Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/include/llvm/Support/Allocator.h
Line
Count
Source (jump to first uncovered line)
1
//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
///
10
/// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11
/// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12
/// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13
/// allocator.
14
///
15
//===----------------------------------------------------------------------===//
16
17
#ifndef LLVM_SUPPORT_ALLOCATOR_H
18
#define LLVM_SUPPORT_ALLOCATOR_H
19
20
#include "llvm/ADT/Optional.h"
21
#include "llvm/ADT/SmallVector.h"
22
#include "llvm/Support/Alignment.h"
23
#include "llvm/Support/AllocatorBase.h"
24
#include "llvm/Support/Compiler.h"
25
#include "llvm/Support/ErrorHandling.h"
26
#include "llvm/Support/MathExtras.h"
27
#include "llvm/Support/MemAlloc.h"
28
#include <algorithm>
29
#include <cassert>
30
#include <cstddef>
31
#include <cstdint>
32
#include <cstdlib>
33
#include <iterator>
34
#include <type_traits>
35
#include <utility>
36
37
namespace llvm {
38
39
namespace detail {
40
41
// We call out to an external function to actually print the message as the
42
// printing code uses Allocator.h in its implementation.
43
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
44
                                size_t TotalMemory);
45
46
} // end namespace detail
47
48
/// Allocate memory in an ever growing pool, as if by bump-pointer.
49
///
50
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
51
/// memory rather than relying on a boundless contiguous heap. However, it has
52
/// bump-pointer semantics in that it is a monotonically growing pool of memory
53
/// where every allocation is found by merely allocating the next N bytes in
54
/// the slab, or the next N bytes in the next slab.
55
///
56
/// Note that this also has a threshold for forcing allocations above a certain
57
/// size into their own slab.
58
///
59
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
60
/// object, which wraps malloc, to allocate memory, but it can be changed to
61
/// use a custom allocator.
62
///
63
/// The GrowthDelay specifies after how many allocated slabs the allocator
64
/// increases the size of the slabs.
65
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
66
          size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
67
class BumpPtrAllocatorImpl
68
    : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
69
                                                SizeThreshold, GrowthDelay>> {
70
public:
71
  static_assert(SizeThreshold <= SlabSize,
72
                "The SizeThreshold must be at most the SlabSize to ensure "
73
                "that objects larger than a slab go into their own memory "
74
                "allocation.");
75
  static_assert(GrowthDelay > 0,
76
                "GrowthDelay must be at least 1 which already increases the"
77
                "slab size after each allocated slab.");
78
79
4
  BumpPtrAllocatorImpl() = default;
80
81
  template <typename T>
82
  BumpPtrAllocatorImpl(T &&Allocator)
83
      : Allocator(std::forward<T &&>(Allocator)) {}
84
85
  // Manually implement a move constructor as we must clear the old allocator's
86
  // slabs as a matter of correctness.
87
  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
88
      : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
89
        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
90
        BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize),
91
        Allocator(std::move(Old.Allocator)) {
92
    Old.CurPtr = Old.End = nullptr;
93
    Old.BytesAllocated = 0;
94
    Old.Slabs.clear();
95
    Old.CustomSizedSlabs.clear();
96
  }
97
98
4
  ~BumpPtrAllocatorImpl() {
99
4
    DeallocateSlabs(Slabs.begin(), Slabs.end());
100
4
    DeallocateCustomSizedSlabs();
101
4
  }
102
103
  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
104
    DeallocateSlabs(Slabs.begin(), Slabs.end());
105
    DeallocateCustomSizedSlabs();
106
107
    CurPtr = RHS.CurPtr;
108
    End = RHS.End;
109
    BytesAllocated = RHS.BytesAllocated;
110
    RedZoneSize = RHS.RedZoneSize;
111
    Slabs = std::move(RHS.Slabs);
112
    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
113
    Allocator = std::move(RHS.Allocator);
114
115
    RHS.CurPtr = RHS.End = nullptr;
116
    RHS.BytesAllocated = 0;
117
    RHS.Slabs.clear();
118
    RHS.CustomSizedSlabs.clear();
119
    return *this;
120
  }
121
122
  /// Deallocate all but the current slab and reset the current pointer
123
  /// to the beginning of it, freeing all memory allocated so far.
124
0
  void Reset() {
125
0
    // Deallocate all but the first slab, and deallocate all custom-sized slabs.
126
0
    DeallocateCustomSizedSlabs();
127
0
    CustomSizedSlabs.clear();
128
0
129
0
    if (Slabs.empty())
130
0
      return;
131
0
132
0
    // Reset the state.
133
0
    BytesAllocated = 0;
134
0
    CurPtr = (char *)Slabs.front();
135
0
    End = CurPtr + SlabSize;
136
0
137
0
    __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
138
0
    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
139
0
    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
140
0
  }
141
142
  /// Allocate space at the specified alignment.
143
  LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
144
0
  Allocate(size_t Size, Align Alignment) {
145
0
    // Keep track of how many bytes we've allocated.
146
0
    BytesAllocated += Size;
147
0
148
0
    size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
149
0
    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
150
0
151
0
    size_t SizeToAllocate = Size;
152
#if LLVM_ADDRESS_SANITIZER_BUILD
153
    // Add trailing bytes as a "red zone" under ASan.
154
    SizeToAllocate += RedZoneSize;
155
#endif
156
157
0
    // Check if we have enough space.
158
0
    if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
159
0
      char *AlignedPtr = CurPtr + Adjustment;
160
0
      CurPtr = AlignedPtr + SizeToAllocate;
161
0
      // Update the allocation point of this memory block in MemorySanitizer.
162
0
      // Without this, MemorySanitizer messages for values originated from here
163
0
      // will point to the allocation of the entire slab.
164
0
      __msan_allocated_memory(AlignedPtr, Size);
165
0
      // Similarly, tell ASan about this space.
166
0
      __asan_unpoison_memory_region(AlignedPtr, Size);
167
0
      return AlignedPtr;
168
0
    }
169
0
170
0
    // If Size is really big, allocate a separate slab for it.
171
0
    size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
172
0
    if (PaddedSize > SizeThreshold) {
173
0
      void *NewSlab = Allocator.Allocate(PaddedSize, alignof(std::max_align_t));
174
0
      // We own the new slab and don't want anyone reading anyting other than
175
0
      // pieces returned from this method.  So poison the whole slab.
176
0
      __asan_poison_memory_region(NewSlab, PaddedSize);
177
0
      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
178
0
179
0
      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
180
0
      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
181
0
      char *AlignedPtr = (char*)AlignedAddr;
182
0
      __msan_allocated_memory(AlignedPtr, Size);
183
0
      __asan_unpoison_memory_region(AlignedPtr, Size);
184
0
      return AlignedPtr;
185
0
    }
186
0
187
0
    // Otherwise, start a new slab and try again.
188
0
    StartNewSlab();
189
0
    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
190
0
    assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
191
0
           "Unable to allocate memory!");
192
0
    char *AlignedPtr = (char*)AlignedAddr;
193
0
    CurPtr = AlignedPtr + SizeToAllocate;
194
0
    __msan_allocated_memory(AlignedPtr, Size);
195
0
    __asan_unpoison_memory_region(AlignedPtr, Size);
196
0
    return AlignedPtr;
197
0
  }
198
199
  inline LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
200
0
  Allocate(size_t Size, size_t Alignment) {
201
0
    assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
202
0
    return Allocate(Size, Align(Alignment));
203
0
  }
204
205
  // Pull in base class overloads.
206
  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
207
208
  // Bump pointer allocators are expected to never free their storage; and
209
  // clients expect pointers to remain valid for non-dereferencing uses even
210
  // after deallocation.
211
0
  void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
212
0
    __asan_poison_memory_region(Ptr, Size);
213
0
  }
214
215
  // Pull in base class overloads.
216
  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
217
218
  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
219
220
  /// \return An index uniquely and reproducibly identifying
221
  /// an input pointer \p Ptr in the given allocator.
222
  /// The returned value is negative iff the object is inside a custom-size
223
  /// slab.
224
  /// Returns an empty optional if the pointer is not found in the allocator.
225
  llvm::Optional<int64_t> identifyObject(const void *Ptr) {
226
    const char *P = static_cast<const char *>(Ptr);
227
    int64_t InSlabIdx = 0;
228
    for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
229
      const char *S = static_cast<const char *>(Slabs[Idx]);
230
      if (P >= S && P < S + computeSlabSize(Idx))
231
        return InSlabIdx + static_cast<int64_t>(P - S);
232
      InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
233
    }
234
235
    // Use negative index to denote custom sized slabs.
236
    int64_t InCustomSizedSlabIdx = -1;
237
    for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
238
      const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
239
      size_t Size = CustomSizedSlabs[Idx].second;
240
      if (P >= S && P < S + Size)
241
        return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
242
      InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
243
    }
244
    return None;
245
  }
246
247
  /// A wrapper around identifyObject that additionally asserts that
248
  /// the object is indeed within the allocator.
249
  /// \return An index uniquely and reproducibly identifying
250
  /// an input pointer \p Ptr in the given allocator.
251
  int64_t identifyKnownObject(const void *Ptr) {
252
    Optional<int64_t> Out = identifyObject(Ptr);
253
    assert(Out && "Wrong allocator used");
254
    return *Out;
255
  }
256
257
  /// A wrapper around identifyKnownObject. Accepts type information
258
  /// about the object and produces a smaller identifier by relying on
259
  /// the alignment information. Note that sub-classes may have different
260
  /// alignment, so the most base class should be passed as template parameter
261
  /// in order to obtain correct results. For that reason automatic template
262
  /// parameter deduction is disabled.
263
  /// \return An index uniquely and reproducibly identifying
264
  /// an input pointer \p Ptr in the given allocator. This identifier is
265
  /// different from the ones produced by identifyObject and
266
  /// identifyAlignedObject.
267
  template <typename T>
268
  int64_t identifyKnownAlignedObject(const void *Ptr) {
269
    int64_t Out = identifyKnownObject(Ptr);
270
    assert(Out % alignof(T) == 0 && "Wrong alignment information");
271
    return Out / alignof(T);
272
  }
273
274
  size_t getTotalMemory() const {
275
    size_t TotalMemory = 0;
276
    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
277
      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
278
    for (auto &PtrAndSize : CustomSizedSlabs)
279
      TotalMemory += PtrAndSize.second;
280
    return TotalMemory;
281
  }
282
283
  size_t getBytesAllocated() const { return BytesAllocated; }
284
285
  void setRedZoneSize(size_t NewSize) {
286
    RedZoneSize = NewSize;
287
  }
288
289
  void PrintStats() const {
290
    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
291
                                       getTotalMemory());
292
  }
293
294
private:
295
  /// The current pointer into the current slab.
296
  ///
297
  /// This points to the next free byte in the slab.
298
  char *CurPtr = nullptr;
299
300
  /// The end of the current slab.
301
  char *End = nullptr;
302
303
  /// The slabs allocated so far.
304
  SmallVector<void *, 4> Slabs;
305
306
  /// Custom-sized slabs allocated for too-large allocation requests.
307
  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
308
309
  /// How many bytes we've allocated.
310
  ///
311
  /// Used so that we can compute how much space was wasted.
312
  size_t BytesAllocated = 0;
313
314
  /// The number of bytes to put between allocations when running under
315
  /// a sanitizer.
316
  size_t RedZoneSize = 1;
317
318
  /// The allocator instance we use to get slabs of memory.
319
  AllocatorT Allocator;
320
321
0
  static size_t computeSlabSize(unsigned SlabIdx) {
322
0
    // Scale the actual allocated slab size based on the number of slabs
323
0
    // allocated. Every GrowthDelay slabs allocated, we double
324
0
    // the allocated size to reduce allocation frequency, but saturate at
325
0
    // multiplying the slab size by 2^30.
326
0
    return SlabSize *
327
0
           ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
328
0
  }
329
330
  /// Allocate a new slab and move the bump pointers over into the new
331
  /// slab, modifying CurPtr and End.
332
0
  void StartNewSlab() {
333
0
    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
334
0
335
0
    void *NewSlab =
336
0
        Allocator.Allocate(AllocatedSlabSize, alignof(std::max_align_t));
337
0
    // We own the new slab and don't want anyone reading anything other than
338
0
    // pieces returned from this method.  So poison the whole slab.
339
0
    __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
340
0
341
0
    Slabs.push_back(NewSlab);
342
0
    CurPtr = (char *)(NewSlab);
343
0
    End = ((char *)NewSlab) + AllocatedSlabSize;
344
0
  }
345
346
  /// Deallocate a sequence of slabs.
347
  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
348
4
                       SmallVectorImpl<void *>::iterator E) {
349
4
    for (; I != E; ++I) {
350
0
      size_t AllocatedSlabSize =
351
0
          computeSlabSize(std::distance(Slabs.begin(), I));
352
0
      Allocator.Deallocate(*I, AllocatedSlabSize, alignof(std::max_align_t));
353
0
    }
354
4
  }
355
356
  /// Deallocate all memory for custom sized slabs.
357
4
  void DeallocateCustomSizedSlabs() {
358
4
    for (auto &PtrAndSize : CustomSizedSlabs) {
359
0
      void *Ptr = PtrAndSize.first;
360
0
      size_t Size = PtrAndSize.second;
361
0
      Allocator.Deallocate(Ptr, Size, alignof(std::max_align_t));
362
0
    }
363
4
  }
364
365
  template <typename T> friend class SpecificBumpPtrAllocator;
366
};
367
368
/// The standard BumpPtrAllocator which just uses the default template
369
/// parameters.
370
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
371
372
/// A BumpPtrAllocator that allows only elements of a specific type to be
373
/// allocated.
374
///
375
/// This allows calling the destructor in DestroyAll() and when the allocator is
376
/// destroyed.
377
template <typename T> class SpecificBumpPtrAllocator {
378
  BumpPtrAllocator Allocator;
379
380
public:
381
  SpecificBumpPtrAllocator() {
382
    // Because SpecificBumpPtrAllocator walks the memory to call destructors,
383
    // it can't have red zones between allocations.
384
    Allocator.setRedZoneSize(0);
385
  }
386
  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
387
      : Allocator(std::move(Old.Allocator)) {}
388
  ~SpecificBumpPtrAllocator() { DestroyAll(); }
389
390
  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
391
    Allocator = std::move(RHS.Allocator);
392
    return *this;
393
  }
394
395
  /// Call the destructor of each allocated object and deallocate all but the
396
  /// current slab and reset the current pointer to the beginning of it, freeing
397
  /// all memory allocated so far.
398
  void DestroyAll() {
399
    auto DestroyElements = [](char *Begin, char *End) {
400
      assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
401
      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
402
        reinterpret_cast<T *>(Ptr)->~T();
403
    };
404
405
    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
406
         ++I) {
407
      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
408
          std::distance(Allocator.Slabs.begin(), I));
409
      char *Begin = (char *)alignAddr(*I, Align::Of<T>());
410
      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
411
                                               : (char *)*I + AllocatedSlabSize;
412
413
      DestroyElements(Begin, End);
414
    }
415
416
    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
417
      void *Ptr = PtrAndSize.first;
418
      size_t Size = PtrAndSize.second;
419
      DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
420
                      (char *)Ptr + Size);
421
    }
422
423
    Allocator.Reset();
424
  }
425
426
  /// Allocate space for an array of objects without constructing them.
427
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
428
};
429
430
} // end namespace llvm
431
432
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
433
          size_t GrowthDelay>
434
void *
435
operator new(size_t Size,
436
             llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
437
0
                                        GrowthDelay> &Allocator) {
438
0
  return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
439
0
                                           alignof(std::max_align_t)));
440
0
}
441
442
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
443
          size_t GrowthDelay>
444
void operator delete(void *,
445
                     llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
446
                                                SizeThreshold, GrowthDelay> &) {
447
}
448
449
#endif // LLVM_SUPPORT_ALLOCATOR_H