed integer.
447
0
inline int64_t maxIntN(int64_t N) {
448
0
  assert(N > 0 && N <= 64 && "integer width out of range");
449
0
450
0
  // This relies on two's complement wraparound when N == 64, so we convert to
451
0
  // int64_t only at the very end to avoid UB.
452
0
  return (UINT64_C(1) << (N - 1)) - 1;
453
0
}
454
455
/// Checks if an unsigned integer fits into the given (dynamic) bit width.
456
0
inline bool isUIntN(unsigned N, uint64_t x) {
457
0
  return N >= 64 || x <= maxUIntN(N);
458
0
}
459
460
/// Checks if an signed integer fits into the given (dynamic) bit width.
461
0
inline bool isIntN(unsigned N, int64_t x) {
462
0
  return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
463
0
}
464
465
/// Return true if the argument is a non-empty sequence of ones starting at the
466
/// least significant bit with the remainder zero (32 bit version).
467
/// Ex. isMask_32(0x0000FFFFU) == true.
468
0
constexpr inline bool isMask_32(uint32_t Value) {
469
0
  return Value && ((Value + 1) & Value) == 0;
470
0
}
471
472
/// Return true if the argument is a non-empty sequence of ones starting at the
473
/// least significant bit with the remainder zero (64 bit version).
474
0
constexpr inline bool isMask_64(uint64_t Value) {
475
0
  return Value && ((Value + 1) & Value) == 0;
476
0
}
477
478
/// Return true if the argument contains a non-empty sequence of ones with the
479
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
480
0
constexpr inline bool isShiftedMask_32(uint32_t Value) {
481
0
  return Value && isMask_32((Value - 1) | Value);
482
0
}
483
484
/// Return true if the argument contains a non-empty sequence of ones with the
485
/// remainder zero (64 bit version.)
486
0
constexpr inline bool isShiftedMask_64(uint64_t Value) {
487
0
  return Value && isMask_64((Value - 1) | Value);
488
0
}
489
490
/// Return true if the argument is a power of two > 0.
491
/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
492
0
constexpr inline bool isPowerOf2_32(uint32_t Value) {
493
0
  return Value && !(Value & (Value - 1));
494
0
}
495
496
/// Return true if the argument is a power of two > 0 (64 bit edition.)
497
0
constexpr inline bool isPowerOf2_64(uint64_t Value) {
498
0
  return Value && !(Value & (Value - 1));
499
0
}
500
501
/// Count the number of ones from the most significant bit to the first
502
/// zero bit.
503
///
504
/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
505
/// Only unsigned integral types are allowed.
506
///
507
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
508
/// ZB_Undefined are valid arguments.
509
template <typename T>
510
0
unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
511
0
  static_assert(std::numeric_limits<T>::is_integer &&
512
0
                    !std::numeric_limits<T>::is_signed,
513
0
                "Only unsigned integral types are allowed.");
514
0
  return countLeadingZeros<T>(~Value, ZB);
515
0
}
516
517
/// Count the number of ones from the least significant bit to the first
518
/// zero bit.
519
///
520
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
521
/// Only unsigned integral types are allowed.
522
///
523
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
524
/// ZB_Undefined are valid arguments.
525
template <typename T>
526
0
unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
527
0
  static_assert(std::numeric_limits<T>::is_integer &&
528
0
                    !std::numeric_limits<T>::is_signed,
529
0
                "Only unsigned integral types are allowed.");
530
0
  return countTrailingZeros<T>(~Value, ZB);
531
0
}
532
533
namespace detail {
534
template <typename T, std::size_t SizeOfT> struct PopulationCounter {
535
  static unsigned count(T Value) {
536
    // Generic version, forward to 32 bits.
537
    static_assert(SizeOfT <= 4, "Not implemented!");
538
#if defined(__GNUC__)
539
    return __builtin_popcount(Value);
540
#else
541
    uint32_t v = Value;
542
    v = v - ((v >> 1) & 0x55555555);
543
    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
544
    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
545
#endif
546
  }
547
};
548
549
template <typename T> struct PopulationCounter<T, 8> {
550
0
  static unsigned count(T Value) {
551
0
#if defined(__GNUC__)
552
0
    return __builtin_popcountll(Value);
553
#else
554
    uint64_t v = Value;
555
    v = v - ((v >> 1) & 0x5555555555555555ULL);
556
    v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
557
    v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
558
    return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
559
#endif
560
  }
561
};
562
} // namespace detail
563
564
/// Count the number of set bits in a value.
565
/// Ex. countPopulation(0xF000F000) = 8
566
/// Returns 0 if the word is zero.
567
template <typename T>
568
0
inline unsigned countPopulation(T Value) {
569
0
  static_assert(std::numeric_limits<T>::is_integer &&
570
0
                    !std::numeric_limits<T>::is_signed,
571
0
                "Only unsigned integral types are allowed.");
572
0
  return detail::PopulationCounter<T, sizeof(T)>::count(Value);
573
0
}
574
575
/// Compile time Log2.
576
/// Valid only for positive powers of two.
577
0
template <size_t kValue> constexpr inline size_t CTLog2() {
578
0
  static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
579
0
                "Value is not a valid power of 2");
580
0
  return 1 + CTLog2<kValue / 2>();
581
0
}
Unexecuted instantiation: _ZN4llvm6CTLog2ILm2EEEmv
Unexecuted instantiation: _ZN4llvm6CTLog2ILm4EEEmv
Unexecuted instantiation: _ZN4llvm6CTLog2ILm8EEEmv
582
583
0
template <> constexpr inline size_t CTLog2<1>() { return 0; }
584
585
/// Return the log base 2 of the specified value.
586
0
inline double Log2(double Value) {
587
0
#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
588
0
  return __builtin_log(Value) / __builtin_log(2.0);
589
0
#else
590
0
  return log2(Value);
591
0
#endif
592
0
}
593
594
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
595
/// (32 bit edition.)
596
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
597
0
inline unsigned Log2_32(uint32_t Value) {
598
0
  return 31 - countLeadingZeros(Value);
599
0
}
600
601
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
602
/// (64 bit edition.)
603
0
inline unsigned Log2_64(uint64_t Value) {
604
0
  return 63 - countLeadingZeros(Value);
605
0
}
606
607
/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
608
/// (32 bit edition).
609
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
610
0
inline unsigned Log2_32_Ceil(uint32_t Value) {
611
0
  return 32 - countLeadingZeros(Value - 1);
612
0
}
613
614
/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
615
/// (64 bit edition.)
616
0
inline unsigned Log2_64_Ceil(uint64_t Value) {
617
0
  return 64 - countLeadingZeros(Value - 1);
618
0
}
619
620
/// Return the greatest common divisor of the values using Euclid's algorithm.
621
template <typename T>
622
16.6k
inline T greatestCommonDivisor(T A, T B) {
623
35.7k
  while (B) {
624
19.0k
    T Tmp = B;
625
19.0k
    B = A % B;
626
19.0k
    A = Tmp;
627
19.0k
  }
628
16.6k
  return A;
629
16.6k
}
_ZN4llvm21greatestCommonDivisorImEET_S1_S1_
Line
Count
Source
622
1.08k
inline T greatestCommonDivisor(T A, T B) {
623
2.76k
  while (B) {
624
1.67k
    T Tmp = B;
625
1.67k
    B = A % B;
626
1.67k
    A = Tmp;
627
1.67k
  }
628
1.08k
  return A;
629
1.08k
}
_ZN4llvm21greatestCommonDivisorIlEET_S1_S1_
Line
Count
Source
622
15.5k
inline T greatestCommonDivisor(T A, T B) {
623
32.9k
  while (B) {
624
17.3k
    T Tmp = B;
625
17.3k
    B = A % B;
626
17.3k
    A = Tmp;
627
17.3k
  }
628
15.5k
  return A;
629
15.5k
}
630
631
1.08k
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
632
1.08k
  return greatestCommonDivisor<uint64_t>(A, B);
633
1.08k
}
634
635
/// This function takes a 64-bit integer and returns the bit equivalent double.
636
0
inline double BitsToDouble(uint64_t Bits) {
637
0
  double D;
638
0
  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
639
0
  memcpy(&D, &Bits, sizeof(Bits));
640
0
  return D;
641
0
}
642
643
/// This function takes a 32-bit integer and returns the bit equivalent float.
644
0
inline float BitsToFloat(uint32_t Bits) {
645
0
  float F;
646
0
  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
647
0
  memcpy(&F, &Bits, sizeof(Bits));
648
0
  return F;
649
0
}
650
651
/// This function takes a double and returns the bit equivalent 64-bit integer.
652
/// Note that copying doubles around changes the bits of NaNs on some hosts,
653
/// notably x86, so this routine cannot be used if these bits are needed.
654
0
inline uint64_t DoubleToBits(double Double) {
655
0
  uint64_t Bits;
656
0
  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
657
0
  memcpy(&Bits, &Double, sizeof(Double));
658
0
  return Bits;
659
0
}
660
661
/// This function takes a float and returns the bit equivalent 32-bit integer.
662
/// Note that copying floats around changes the bits of NaNs on some hosts,
663
/// notably x86, so this routine cannot be used if these bits are needed.
664
0
inline uint32_t FloatToBits(float Float) {
665
0
  uint32_t Bits;
666
0
  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
667
0
  memcpy(&Bits, &Float, sizeof(Float));
668
0
  return Bits;
669
0
}
670
671
/// A and B are either alignments or offsets. Return the minimum alignment that
672
/// may be assumed after adding the two together.
673
0
constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
674
0
  // The largest power of 2 that divides both A and B.
675
0
  //
676
0
  // Replace "-Value" by "1+~Value" in the following commented code to avoid
677
0
  // MSVC warning C4146
678
0
  //    return (A | B) & -(A | B);
679
0
  return (A | B) & (1 + ~(A | B));
680
0
}
681
682
/// Returns the next power of two (in 64-bits) that is strictly greater than A.
683
/// Returns zero on overflow.
684
1
inline uint64_t NextPowerOf2(uint64_t A) {
685
1
  A |= (A >> 1);
686
1
  A |= (A >> 2);
687
1
  A |= (A >> 4);
688
1
  A |= (A >> 8);
689
1
  A |= (A >> 16);
690
1
  A |= (A >> 32);
691
1
  return A + 1;
692
1
}
693
694
/// Returns the power of two which is less than or equal to the given value.
695
/// Essentially, it is a floor operation across the domain of powers of two.
696
0
inline uint64_t PowerOf2Floor(uint64_t A) {
697
0
  if (!A) return 0;
698
0
  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
699
0
}
700
701
/// Returns the power of two which is greater than or equal to the given value.
702
/// Essentially, it is a ceil operation across the domain of powers of two.
703
0
inline uint64_t PowerOf2Ceil(uint64_t A) {
704
0
  if (!A)
705
0
    return 0;
706
0
  return NextPowerOf2(A - 1);
707
0
}
708
709
/// Returns the next integer (mod 2**64) that is greater than or equal to
710
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
711
///
712
/// If non-zero \p Skew is specified, the return value will be a minimal
713
/// integer that is greater than or equal to \p Value and equal to
714
/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
715
/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
716
///
717
/// Examples:
718
/// \code
719
///   alignTo(5, 8) = 8
720
///   alignTo(17, 8) = 24
721
///   alignTo(~0LL, 8) = 0
722
///   alignTo(321, 255) = 510
723
///
724
///   alignTo(5, 8, 7) = 7
725
///   alignTo(17, 8, 1) = 17
726
///   alignTo(~0LL, 8, 3) = 3
727
///   alignTo(321, 255, 42) = 552
728
/// \endcode
729
0
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
730
0
  assert(Align != 0u && "Align can't be 0.");
731
0
  Skew %= Align;
732
0
  return (Value + Align - 1 - Skew) / Align * Align + Skew;
733
0
}
734
735
/// Returns the next integer (mod 2**64) that is greater than or equal to
736
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
737
0
template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
738
0
  static_assert(Align != 0u, "Align must be non-zero");
739
0
  return (Value + Align - 1) / Align * Align;
740
0
}
741
742
/// Returns the integer ceil(Numerator / Denominator).
743
0
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
744
0
  return alignTo(Numerator, Denominator) / Denominator;
745
0
}
746
747
/// Returns the integer nearest(Numerator / Denominator).
748
0
inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
749
0
  return (Numerator + (Denominator / 2)) / Denominator;
750
0
}
751
752
/// Returns the largest uint64_t less than or equal to \p Value and is
753
/// \p Skew mod \p Align. \p Align must be non-zero
754
0
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
755
0
  assert(Align != 0u && "Align can't be 0.");
756
0
  Skew %= Align;
757
0
  return (Value - Skew) / Align * Align + Skew;
758
0
}
759
760
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
761
/// Requires 0 < B <= 32.
762
template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
763
  static_assert(B > 0, "Bit width can't be 0.");
764
  static_assert(B <= 32, "Bit width out of range.");
765
  return int32_t(X << (32 - B)) >> (32 - B);
766
}
767
768
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
769
/// Requires 0 < B < 32.
770
0
inline int32_t SignExtend32(uint32_t X, unsigned B) {
771
0
  assert(B > 0 && "Bit width can't be 0.");
772
0
  assert(B <= 32 && "Bit width out of range.");
773
0
  return int32_t(X << (32 - B)) >> (32 - B);
774
0
}
775
776
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
777
/// Requires 0 < B < 64.
778
template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
779
  static_assert(B > 0, "Bit width can't be 0.");
780
  static_assert(B <= 64, "Bit width out of range.");
781
  return int64_t(x << (64 - B)) >> (64 - B);
782
}
783
784
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
785
/// Requires 0 < B < 64.
786
0
inline int64_t SignExtend64(uint64_t X, unsigned B) {
787
0
  assert(B > 0 && "Bit width can't be 0.");
788
0
  assert(B <= 64 && "Bit width out of range.");
789
0
  return int64_t(X << (64 - B)) >> (64 - B);
790
0
}
791
792
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
793
/// value of the result.
794
template <typename T>
795
std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
796
  return std::max(X, Y) - std::min(X, Y);
797
}
798
799
/// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
800
/// maximum representable value of T on overflow.  ResultOverflowed indicates if
801
/// the result is larger than the maximum representable value of type T.
802
template <typename T>
803
std::enable_if_t<std::is_unsigned<T>::value, T>
804
SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
805
  bool Dummy;
806
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
807
  // Hacker's Delight, p. 29
808
  T Z = X + Y;
809
  Overflowed = (Z < X || Z < Y);
810
  if (Overflowed)
811
    return std::numeric_limits<T>::max();
812
  else
813
    return Z;
814
}
815
816
/// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
817
/// maximum representable value of T on overflow.  ResultOverflowed indicates if
818
/// the result is larger than the maximum representable value of type T.
819
template <typename T>
820
std::enable_if_t<std::is_unsigned<T>::value, T>
821
SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
822
  bool Dummy;
823
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
824
825
  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
826
  // because it fails for uint16_t (where multiplication can have undefined
827
  // behavior due to promotion to int), and requires a division in addition
828
  // to the multiplication.
829
830
  Overflowed = false;
831
832
  // Log2(Z) would be either Log2Z or Log2Z + 1.
833
  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
834
  // will necessarily be less than Log2Max as desired.
835
  int Log2Z = Log2_64(X) + Log2_64(Y);
836
  const T Max = std::numeric_limits<T>::max();
837
  int Log2Max = Log2_64(Max);
838
  if (Log2Z < Log2Max) {
839
    return X * Y;
840
  }
841
  if (Log2Z > Log2Max) {
842
    Overflowed = true;
843
    return Max;
844
  }
845
846
  // We're going to use the top bit, and maybe overflow one
847
  // bit past it. Multiply all but the bottom bit then add
848
  // that on at the end.
849
  T Z = (X >> 1) * Y;
850
  if (Z & ~(Max >> 1)) {
851
    Overflowed = true;
852
    return Max;
853
  }
854
  Z <<= 1;
855
  if (X & 1)
856
    return SaturatingAdd(Z, Y, ResultOverflowed);
857
858
  return Z;
859
}
860
861
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
862
/// the product. Clamp the result to the maximum representable value of T on
863
/// overflow. ResultOverflowed indicates if the result is larger than the
864
/// maximum representable value of type T.
865
template <typename T>
866
std::enable_if_t<std::is_unsigned<T>::value, T>
867
SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
868
  bool Dummy;
869
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
870
871
  T Product = SaturatingMultiply(X, Y, &Overflowed);
872
  if (Overflowed)
873
    return Product;
874
875
  return SaturatingAdd(A, Product, &Overflowed);
876
}
877
878
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
879
extern const float huge_valf;
880
881
882
/// Add two signed integers, computing the two's complement truncated result,
883
/// returning true if overflow occured.
884
template <typename T>
885
std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
886
#if __has_builtin(__builtin_add_overflow)
887
  return __builtin_add_overflow(X, Y, &Result);
888
#else
889
  // Perform the unsigned addition.
890
  using U = std::make_unsigned_t<T>;
891
  const U UX = static_cast<U>(X);
892
  const U UY = static_cast<U>(Y);
893
  const U UResult = UX + UY;
894
895
  // Convert to signed.
896
  Result = static_cast<T>(UResult);
897
898
  // Adding two positive numbers should result in a positive number.
899
  if (X > 0 && Y > 0)
900
    return Result <= 0;
901
  // Adding two negatives should result in a negative number.
902
  if (X < 0 && Y < 0)
903
    return Result >= 0;
904
  return false;
905
#endif
906
}
907
908
/// Subtract two signed integers, computing the two's complement truncated
909
/// result, returning true if an overflow ocurred.
910
template <typename T>
911
std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
912
#if __has_builtin(__builtin_sub_overflow)
913
  return __builtin_sub_overflow(X, Y, &Result);
914
#else
915
  // Perform the unsigned addition.
916
  using U = std::make_unsigned_t<T>;
917
  const U UX = static_cast<U>(X);
918
  const U UY = static_cast<U>(Y);
919
  const U UResult = UX - UY;
920
921
  // Convert to signed.
922
  Result = static_cast<T>(UResult);
923
924
  // Subtracting a positive number from a negative results in a negative number.
925
  if (X <= 0 && Y > 0)
926
    return Result >= 0;
927
  // Subtracting a negative number from a positive results in a positive number.
928
  if (X >= 0 && Y < 0)
929
    return Result <= 0;
930
  return false;
931
#endif
932
}
933
934
/// Multiply two signed integers, computing the two's complement truncated
935
/// result, returning true if an overflow ocurred.
936
template <typename T>
937
std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
938
  // Perform the unsigned multiplication on absolute values.
939
  using U = std::make_unsigned_t<T>;
940
  const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
941
  const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
942
  const U UResult = UX * UY;
943
944
  // Convert to signed.
945
  const bool IsNegative = (X < 0) ^ (Y < 0);
946
  Result = IsNegative ? (0 - UResult) : UResult;
947
948
  // If any of the args was 0, result is 0 and no overflow occurs.
949
  if (UX == 0 || UY == 0)
950
    return false;
951
952
  // UX and UY are in [1, 2^n], where n is the number of digits.
953
  // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
954
  // positive) divided by an argument compares to the other.
955
  if (IsNegative)
956
    return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
957
  else
958
    return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
959
}
960
961
} // End llvm namespace
962
963
#endif