/home/arjun/llvm-project/llvm/include/llvm/ADT/APInt.h
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | /// |
9 | | /// \file |
10 | | /// This file implements a class to represent arbitrary precision |
11 | | /// integral constant values and operations on them. |
12 | | /// |
13 | | //===----------------------------------------------------------------------===// |
14 | | |
15 | | #ifndef LLVM_ADT_APINT_H |
16 | | #define LLVM_ADT_APINT_H |
17 | | |
18 | | #include "llvm/Support/Compiler.h" |
19 | | #include "llvm/Support/MathExtras.h" |
20 | | #include <cassert> |
21 | | #include <climits> |
22 | | #include <cstring> |
23 | | #include <string> |
24 | | |
25 | | namespace llvm { |
26 | | class FoldingSetNodeID; |
27 | | class StringRef; |
28 | | class hash_code; |
29 | | class raw_ostream; |
30 | | |
31 | | template <typename T> class SmallVectorImpl; |
32 | | template <typename T> class ArrayRef; |
33 | | template <typename T> class Optional; |
34 | | |
35 | | class APInt; |
36 | | |
37 | | inline APInt operator-(APInt); |
38 | | |
39 | | //===----------------------------------------------------------------------===// |
40 | | // APInt Class |
41 | | //===----------------------------------------------------------------------===// |
42 | | |
43 | | /// Class for arbitrary precision integers. |
44 | | /// |
45 | | /// APInt is a functional replacement for common case unsigned integer type like |
46 | | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width |
47 | | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more |
48 | | /// than 64-bits of precision. APInt provides a variety of arithmetic operators |
49 | | /// and methods to manipulate integer values of any bit-width. It supports both |
50 | | /// the typical integer arithmetic and comparison operations as well as bitwise |
51 | | /// manipulation. |
52 | | /// |
53 | | /// The class has several invariants worth noting: |
54 | | /// * All bit, byte, and word positions are zero-based. |
55 | | /// * Once the bit width is set, it doesn't change except by the Truncate, |
56 | | /// SignExtend, or ZeroExtend operations. |
57 | | /// * All binary operators must be on APInt instances of the same bit width. |
58 | | /// Attempting to use these operators on instances with different bit |
59 | | /// widths will yield an assertion. |
60 | | /// * The value is stored canonically as an unsigned value. For operations |
61 | | /// where it makes a difference, there are both signed and unsigned variants |
62 | | /// of the operation. For example, sdiv and udiv. However, because the bit |
63 | | /// widths must be the same, operations such as Mul and Add produce the same |
64 | | /// results regardless of whether the values are interpreted as signed or |
65 | | /// not. |
66 | | /// * In general, the class tries to follow the style of computation that LLVM |
67 | | /// uses in its IR. This simplifies its use for LLVM. |
68 | | /// |
69 | | class LLVM_NODISCARD APInt { |
70 | | public: |
71 | | typedef uint64_t WordType; |
72 | | |
73 | | /// This enum is used to hold the constants we needed for APInt. |
74 | | enum : unsigned { |
75 | | /// Byte size of a word. |
76 | | APINT_WORD_SIZE = sizeof(WordType), |
77 | | /// Bits in a word. |
78 | | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT |
79 | | }; |
80 | | |
81 | | enum class Rounding { |
82 | | DOWN, |
83 | | TOWARD_ZERO, |
84 | | UP, |
85 | | }; |
86 | | |
87 | | static constexpr WordType WORDTYPE_MAX = ~WordType(0); |
88 | | |
89 | | private: |
90 | | /// This union is used to store the integer value. When the |
91 | | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. |
92 | | union { |
93 | | uint64_t VAL; ///< Used to store the <= 64 bits integer value. |
94 | | uint64_t *pVal; ///< Used to store the >64 bits integer value. |
95 | | } U; |
96 | | |
97 | | unsigned BitWidth; ///< The number of bits in this APInt. |
98 | | |
99 | | friend struct DenseMapAPIntKeyInfo; |
100 | | |
101 | | friend class APSInt; |
102 | | |
103 | | /// Fast internal constructor |
104 | | /// |
105 | | /// This constructor is used only internally for speed of construction of |
106 | | /// temporaries. It is unsafe for general use so it is not public. |
107 | 0 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { |
108 | 0 | U.pVal = val; |
109 | 0 | } |
110 | | |
111 | | /// Determine if this APInt just has one word to store value. |
112 | | /// |
113 | | /// \returns true if the number of bits <= 64, false otherwise. |
114 | 0 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } |
115 | | |
116 | | /// Determine which word a bit is in. |
117 | | /// |
118 | | /// \returns the word position for the specified bit position. |
119 | 0 | static unsigned whichWord(unsigned bitPosition) { |
120 | 0 | return bitPosition / APINT_BITS_PER_WORD; |
121 | 0 | } |
122 | | |
123 | | /// Determine which bit in a word a bit is in. |
124 | | /// |
125 | | /// \returns the bit position in a word for the specified bit position |
126 | | /// in the APInt. |
127 | 0 | static unsigned whichBit(unsigned bitPosition) { |
128 | 0 | return bitPosition % APINT_BITS_PER_WORD; |
129 | 0 | } |
130 | | |
131 | | /// Get a single bit mask. |
132 | | /// |
133 | | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set |
134 | | /// This method generates and returns a uint64_t (word) mask for a single |
135 | | /// bit at a specific bit position. This is used to mask the bit in the |
136 | | /// corresponding word. |
137 | 0 | static uint64_t maskBit(unsigned bitPosition) { |
138 | 0 | return 1ULL << whichBit(bitPosition); |
139 | 0 | } |
140 | | |
141 | | /// Clear unused high order bits |
142 | | /// |
143 | | /// This method is used internally to clear the top "N" bits in the high order |
144 | | /// word that are not used by the APInt. This is needed after the most |
145 | | /// significant word is assigned a value to ensure that those bits are |
146 | | /// zero'd out. |
147 | 0 | APInt &clearUnusedBits() { |
148 | 0 | // Compute how many bits are used in the final word |
149 | 0 | unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; |
150 | 0 |
|
151 | 0 | // Mask out the high bits. |
152 | 0 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); |
153 | 0 | if (isSingleWord()) |
154 | 0 | U.VAL &= mask; |
155 | 0 | else |
156 | 0 | U.pVal[getNumWords() - 1] &= mask; |
157 | 0 | return *this; |
158 | 0 | } |
159 | | |
160 | | /// Get the word corresponding to a bit position |
161 | | /// \returns the corresponding word for the specified bit position. |
162 | 0 | uint64_t getWord(unsigned bitPosition) const { |
163 | 0 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; |
164 | 0 | } |
165 | | |
166 | | /// Utility method to change the bit width of this APInt to new bit width, |
167 | | /// allocating and/or deallocating as necessary. There is no guarantee on the |
168 | | /// value of any bits upon return. Caller should populate the bits after. |
169 | | void reallocate(unsigned NewBitWidth); |
170 | | |
171 | | /// Convert a char array into an APInt |
172 | | /// |
173 | | /// \param radix 2, 8, 10, 16, or 36 |
174 | | /// Converts a string into a number. The string must be non-empty |
175 | | /// and well-formed as a number of the given base. The bit-width |
176 | | /// must be sufficient to hold the result. |
177 | | /// |
178 | | /// This is used by the constructors that take string arguments. |
179 | | /// |
180 | | /// StringRef::getAsInteger is superficially similar but (1) does |
181 | | /// not assume that the string is well-formed and (2) grows the |
182 | | /// result to hold the input. |
183 | | void fromString(unsigned numBits, StringRef str, uint8_t radix); |
184 | | |
185 | | /// An internal division function for dividing APInts. |
186 | | /// |
187 | | /// This is used by the toString method to divide by the radix. It simply |
188 | | /// provides a more convenient form of divide for internal use since KnuthDiv |
189 | | /// has specific constraints on its inputs. If those constraints are not met |
190 | | /// then it provides a simpler form of divide. |
191 | | static void divide(const WordType *LHS, unsigned lhsWords, |
192 | | const WordType *RHS, unsigned rhsWords, WordType *Quotient, |
193 | | WordType *Remainder); |
194 | | |
195 | | /// out-of-line slow case for inline constructor |
196 | | void initSlowCase(uint64_t val, bool isSigned); |
197 | | |
198 | | /// shared code between two array constructors |
199 | | void initFromArray(ArrayRef<uint64_t> array); |
200 | | |
201 | | /// out-of-line slow case for inline copy constructor |
202 | | void initSlowCase(const APInt &that); |
203 | | |
204 | | /// out-of-line slow case for shl |
205 | | void shlSlowCase(unsigned ShiftAmt); |
206 | | |
207 | | /// out-of-line slow case for lshr. |
208 | | void lshrSlowCase(unsigned ShiftAmt); |
209 | | |
210 | | /// out-of-line slow case for ashr. |
211 | | void ashrSlowCase(unsigned ShiftAmt); |
212 | | |
213 | | /// out-of-line slow case for operator= |
214 | | void AssignSlowCase(const APInt &RHS); |
215 | | |
216 | | /// out-of-line slow case for operator== |
217 | | bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; |
218 | | |
219 | | /// out-of-line slow case for countLeadingZeros |
220 | | unsigned countLeadingZerosSlowCase() const LLVM_READONLY; |
221 | | |
222 | | /// out-of-line slow case for countLeadingOnes. |
223 | | unsigned countLeadingOnesSlowCase() const LLVM_READONLY; |
224 | | |
225 | | /// out-of-line slow case for countTrailingZeros. |
226 | | unsigned countTrailingZerosSlowCase() const LLVM_READONLY; |
227 | | |
228 | | /// out-of-line slow case for countTrailingOnes |
229 | | unsigned countTrailingOnesSlowCase() const LLVM_READONLY; |
230 | | |
231 | | /// out-of-line slow case for countPopulation |
232 | | unsigned countPopulationSlowCase() const LLVM_READONLY; |
233 | | |
234 | | /// out-of-line slow case for intersects. |
235 | | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; |
236 | | |
237 | | /// out-of-line slow case for isSubsetOf. |
238 | | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; |
239 | | |
240 | | /// out-of-line slow case for setBits. |
241 | | void setBitsSlowCase(unsigned loBit, unsigned hiBit); |
242 | | |
243 | | /// out-of-line slow case for flipAllBits. |
244 | | void flipAllBitsSlowCase(); |
245 | | |
246 | | /// out-of-line slow case for operator&=. |
247 | | void AndAssignSlowCase(const APInt& RHS); |
248 | | |
249 | | /// out-of-line slow case for operator|=. |
250 | | void OrAssignSlowCase(const APInt& RHS); |
251 | | |
252 | | /// out-of-line slow case for operator^=. |
253 | | void XorAssignSlowCase(const APInt& RHS); |
254 | | |
255 | | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
256 | | /// to, or greater than RHS. |
257 | | int compare(const APInt &RHS) const LLVM_READONLY; |
258 | | |
259 | | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal |
260 | | /// to, or greater than RHS. |
261 | | int compareSigned(const APInt &RHS) const LLVM_READONLY; |
262 | | |
263 | | public: |
264 | | /// \name Constructors |
265 | | /// @{ |
266 | | |
267 | | /// Create a new APInt of numBits width, initialized as val. |
268 | | /// |
269 | | /// If isSigned is true then val is treated as if it were a signed value |
270 | | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width |
271 | | /// will be done. Otherwise, no sign extension occurs (high order bits beyond |
272 | | /// the range of val are zero filled). |
273 | | /// |
274 | | /// \param numBits the bit width of the constructed APInt |
275 | | /// \param val the initial value of the APInt |
276 | | /// \param isSigned how to treat signedness of val |
277 | | APInt(unsigned numBits, uint64_t val, bool isSigned = false) |
278 | 0 | : BitWidth(numBits) { |
279 | 0 | assert(BitWidth && "bitwidth too small"); |
280 | 0 | if (isSingleWord()) { |
281 | 0 | U.VAL = val; |
282 | 0 | clearUnusedBits(); |
283 | 0 | } else { |
284 | 0 | initSlowCase(val, isSigned); |
285 | 0 | } |
286 | 0 | } |
287 | | |
288 | | /// Construct an APInt of numBits width, initialized as bigVal[]. |
289 | | /// |
290 | | /// Note that bigVal.size() can be smaller or larger than the corresponding |
291 | | /// bit width but any extraneous bits will be dropped. |
292 | | /// |
293 | | /// \param numBits the bit width of the constructed APInt |
294 | | /// \param bigVal a sequence of words to form the initial value of the APInt |
295 | | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); |
296 | | |
297 | | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but |
298 | | /// deprecated because this constructor is prone to ambiguity with the |
299 | | /// APInt(unsigned, uint64_t, bool) constructor. |
300 | | /// |
301 | | /// If this overload is ever deleted, care should be taken to prevent calls |
302 | | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) |
303 | | /// constructor. |
304 | | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); |
305 | | |
306 | | /// Construct an APInt from a string representation. |
307 | | /// |
308 | | /// This constructor interprets the string \p str in the given radix. The |
309 | | /// interpretation stops when the first character that is not suitable for the |
310 | | /// radix is encountered, or the end of the string. Acceptable radix values |
311 | | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the |
312 | | /// string to require more bits than numBits. |
313 | | /// |
314 | | /// \param numBits the bit width of the constructed APInt |
315 | | /// \param str the string to be interpreted |
316 | | /// \param radix the radix to use for the conversion |
317 | | APInt(unsigned numBits, StringRef str, uint8_t radix); |
318 | | |
319 | | /// Simply makes *this a copy of that. |
320 | | /// Copy Constructor. |
321 | 0 | APInt(const APInt &that) : BitWidth(that.BitWidth) { |
322 | 0 | if (isSingleWord()) |
323 | 0 | U.VAL = that.U.VAL; |
324 | 0 | else |
325 | 0 | initSlowCase(that); |
326 | 0 | } |
327 | | |
328 | | /// Move Constructor. |
329 | 0 | APInt(APInt &&that) : BitWidth(that.BitWidth) { |
330 | 0 | memcpy(&U, &that.U, sizeof(U)); |
331 | 0 | that.BitWidth = 0; |
332 | 0 | } |
333 | | |
334 | | /// Destructor. |
335 | 0 | ~APInt() { |
336 | 0 | if (needsCleanup()) |
337 | 0 | delete[] U.pVal; |
338 | 0 | } |
339 | | |
340 | | /// Default constructor that creates an uninteresting APInt |
341 | | /// representing a 1-bit zero value. |
342 | | /// |
343 | | /// This is useful for object deserialization (pair this with the static |
344 | | /// method Read). |
345 | 0 | explicit APInt() : BitWidth(1) { U.VAL = 0; } |
346 | | |
347 | | /// Returns whether this instance allocated memory. |
348 | 0 | bool needsCleanup() const { return !isSingleWord(); } |
349 | | |
350 | | /// Used to insert APInt objects, or objects that contain APInt objects, into |
351 | | /// FoldingSets. |
352 | | void Profile(FoldingSetNodeID &id) const; |
353 | | |
354 | | /// @} |
355 | | /// \name Value Tests |
356 | | /// @{ |
357 | | |
358 | | /// Determine sign of this APInt. |
359 | | /// |
360 | | /// This tests the high bit of this APInt to determine if it is set. |
361 | | /// |
362 | | /// \returns true if this APInt is negative, false otherwise |
363 | 0 | bool isNegative() const { return (*this)[BitWidth - 1]; } |
364 | | |
365 | | /// Determine if this APInt Value is non-negative (>= 0) |
366 | | /// |
367 | | /// This tests the high bit of the APInt to determine if it is unset. |
368 | 0 | bool isNonNegative() const { return !isNegative(); } |
369 | | |
370 | | /// Determine if sign bit of this APInt is set. |
371 | | /// |
372 | | /// This tests the high bit of this APInt to determine if it is set. |
373 | | /// |
374 | | /// \returns true if this APInt has its sign bit set, false otherwise. |
375 | 0 | bool isSignBitSet() const { return (*this)[BitWidth-1]; } |
376 | | |
377 | | /// Determine if sign bit of this APInt is clear. |
378 | | /// |
379 | | /// This tests the high bit of this APInt to determine if it is clear. |
380 | | /// |
381 | | /// \returns true if this APInt has its sign bit clear, false otherwise. |
382 | 0 | bool isSignBitClear() const { return !isSignBitSet(); } |
383 | | |
384 | | /// Determine if this APInt Value is positive. |
385 | | /// |
386 | | /// This tests if the value of this APInt is positive (> 0). Note |
387 | | /// that 0 is not a positive value. |
388 | | /// |
389 | | /// \returns true if this APInt is positive. |
390 | 0 | bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } |
391 | | |
392 | | /// Determine if this APInt Value is non-positive (<= 0). |
393 | | /// |
394 | | /// \returns true if this APInt is non-positive. |
395 | 0 | bool isNonPositive() const { return !isStrictlyPositive(); } |
396 | | |
397 | | /// Determine if all bits are set |
398 | | /// |
399 | | /// This checks to see if the value has all bits of the APInt are set or not. |
400 | 0 | bool isAllOnesValue() const { |
401 | 0 | if (isSingleWord()) |
402 | 0 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); |
403 | 0 | return countTrailingOnesSlowCase() == BitWidth; |
404 | 0 | } |
405 | | |
406 | | /// Determine if all bits are clear |
407 | | /// |
408 | | /// This checks to see if the value has all bits of the APInt are clear or |
409 | | /// not. |
410 | 0 | bool isNullValue() const { return !*this; } |
411 | | |
412 | | /// Determine if this is a value of 1. |
413 | | /// |
414 | | /// This checks to see if the value of this APInt is one. |
415 | 0 | bool isOneValue() const { |
416 | 0 | if (isSingleWord()) |
417 | 0 | return U.VAL == 1; |
418 | 0 | return countLeadingZerosSlowCase() == BitWidth - 1; |
419 | 0 | } |
420 | | |
421 | | /// Determine if this is the largest unsigned value. |
422 | | /// |
423 | | /// This checks to see if the value of this APInt is the maximum unsigned |
424 | | /// value for the APInt's bit width. |
425 | 0 | bool isMaxValue() const { return isAllOnesValue(); } |
426 | | |
427 | | /// Determine if this is the largest signed value. |
428 | | /// |
429 | | /// This checks to see if the value of this APInt is the maximum signed |
430 | | /// value for the APInt's bit width. |
431 | 0 | bool isMaxSignedValue() const { |
432 | 0 | if (isSingleWord()) |
433 | 0 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); |
434 | 0 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; |
435 | 0 | } |
436 | | |
437 | | /// Determine if this is the smallest unsigned value. |
438 | | /// |
439 | | /// This checks to see if the value of this APInt is the minimum unsigned |
440 | | /// value for the APInt's bit width. |
441 | 0 | bool isMinValue() const { return isNullValue(); } |
442 | | |
443 | | /// Determine if this is the smallest signed value. |
444 | | /// |
445 | | /// This checks to see if the value of this APInt is the minimum signed |
446 | | /// value for the APInt's bit width. |
447 | 0 | bool isMinSignedValue() const { |
448 | 0 | if (isSingleWord()) |
449 | 0 | return U.VAL == (WordType(1) << (BitWidth - 1)); |
450 | 0 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; |
451 | 0 | } |
452 | | |
453 | | /// Check if this APInt has an N-bits unsigned integer value. |
454 | 0 | bool isIntN(unsigned N) const { |
455 | 0 | assert(N && "N == 0 ???"); |
456 | 0 | return getActiveBits() <= N; |
457 | 0 | } |
458 | | |
459 | | /// Check if this APInt has an N-bits signed integer value. |
460 | 0 | bool isSignedIntN(unsigned N) const { |
461 | 0 | assert(N && "N == 0 ???"); |
462 | 0 | return getMinSignedBits() <= N; |
463 | 0 | } |
464 | | |
465 | | /// Check if this APInt's value is a power of two greater than zero. |
466 | | /// |
467 | | /// \returns true if the argument APInt value is a power of two > 0. |
468 | 0 | bool isPowerOf2() const { |
469 | 0 | if (isSingleWord()) |
470 | 0 | return isPowerOf2_64(U.VAL); |
471 | 0 | return countPopulationSlowCase() == 1; |
472 | 0 | } |
473 | | |
474 | | /// Check if the APInt's value is returned by getSignMask. |
475 | | /// |
476 | | /// \returns true if this is the value returned by getSignMask. |
477 | 0 | bool isSignMask() const { return isMinSignedValue(); } |
478 | | |
479 | | /// Convert APInt to a boolean value. |
480 | | /// |
481 | | /// This converts the APInt to a boolean value as a test against zero. |
482 | 0 | bool getBoolValue() const { return !!*this; } |
483 | | |
484 | | /// If this value is smaller than the specified limit, return it, otherwise |
485 | | /// return the limit value. This causes the value to saturate to the limit. |
486 | 0 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { |
487 | 0 | return ugt(Limit) ? Limit : getZExtValue(); |
488 | 0 | } |
489 | | |
490 | | /// Check if the APInt consists of a repeated bit pattern. |
491 | | /// |
492 | | /// e.g. 0x01010101 satisfies isSplat(8). |
493 | | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit |
494 | | /// width without remainder. |
495 | | bool isSplat(unsigned SplatSizeInBits) const; |
496 | | |
497 | | /// \returns true if this APInt value is a sequence of \param numBits ones |
498 | | /// starting at the least significant bit with the remainder zero. |
499 | 0 | bool isMask(unsigned numBits) const { |
500 | 0 | assert(numBits != 0 && "numBits must be non-zero"); |
501 | 0 | assert(numBits <= BitWidth && "numBits out of range"); |
502 | 0 | if (isSingleWord()) |
503 | 0 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); |
504 | 0 | unsigned Ones = countTrailingOnesSlowCase(); |
505 | 0 | return (numBits == Ones) && |
506 | 0 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
507 | 0 | } |
508 | | |
509 | | /// \returns true if this APInt is a non-empty sequence of ones starting at |
510 | | /// the least significant bit with the remainder zero. |
511 | | /// Ex. isMask(0x0000FFFFU) == true. |
512 | 0 | bool isMask() const { |
513 | 0 | if (isSingleWord()) |
514 | 0 | return isMask_64(U.VAL); |
515 | 0 | unsigned Ones = countTrailingOnesSlowCase(); |
516 | 0 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); |
517 | 0 | } |
518 | | |
519 | | /// Return true if this APInt value contains a sequence of ones with |
520 | | /// the remainder zero. |
521 | 0 | bool isShiftedMask() const { |
522 | 0 | if (isSingleWord()) |
523 | 0 | return isShiftedMask_64(U.VAL); |
524 | 0 | unsigned Ones = countPopulationSlowCase(); |
525 | 0 | unsigned LeadZ = countLeadingZerosSlowCase(); |
526 | 0 | return (Ones + LeadZ + countTrailingZeros()) == BitWidth; |
527 | 0 | } |
528 | | |
529 | | /// @} |
530 | | /// \name Value Generators |
531 | | /// @{ |
532 | | |
533 | | /// Gets maximum unsigned value of APInt for specific bit width. |
534 | 0 | static APInt getMaxValue(unsigned numBits) { |
535 | 0 | return getAllOnesValue(numBits); |
536 | 0 | } |
537 | | |
538 | | /// Gets maximum signed value of APInt for a specific bit width. |
539 | 0 | static APInt getSignedMaxValue(unsigned numBits) { |
540 | 0 | APInt API = getAllOnesValue(numBits); |
541 | 0 | API.clearBit(numBits - 1); |
542 | 0 | return API; |
543 | 0 | } |
544 | | |
545 | | /// Gets minimum unsigned value of APInt for a specific bit width. |
546 | 0 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } |
547 | | |
548 | | /// Gets minimum signed value of APInt for a specific bit width. |
549 | 0 | static APInt getSignedMinValue(unsigned numBits) { |
550 | 0 | APInt API(numBits, 0); |
551 | 0 | API.setBit(numBits - 1); |
552 | 0 | return API; |
553 | 0 | } |
554 | | |
555 | | /// Get the SignMask for a specific bit width. |
556 | | /// |
557 | | /// This is just a wrapper function of getSignedMinValue(), and it helps code |
558 | | /// readability when we want to get a SignMask. |
559 | 0 | static APInt getSignMask(unsigned BitWidth) { |
560 | 0 | return getSignedMinValue(BitWidth); |
561 | 0 | } |
562 | | |
563 | | /// Get the all-ones value. |
564 | | /// |
565 | | /// \returns the all-ones value for an APInt of the specified bit-width. |
566 | 0 | static APInt getAllOnesValue(unsigned numBits) { |
567 | 0 | return APInt(numBits, WORDTYPE_MAX, true); |
568 | 0 | } |
569 | | |
570 | | /// Get the '0' value. |
571 | | /// |
572 | | /// \returns the '0' value for an APInt of the specified bit-width. |
573 | 0 | static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } |
574 | | |
575 | | /// Compute an APInt containing numBits highbits from this APInt. |
576 | | /// |
577 | | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
578 | | /// the low bits and right shift to the least significant bit. |
579 | | /// |
580 | | /// \returns the high "numBits" bits of this APInt. |
581 | | APInt getHiBits(unsigned numBits) const; |
582 | | |
583 | | /// Compute an APInt containing numBits lowbits from this APInt. |
584 | | /// |
585 | | /// Get an APInt with the same BitWidth as this APInt, just zero mask |
586 | | /// the high bits. |
587 | | /// |
588 | | /// \returns the low "numBits" bits of this APInt. |
589 | | APInt getLoBits(unsigned numBits) const; |
590 | | |
591 | | /// Return an APInt with exactly one bit set in the result. |
592 | 0 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { |
593 | 0 | APInt Res(numBits, 0); |
594 | 0 | Res.setBit(BitNo); |
595 | 0 | return Res; |
596 | 0 | } |
597 | | |
598 | | /// Get a value with a block of bits set. |
599 | | /// |
600 | | /// Constructs an APInt value that has a contiguous range of bits set. The |
601 | | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other |
602 | | /// bits will be zero. For example, with parameters(32, 0, 16) you would get |
603 | | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than |
604 | | /// \p hiBit. |
605 | | /// |
606 | | /// \param numBits the intended bit width of the result |
607 | | /// \param loBit the index of the lowest bit set. |
608 | | /// \param hiBit the index of the highest bit set. |
609 | | /// |
610 | | /// \returns An APInt value with the requested bits set. |
611 | 0 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { |
612 | 0 | assert(loBit <= hiBit && "loBit greater than hiBit"); |
613 | 0 | APInt Res(numBits, 0); |
614 | 0 | Res.setBits(loBit, hiBit); |
615 | 0 | return Res; |
616 | 0 | } |
617 | | |
618 | | /// Wrap version of getBitsSet. |
619 | | /// If \p hiBit is no less than \p loBit, this is same with getBitsSet. |
620 | | /// If \p hiBit is less than \p loBit, the set bits "wrap". For example, with |
621 | | /// parameters (32, 28, 4), you would get 0xF000000F. |
622 | | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, |
623 | 0 | unsigned hiBit) { |
624 | 0 | APInt Res(numBits, 0); |
625 | 0 | Res.setBitsWithWrap(loBit, hiBit); |
626 | 0 | return Res; |
627 | 0 | } |
628 | | |
629 | | /// Get a value with upper bits starting at loBit set. |
630 | | /// |
631 | | /// Constructs an APInt value that has a contiguous range of bits set. The |
632 | | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other |
633 | | /// bits will be zero. For example, with parameters(32, 12) you would get |
634 | | /// 0xFFFFF000. |
635 | | /// |
636 | | /// \param numBits the intended bit width of the result |
637 | | /// \param loBit the index of the lowest bit to set. |
638 | | /// |
639 | | /// \returns An APInt value with the requested bits set. |
640 | 0 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { |
641 | 0 | APInt Res(numBits, 0); |
642 | 0 | Res.setBitsFrom(loBit); |
643 | 0 | return Res; |
644 | 0 | } |
645 | | |
646 | | /// Get a value with high bits set |
647 | | /// |
648 | | /// Constructs an APInt value that has the top hiBitsSet bits set. |
649 | | /// |
650 | | /// \param numBits the bitwidth of the result |
651 | | /// \param hiBitsSet the number of high-order bits set in the result. |
652 | 0 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { |
653 | 0 | APInt Res(numBits, 0); |
654 | 0 | Res.setHighBits(hiBitsSet); |
655 | 0 | return Res; |
656 | 0 | } |
657 | | |
658 | | /// Get a value with low bits set |
659 | | /// |
660 | | /// Constructs an APInt value that has the bottom loBitsSet bits set. |
661 | | /// |
662 | | /// \param numBits the bitwidth of the result |
663 | | /// \param loBitsSet the number of low-order bits set in the result. |
664 | 0 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { |
665 | 0 | APInt Res(numBits, 0); |
666 | 0 | Res.setLowBits(loBitsSet); |
667 | 0 | return Res; |
668 | 0 | } |
669 | | |
670 | | /// Return a value containing V broadcasted over NewLen bits. |
671 | | static APInt getSplat(unsigned NewLen, const APInt &V); |
672 | | |
673 | | /// Determine if two APInts have the same value, after zero-extending |
674 | | /// one of them (if needed!) to ensure that the bit-widths match. |
675 | 0 | static bool isSameValue(const APInt &I1, const APInt &I2) { |
676 | 0 | if (I1.getBitWidth() == I2.getBitWidth()) |
677 | 0 | return I1 == I2; |
678 | 0 |
|
679 | 0 | if (I1.getBitWidth() > I2.getBitWidth()) |
680 | 0 | return I1 == I2.zext(I1.getBitWidth()); |
681 | 0 |
|
682 | 0 | return I1.zext(I2.getBitWidth()) == I2; |
683 | 0 | } |
684 | | |
685 | | /// Overload to compute a hash_code for an APInt value. |
686 | | friend hash_code hash_value(const APInt &Arg); |
687 | | |
688 | | /// This function returns a pointer to the internal storage of the APInt. |
689 | | /// This is useful for writing out the APInt in binary form without any |
690 | | /// conversions. |
691 | 0 | const uint64_t *getRawData() const { |
692 | 0 | if (isSingleWord()) |
693 | 0 | return &U.VAL; |
694 | 0 | return &U.pVal[0]; |
695 | 0 | } |
696 | | |
697 | | /// @} |
698 | | /// \name Unary Operators |
699 | | /// @{ |
700 | | |
701 | | /// Postfix increment operator. |
702 | | /// |
703 | | /// Increments *this by 1. |
704 | | /// |
705 | | /// \returns a new APInt value representing the original value of *this. |
706 | 0 | const APInt operator++(int) { |
707 | 0 | APInt API(*this); |
708 | 0 | ++(*this); |
709 | 0 | return API; |
710 | 0 | } |
711 | | |
712 | | /// Prefix increment operator. |
713 | | /// |
714 | | /// \returns *this incremented by one |
715 | | APInt &operator++(); |
716 | | |
717 | | /// Postfix decrement operator. |
718 | | /// |
719 | | /// Decrements *this by 1. |
720 | | /// |
721 | | /// \returns a new APInt value representing the original value of *this. |
722 | 0 | const APInt operator--(int) { |
723 | 0 | APInt API(*this); |
724 | 0 | --(*this); |
725 | 0 | return API; |
726 | 0 | } |
727 | | |
728 | | /// Prefix decrement operator. |
729 | | /// |
730 | | /// \returns *this decremented by one. |
731 | | APInt &operator--(); |
732 | | |
733 | | /// Logical negation operator. |
734 | | /// |
735 | | /// Performs logical negation operation on this APInt. |
736 | | /// |
737 | | /// \returns true if *this is zero, false otherwise. |
738 | 0 | bool operator!() const { |
739 | 0 | if (isSingleWord()) |
740 | 0 | return U.VAL == 0; |
741 | 0 | return countLeadingZerosSlowCase() == BitWidth; |
742 | 0 | } |
743 | | |
744 | | /// @} |
745 | | /// \name Assignment Operators |
746 | | /// @{ |
747 | | |
748 | | /// Copy assignment operator. |
749 | | /// |
750 | | /// \returns *this after assignment of RHS. |
751 | 0 | APInt &operator=(const APInt &RHS) { |
752 | 0 | // If the bitwidths are the same, we can avoid mucking with memory |
753 | 0 | if (isSingleWord() && RHS.isSingleWord()) { |
754 | 0 | U.VAL = RHS.U.VAL; |
755 | 0 | BitWidth = RHS.BitWidth; |
756 | 0 | return clearUnusedBits(); |
757 | 0 | } |
758 | 0 | |
759 | 0 | AssignSlowCase(RHS); |
760 | 0 | return *this; |
761 | 0 | } |
762 | | |
763 | | /// Move assignment operator. |
764 | 0 | APInt &operator=(APInt &&that) { |
765 | | #ifdef _MSC_VER |
766 | | // The MSVC std::shuffle implementation still does self-assignment. |
767 | | if (this == &that) |
768 | | return *this; |
769 | | #endif |
770 | | assert(this != &that && "Self-move not supported"); |
771 | 0 | if (!isSingleWord()) |
772 | 0 | delete[] U.pVal; |
773 | 0 |
|
774 | 0 | // Use memcpy so that type based alias analysis sees both VAL and pVal |
775 | 0 | // as modified. |
776 | 0 | memcpy(&U, &that.U, sizeof(U)); |
777 | 0 |
|
778 | 0 | BitWidth = that.BitWidth; |
779 | 0 | that.BitWidth = 0; |
780 | 0 |
|
781 | 0 | return *this; |
782 | 0 | } |
783 | | |
784 | | /// Assignment operator. |
785 | | /// |
786 | | /// The RHS value is assigned to *this. If the significant bits in RHS exceed |
787 | | /// the bit width, the excess bits are truncated. If the bit width is larger |
788 | | /// than 64, the value is zero filled in the unspecified high order bits. |
789 | | /// |
790 | | /// \returns *this after assignment of RHS value. |
791 | 0 | APInt &operator=(uint64_t RHS) { |
792 | 0 | if (isSingleWord()) { |
793 | 0 | U.VAL = RHS; |
794 | 0 | clearUnusedBits(); |
795 | 0 | } else { |
796 | 0 | U.pVal[0] = RHS; |
797 | 0 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
798 | 0 | } |
799 | 0 | return *this; |
800 | 0 | } |
801 | | |
802 | | /// Bitwise AND assignment operator. |
803 | | /// |
804 | | /// Performs a bitwise AND operation on this APInt and RHS. The result is |
805 | | /// assigned to *this. |
806 | | /// |
807 | | /// \returns *this after ANDing with RHS. |
808 | 0 | APInt &operator&=(const APInt &RHS) { |
809 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
810 | 0 | if (isSingleWord()) |
811 | 0 | U.VAL &= RHS.U.VAL; |
812 | 0 | else |
813 | 0 | AndAssignSlowCase(RHS); |
814 | 0 | return *this; |
815 | 0 | } |
816 | | |
817 | | /// Bitwise AND assignment operator. |
818 | | /// |
819 | | /// Performs a bitwise AND operation on this APInt and RHS. RHS is |
820 | | /// logically zero-extended or truncated to match the bit-width of |
821 | | /// the LHS. |
822 | 0 | APInt &operator&=(uint64_t RHS) { |
823 | 0 | if (isSingleWord()) { |
824 | 0 | U.VAL &= RHS; |
825 | 0 | return *this; |
826 | 0 | } |
827 | 0 | U.pVal[0] &= RHS; |
828 | 0 | memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); |
829 | 0 | return *this; |
830 | 0 | } |
831 | | |
832 | | /// Bitwise OR assignment operator. |
833 | | /// |
834 | | /// Performs a bitwise OR operation on this APInt and RHS. The result is |
835 | | /// assigned *this; |
836 | | /// |
837 | | /// \returns *this after ORing with RHS. |
838 | 0 | APInt &operator|=(const APInt &RHS) { |
839 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
840 | 0 | if (isSingleWord()) |
841 | 0 | U.VAL |= RHS.U.VAL; |
842 | 0 | else |
843 | 0 | OrAssignSlowCase(RHS); |
844 | 0 | return *this; |
845 | 0 | } |
846 | | |
847 | | /// Bitwise OR assignment operator. |
848 | | /// |
849 | | /// Performs a bitwise OR operation on this APInt and RHS. RHS is |
850 | | /// logically zero-extended or truncated to match the bit-width of |
851 | | /// the LHS. |
852 | 0 | APInt &operator|=(uint64_t RHS) { |
853 | 0 | if (isSingleWord()) { |
854 | 0 | U.VAL |= RHS; |
855 | 0 | clearUnusedBits(); |
856 | 0 | } else { |
857 | 0 | U.pVal[0] |= RHS; |
858 | 0 | } |
859 | 0 | return *this; |
860 | 0 | } |
861 | | |
862 | | /// Bitwise XOR assignment operator. |
863 | | /// |
864 | | /// Performs a bitwise XOR operation on this APInt and RHS. The result is |
865 | | /// assigned to *this. |
866 | | /// |
867 | | /// \returns *this after XORing with RHS. |
868 | 0 | APInt &operator^=(const APInt &RHS) { |
869 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
870 | 0 | if (isSingleWord()) |
871 | 0 | U.VAL ^= RHS.U.VAL; |
872 | 0 | else |
873 | 0 | XorAssignSlowCase(RHS); |
874 | 0 | return *this; |
875 | 0 | } |
876 | | |
877 | | /// Bitwise XOR assignment operator. |
878 | | /// |
879 | | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is |
880 | | /// logically zero-extended or truncated to match the bit-width of |
881 | | /// the LHS. |
882 | 0 | APInt &operator^=(uint64_t RHS) { |
883 | 0 | if (isSingleWord()) { |
884 | 0 | U.VAL ^= RHS; |
885 | 0 | clearUnusedBits(); |
886 | 0 | } else { |
887 | 0 | U.pVal[0] ^= RHS; |
888 | 0 | } |
889 | 0 | return *this; |
890 | 0 | } |
891 | | |
892 | | /// Multiplication assignment operator. |
893 | | /// |
894 | | /// Multiplies this APInt by RHS and assigns the result to *this. |
895 | | /// |
896 | | /// \returns *this |
897 | | APInt &operator*=(const APInt &RHS); |
898 | | APInt &operator*=(uint64_t RHS); |
899 | | |
900 | | /// Addition assignment operator. |
901 | | /// |
902 | | /// Adds RHS to *this and assigns the result to *this. |
903 | | /// |
904 | | /// \returns *this |
905 | | APInt &operator+=(const APInt &RHS); |
906 | | APInt &operator+=(uint64_t RHS); |
907 | | |
908 | | /// Subtraction assignment operator. |
909 | | /// |
910 | | /// Subtracts RHS from *this and assigns the result to *this. |
911 | | /// |
912 | | /// \returns *this |
913 | | APInt &operator-=(const APInt &RHS); |
914 | | APInt &operator-=(uint64_t RHS); |
915 | | |
916 | | /// Left-shift assignment function. |
917 | | /// |
918 | | /// Shifts *this left by shiftAmt and assigns the result to *this. |
919 | | /// |
920 | | /// \returns *this after shifting left by ShiftAmt |
921 | 0 | APInt &operator<<=(unsigned ShiftAmt) { |
922 | 0 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
923 | 0 | if (isSingleWord()) { |
924 | 0 | if (ShiftAmt == BitWidth) |
925 | 0 | U.VAL = 0; |
926 | 0 | else |
927 | 0 | U.VAL <<= ShiftAmt; |
928 | 0 | return clearUnusedBits(); |
929 | 0 | } |
930 | 0 | shlSlowCase(ShiftAmt); |
931 | 0 | return *this; |
932 | 0 | } |
933 | | |
934 | | /// Left-shift assignment function. |
935 | | /// |
936 | | /// Shifts *this left by shiftAmt and assigns the result to *this. |
937 | | /// |
938 | | /// \returns *this after shifting left by ShiftAmt |
939 | | APInt &operator<<=(const APInt &ShiftAmt); |
940 | | |
941 | | /// @} |
942 | | /// \name Binary Operators |
943 | | /// @{ |
944 | | |
945 | | /// Multiplication operator. |
946 | | /// |
947 | | /// Multiplies this APInt by RHS and returns the result. |
948 | | APInt operator*(const APInt &RHS) const; |
949 | | |
950 | | /// Left logical shift operator. |
951 | | /// |
952 | | /// Shifts this APInt left by \p Bits and returns the result. |
953 | 0 | APInt operator<<(unsigned Bits) const { return shl(Bits); } |
954 | | |
955 | | /// Left logical shift operator. |
956 | | /// |
957 | | /// Shifts this APInt left by \p Bits and returns the result. |
958 | 0 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } |
959 | | |
960 | | /// Arithmetic right-shift function. |
961 | | /// |
962 | | /// Arithmetic right-shift this APInt by shiftAmt. |
963 | 0 | APInt ashr(unsigned ShiftAmt) const { |
964 | 0 | APInt R(*this); |
965 | 0 | R.ashrInPlace(ShiftAmt); |
966 | 0 | return R; |
967 | 0 | } |
968 | | |
969 | | /// Arithmetic right-shift this APInt by ShiftAmt in place. |
970 | 0 | void ashrInPlace(unsigned ShiftAmt) { |
971 | 0 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
972 | 0 | if (isSingleWord()) { |
973 | 0 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); |
974 | 0 | if (ShiftAmt == BitWidth) |
975 | 0 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. |
976 | 0 | else |
977 | 0 | U.VAL = SExtVAL >> ShiftAmt; |
978 | 0 | clearUnusedBits(); |
979 | 0 | return; |
980 | 0 | } |
981 | 0 | ashrSlowCase(ShiftAmt); |
982 | 0 | } |
983 | | |
984 | | /// Logical right-shift function. |
985 | | /// |
986 | | /// Logical right-shift this APInt by shiftAmt. |
987 | 0 | APInt lshr(unsigned shiftAmt) const { |
988 | 0 | APInt R(*this); |
989 | 0 | R.lshrInPlace(shiftAmt); |
990 | 0 | return R; |
991 | 0 | } |
992 | | |
993 | | /// Logical right-shift this APInt by ShiftAmt in place. |
994 | 0 | void lshrInPlace(unsigned ShiftAmt) { |
995 | 0 | assert(ShiftAmt <= BitWidth && "Invalid shift amount"); |
996 | 0 | if (isSingleWord()) { |
997 | 0 | if (ShiftAmt == BitWidth) |
998 | 0 | U.VAL = 0; |
999 | 0 | else |
1000 | 0 | U.VAL >>= ShiftAmt; |
1001 | 0 | return; |
1002 | 0 | } |
1003 | 0 | lshrSlowCase(ShiftAmt); |
1004 | 0 | } |
1005 | | |
1006 | | /// Left-shift function. |
1007 | | /// |
1008 | | /// Left-shift this APInt by shiftAmt. |
1009 | 0 | APInt shl(unsigned shiftAmt) const { |
1010 | 0 | APInt R(*this); |
1011 | 0 | R <<= shiftAmt; |
1012 | 0 | return R; |
1013 | 0 | } |
1014 | | |
1015 | | /// Rotate left by rotateAmt. |
1016 | | APInt rotl(unsigned rotateAmt) const; |
1017 | | |
1018 | | /// Rotate right by rotateAmt. |
1019 | | APInt rotr(unsigned rotateAmt) const; |
1020 | | |
1021 | | /// Arithmetic right-shift function. |
1022 | | /// |
1023 | | /// Arithmetic right-shift this APInt by shiftAmt. |
1024 | 0 | APInt ashr(const APInt &ShiftAmt) const { |
1025 | 0 | APInt R(*this); |
1026 | 0 | R.ashrInPlace(ShiftAmt); |
1027 | 0 | return R; |
1028 | 0 | } |
1029 | | |
1030 | | /// Arithmetic right-shift this APInt by shiftAmt in place. |
1031 | | void ashrInPlace(const APInt &shiftAmt); |
1032 | | |
1033 | | /// Logical right-shift function. |
1034 | | /// |
1035 | | /// Logical right-shift this APInt by shiftAmt. |
1036 | 0 | APInt lshr(const APInt &ShiftAmt) const { |
1037 | 0 | APInt R(*this); |
1038 | 0 | R.lshrInPlace(ShiftAmt); |
1039 | 0 | return R; |
1040 | 0 | } |
1041 | | |
1042 | | /// Logical right-shift this APInt by ShiftAmt in place. |
1043 | | void lshrInPlace(const APInt &ShiftAmt); |
1044 | | |
1045 | | /// Left-shift function. |
1046 | | /// |
1047 | | /// Left-shift this APInt by shiftAmt. |
1048 | 0 | APInt shl(const APInt &ShiftAmt) const { |
1049 | 0 | APInt R(*this); |
1050 | 0 | R <<= ShiftAmt; |
1051 | 0 | return R; |
1052 | 0 | } |
1053 | | |
1054 | | /// Rotate left by rotateAmt. |
1055 | | APInt rotl(const APInt &rotateAmt) const; |
1056 | | |
1057 | | /// Rotate right by rotateAmt. |
1058 | | APInt rotr(const APInt &rotateAmt) const; |
1059 | | |
1060 | | /// Unsigned division operation. |
1061 | | /// |
1062 | | /// Perform an unsigned divide operation on this APInt by RHS. Both this and |
1063 | | /// RHS are treated as unsigned quantities for purposes of this division. |
1064 | | /// |
1065 | | /// \returns a new APInt value containing the division result, rounded towards |
1066 | | /// zero. |
1067 | | APInt udiv(const APInt &RHS) const; |
1068 | | APInt udiv(uint64_t RHS) const; |
1069 | | |
1070 | | /// Signed division function for APInt. |
1071 | | /// |
1072 | | /// Signed divide this APInt by APInt RHS. |
1073 | | /// |
1074 | | /// The result is rounded towards zero. |
1075 | | APInt sdiv(const APInt &RHS) const; |
1076 | | APInt sdiv(int64_t RHS) const; |
1077 | | |
1078 | | /// Unsigned remainder operation. |
1079 | | /// |
1080 | | /// Perform an unsigned remainder operation on this APInt with RHS being the |
1081 | | /// divisor. Both this and RHS are treated as unsigned quantities for purposes |
1082 | | /// of this operation. Note that this is a true remainder operation and not a |
1083 | | /// modulo operation because the sign follows the sign of the dividend which |
1084 | | /// is *this. |
1085 | | /// |
1086 | | /// \returns a new APInt value containing the remainder result |
1087 | | APInt urem(const APInt &RHS) const; |
1088 | | uint64_t urem(uint64_t RHS) const; |
1089 | | |
1090 | | /// Function for signed remainder operation. |
1091 | | /// |
1092 | | /// Signed remainder operation on APInt. |
1093 | | APInt srem(const APInt &RHS) const; |
1094 | | int64_t srem(int64_t RHS) const; |
1095 | | |
1096 | | /// Dual division/remainder interface. |
1097 | | /// |
1098 | | /// Sometimes it is convenient to divide two APInt values and obtain both the |
1099 | | /// quotient and remainder. This function does both operations in the same |
1100 | | /// computation making it a little more efficient. The pair of input arguments |
1101 | | /// may overlap with the pair of output arguments. It is safe to call |
1102 | | /// udivrem(X, Y, X, Y), for example. |
1103 | | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1104 | | APInt &Remainder); |
1105 | | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, |
1106 | | uint64_t &Remainder); |
1107 | | |
1108 | | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, |
1109 | | APInt &Remainder); |
1110 | | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, |
1111 | | int64_t &Remainder); |
1112 | | |
1113 | | // Operations that return overflow indicators. |
1114 | | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; |
1115 | | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; |
1116 | | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; |
1117 | | APInt usub_ov(const APInt &RHS, bool &Overflow) const; |
1118 | | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; |
1119 | | APInt smul_ov(const APInt &RHS, bool &Overflow) const; |
1120 | | APInt umul_ov(const APInt &RHS, bool &Overflow) const; |
1121 | | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; |
1122 | | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; |
1123 | | |
1124 | | // Operations that saturate |
1125 | | APInt sadd_sat(const APInt &RHS) const; |
1126 | | APInt uadd_sat(const APInt &RHS) const; |
1127 | | APInt ssub_sat(const APInt &RHS) const; |
1128 | | APInt usub_sat(const APInt &RHS) const; |
1129 | | APInt smul_sat(const APInt &RHS) const; |
1130 | | APInt umul_sat(const APInt &RHS) const; |
1131 | | APInt sshl_sat(const APInt &RHS) const; |
1132 | | APInt ushl_sat(const APInt &RHS) const; |
1133 | | |
1134 | | /// Array-indexing support. |
1135 | | /// |
1136 | | /// \returns the bit value at bitPosition |
1137 | 0 | bool operator[](unsigned bitPosition) const { |
1138 | 0 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); |
1139 | 0 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; |
1140 | 0 | } |
1141 | | |
1142 | | /// @} |
1143 | | /// \name Comparison Operators |
1144 | | /// @{ |
1145 | | |
1146 | | /// Equality operator. |
1147 | | /// |
1148 | | /// Compares this APInt with RHS for the validity of the equality |
1149 | | /// relationship. |
1150 | 0 | bool operator==(const APInt &RHS) const { |
1151 | 0 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); |
1152 | 0 | if (isSingleWord()) |
1153 | 0 | return U.VAL == RHS.U.VAL; |
1154 | 0 | return EqualSlowCase(RHS); |
1155 | 0 | } |
1156 | | |
1157 | | /// Equality operator. |
1158 | | /// |
1159 | | /// Compares this APInt with a uint64_t for the validity of the equality |
1160 | | /// relationship. |
1161 | | /// |
1162 | | /// \returns true if *this == Val |
1163 | 0 | bool operator==(uint64_t Val) const { |
1164 | 0 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; |
1165 | 0 | } |
1166 | | |
1167 | | /// Equality comparison. |
1168 | | /// |
1169 | | /// Compares this APInt with RHS for the validity of the equality |
1170 | | /// relationship. |
1171 | | /// |
1172 | | /// \returns true if *this == Val |
1173 | 0 | bool eq(const APInt &RHS) const { return (*this) == RHS; } |
1174 | | |
1175 | | /// Inequality operator. |
1176 | | /// |
1177 | | /// Compares this APInt with RHS for the validity of the inequality |
1178 | | /// relationship. |
1179 | | /// |
1180 | | /// \returns true if *this != Val |
1181 | 0 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } |
1182 | | |
1183 | | /// Inequality operator. |
1184 | | /// |
1185 | | /// Compares this APInt with a uint64_t for the validity of the inequality |
1186 | | /// relationship. |
1187 | | /// |
1188 | | /// \returns true if *this != Val |
1189 | 0 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } |
1190 | | |
1191 | | /// Inequality comparison |
1192 | | /// |
1193 | | /// Compares this APInt with RHS for the validity of the inequality |
1194 | | /// relationship. |
1195 | | /// |
1196 | | /// \returns true if *this != Val |
1197 | 0 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } |
1198 | | |
1199 | | /// Unsigned less than comparison |
1200 | | /// |
1201 | | /// Regards both *this and RHS as unsigned quantities and compares them for |
1202 | | /// the validity of the less-than relationship. |
1203 | | /// |
1204 | | /// \returns true if *this < RHS when both are considered unsigned. |
1205 | 0 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } |
1206 | | |
1207 | | /// Unsigned less than comparison |
1208 | | /// |
1209 | | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1210 | | /// the validity of the less-than relationship. |
1211 | | /// |
1212 | | /// \returns true if *this < RHS when considered unsigned. |
1213 | 0 | bool ult(uint64_t RHS) const { |
1214 | 0 | // Only need to check active bits if not a single word. |
1215 | 0 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; |
1216 | 0 | } |
1217 | | |
1218 | | /// Signed less than comparison |
1219 | | /// |
1220 | | /// Regards both *this and RHS as signed quantities and compares them for |
1221 | | /// validity of the less-than relationship. |
1222 | | /// |
1223 | | /// \returns true if *this < RHS when both are considered signed. |
1224 | 0 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } |
1225 | | |
1226 | | /// Signed less than comparison |
1227 | | /// |
1228 | | /// Regards both *this as a signed quantity and compares it with RHS for |
1229 | | /// the validity of the less-than relationship. |
1230 | | /// |
1231 | | /// \returns true if *this < RHS when considered signed. |
1232 | 0 | bool slt(int64_t RHS) const { |
1233 | 0 | return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() |
1234 | 0 | : getSExtValue() < RHS; |
1235 | 0 | } |
1236 | | |
1237 | | /// Unsigned less or equal comparison |
1238 | | /// |
1239 | | /// Regards both *this and RHS as unsigned quantities and compares them for |
1240 | | /// validity of the less-or-equal relationship. |
1241 | | /// |
1242 | | /// \returns true if *this <= RHS when both are considered unsigned. |
1243 | 0 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } |
1244 | | |
1245 | | /// Unsigned less or equal comparison |
1246 | | /// |
1247 | | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1248 | | /// the validity of the less-or-equal relationship. |
1249 | | /// |
1250 | | /// \returns true if *this <= RHS when considered unsigned. |
1251 | 0 | bool ule(uint64_t RHS) const { return !ugt(RHS); } |
1252 | | |
1253 | | /// Signed less or equal comparison |
1254 | | /// |
1255 | | /// Regards both *this and RHS as signed quantities and compares them for |
1256 | | /// validity of the less-or-equal relationship. |
1257 | | /// |
1258 | | /// \returns true if *this <= RHS when both are considered signed. |
1259 | 0 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } |
1260 | | |
1261 | | /// Signed less or equal comparison |
1262 | | /// |
1263 | | /// Regards both *this as a signed quantity and compares it with RHS for the |
1264 | | /// validity of the less-or-equal relationship. |
1265 | | /// |
1266 | | /// \returns true if *this <= RHS when considered signed. |
1267 | 0 | bool sle(uint64_t RHS) const { return !sgt(RHS); } |
1268 | | |
1269 | | /// Unsigned greater than comparison |
1270 | | /// |
1271 | | /// Regards both *this and RHS as unsigned quantities and compares them for |
1272 | | /// the validity of the greater-than relationship. |
1273 | | /// |
1274 | | /// \returns true if *this > RHS when both are considered unsigned. |
1275 | 0 | bool ugt(const APInt &RHS) const { return !ule(RHS); } |
1276 | | |
1277 | | /// Unsigned greater than comparison |
1278 | | /// |
1279 | | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1280 | | /// the validity of the greater-than relationship. |
1281 | | /// |
1282 | | /// \returns true if *this > RHS when considered unsigned. |
1283 | 0 | bool ugt(uint64_t RHS) const { |
1284 | 0 | // Only need to check active bits if not a single word. |
1285 | 0 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; |
1286 | 0 | } |
1287 | | |
1288 | | /// Signed greater than comparison |
1289 | | /// |
1290 | | /// Regards both *this and RHS as signed quantities and compares them for the |
1291 | | /// validity of the greater-than relationship. |
1292 | | /// |
1293 | | /// \returns true if *this > RHS when both are considered signed. |
1294 | 0 | bool sgt(const APInt &RHS) const { return !sle(RHS); } |
1295 | | |
1296 | | /// Signed greater than comparison |
1297 | | /// |
1298 | | /// Regards both *this as a signed quantity and compares it with RHS for |
1299 | | /// the validity of the greater-than relationship. |
1300 | | /// |
1301 | | /// \returns true if *this > RHS when considered signed. |
1302 | 0 | bool sgt(int64_t RHS) const { |
1303 | 0 | return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() |
1304 | 0 | : getSExtValue() > RHS; |
1305 | 0 | } |
1306 | | |
1307 | | /// Unsigned greater or equal comparison |
1308 | | /// |
1309 | | /// Regards both *this and RHS as unsigned quantities and compares them for |
1310 | | /// validity of the greater-or-equal relationship. |
1311 | | /// |
1312 | | /// \returns true if *this >= RHS when both are considered unsigned. |
1313 | 0 | bool uge(const APInt &RHS) const { return !ult(RHS); } |
1314 | | |
1315 | | /// Unsigned greater or equal comparison |
1316 | | /// |
1317 | | /// Regards both *this as an unsigned quantity and compares it with RHS for |
1318 | | /// the validity of the greater-or-equal relationship. |
1319 | | /// |
1320 | | /// \returns true if *this >= RHS when considered unsigned. |
1321 | 0 | bool uge(uint64_t RHS) const { return !ult(RHS); } |
1322 | | |
1323 | | /// Signed greater or equal comparison |
1324 | | /// |
1325 | | /// Regards both *this and RHS as signed quantities and compares them for |
1326 | | /// validity of the greater-or-equal relationship. |
1327 | | /// |
1328 | | /// \returns true if *this >= RHS when both are considered signed. |
1329 | 0 | bool sge(const APInt &RHS) const { return !slt(RHS); } |
1330 | | |
1331 | | /// Signed greater or equal comparison |
1332 | | /// |
1333 | | /// Regards both *this as a signed quantity and compares it with RHS for |
1334 | | /// the validity of the greater-or-equal relationship. |
1335 | | /// |
1336 | | /// \returns true if *this >= RHS when considered signed. |
1337 | 0 | bool sge(int64_t RHS) const { return !slt(RHS); } |
1338 | | |
1339 | | /// This operation tests if there are any pairs of corresponding bits |
1340 | | /// between this APInt and RHS that are both set. |
1341 | 0 | bool intersects(const APInt &RHS) const { |
1342 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
1343 | 0 | if (isSingleWord()) |
1344 | 0 | return (U.VAL & RHS.U.VAL) != 0; |
1345 | 0 | return intersectsSlowCase(RHS); |
1346 | 0 | } |
1347 | | |
1348 | | /// This operation checks that all bits set in this APInt are also set in RHS. |
1349 | 0 | bool isSubsetOf(const APInt &RHS) const { |
1350 | 0 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); |
1351 | 0 | if (isSingleWord()) |
1352 | 0 | return (U.VAL & ~RHS.U.VAL) == 0; |
1353 | 0 | return isSubsetOfSlowCase(RHS); |
1354 | 0 | } |
1355 | | |
1356 | | /// @} |
1357 | | /// \name Resizing Operators |
1358 | | /// @{ |
1359 | | |
1360 | | /// Truncate to new width. |
1361 | | /// |
1362 | | /// Truncate the APInt to a specified width. It is an error to specify a width |
1363 | | /// that is greater than or equal to the current width. |
1364 | | APInt trunc(unsigned width) const; |
1365 | | |
1366 | | /// Truncate to new width with unsigned saturation. |
1367 | | /// |
1368 | | /// If the APInt, treated as unsigned integer, can be losslessly truncated to |
1369 | | /// the new bitwidth, then return truncated APInt. Else, return max value. |
1370 | | APInt truncUSat(unsigned width) const; |
1371 | | |
1372 | | /// Truncate to new width with signed saturation. |
1373 | | /// |
1374 | | /// If this APInt, treated as signed integer, can be losslessly truncated to |
1375 | | /// the new bitwidth, then return truncated APInt. Else, return either |
1376 | | /// signed min value if the APInt was negative, or signed max value. |
1377 | | APInt truncSSat(unsigned width) const; |
1378 | | |
1379 | | /// Sign extend to a new width. |
1380 | | /// |
1381 | | /// This operation sign extends the APInt to a new width. If the high order |
1382 | | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. |
1383 | | /// It is an error to specify a width that is less than or equal to the |
1384 | | /// current width. |
1385 | | APInt sext(unsigned width) const; |
1386 | | |
1387 | | /// Zero extend to a new width. |
1388 | | /// |
1389 | | /// This operation zero extends the APInt to a new width. The high order bits |
1390 | | /// are filled with 0 bits. It is an error to specify a width that is less |
1391 | | /// than or equal to the current width. |
1392 | | APInt zext(unsigned width) const; |
1393 | | |
1394 | | /// Sign extend or truncate to width |
1395 | | /// |
1396 | | /// Make this APInt have the bit width given by \p width. The value is sign |
1397 | | /// extended, truncated, or left alone to make it that width. |
1398 | | APInt sextOrTrunc(unsigned width) const; |
1399 | | |
1400 | | /// Zero extend or truncate to width |
1401 | | /// |
1402 | | /// Make this APInt have the bit width given by \p width. The value is zero |
1403 | | /// extended, truncated, or left alone to make it that width. |
1404 | | APInt zextOrTrunc(unsigned width) const; |
1405 | | |
1406 | | /// Sign extend or truncate to width |
1407 | | /// |
1408 | | /// Make this APInt have the bit width given by \p width. The value is sign |
1409 | | /// extended, or left alone to make it that width. |
1410 | | APInt sextOrSelf(unsigned width) const; |
1411 | | |
1412 | | /// Zero extend or truncate to width |
1413 | | /// |
1414 | | /// Make this APInt have the bit width given by \p width. The value is zero |
1415 | | /// extended, or left alone to make it that width. |
1416 | | APInt zextOrSelf(unsigned width) const; |
1417 | | |
1418 | | /// @} |
1419 | | /// \name Bit Manipulation Operators |
1420 | | /// @{ |
1421 | | |
1422 | | /// Set every bit to 1. |
1423 | 0 | void setAllBits() { |
1424 | 0 | if (isSingleWord()) |
1425 | 0 | U.VAL = WORDTYPE_MAX; |
1426 | 0 | else |
1427 | 0 | // Set all the bits in all the words. |
1428 | 0 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); |
1429 | 0 | // Clear the unused ones |
1430 | 0 | clearUnusedBits(); |
1431 | 0 | } |
1432 | | |
1433 | | /// Set a given bit to 1. |
1434 | | /// |
1435 | | /// Set the given bit to 1 whose position is given as "bitPosition". |
1436 | 0 | void setBit(unsigned BitPosition) { |
1437 | 0 | assert(BitPosition < BitWidth && "BitPosition out of range"); |
1438 | 0 | WordType Mask = maskBit(BitPosition); |
1439 | 0 | if (isSingleWord()) |
1440 | 0 | U.VAL |= Mask; |
1441 | 0 | else |
1442 | 0 | U.pVal[whichWord(BitPosition)] |= Mask; |
1443 | 0 | } |
1444 | | |
1445 | | /// Set the sign bit to 1. |
1446 | 0 | void setSignBit() { |
1447 | 0 | setBit(BitWidth - 1); |
1448 | 0 | } |
1449 | | |
1450 | | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1451 | | /// This function handles "wrap" case when \p loBit > \p hiBit, and calls |
1452 | | /// setBits when \p loBit <= \p hiBit. |
1453 | 0 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { |
1454 | 0 | assert(hiBit <= BitWidth && "hiBit out of range"); |
1455 | 0 | assert(loBit <= BitWidth && "loBit out of range"); |
1456 | 0 | if (loBit <= hiBit) { |
1457 | 0 | setBits(loBit, hiBit); |
1458 | 0 | return; |
1459 | 0 | } |
1460 | 0 | setLowBits(hiBit); |
1461 | 0 | setHighBits(BitWidth - loBit); |
1462 | 0 | } |
1463 | | |
1464 | | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. |
1465 | | /// This function handles case when \p loBit <= \p hiBit. |
1466 | 0 | void setBits(unsigned loBit, unsigned hiBit) { |
1467 | 0 | assert(hiBit <= BitWidth && "hiBit out of range"); |
1468 | 0 | assert(loBit <= BitWidth && "loBit out of range"); |
1469 | 0 | assert(loBit <= hiBit && "loBit greater than hiBit"); |
1470 | 0 | if (loBit == hiBit) |
1471 | 0 | return; |
1472 | 0 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { |
1473 | 0 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); |
1474 | 0 | mask <<= loBit; |
1475 | 0 | if (isSingleWord()) |
1476 | 0 | U.VAL |= mask; |
1477 | 0 | else |
1478 | 0 | U.pVal[0] |= mask; |
1479 | 0 | } else { |
1480 | 0 | setBitsSlowCase(loBit, hiBit); |
1481 | 0 | } |
1482 | 0 | } |
1483 | | |
1484 | | /// Set the top bits starting from loBit. |
1485 | 0 | void setBitsFrom(unsigned loBit) { |
1486 | 0 | return setBits(loBit, BitWidth); |
1487 | 0 | } |
1488 | | |
1489 | | /// Set the bottom loBits bits. |
1490 | 0 | void setLowBits(unsigned loBits) { |
1491 | 0 | return setBits(0, loBits); |
1492 | 0 | } |
1493 | | |
1494 | | /// Set the top hiBits bits. |
1495 | 0 | void setHighBits(unsigned hiBits) { |
1496 | 0 | return setBits(BitWidth - hiBits, BitWidth); |
1497 | 0 | } |
1498 | | |
1499 | | /// Set every bit to 0. |
1500 | 0 | void clearAllBits() { |
1501 | 0 | if (isSingleWord()) |
1502 | 0 | U.VAL = 0; |
1503 | 0 | else |
1504 | 0 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); |
1505 | 0 | } |
1506 | | |
1507 | | /// Set a given bit to 0. |
1508 | | /// |
1509 | | /// Set the given bit to 0 whose position is given as "bitPosition". |
1510 | 0 | void clearBit(unsigned BitPosition) { |
1511 | 0 | assert(BitPosition < BitWidth && "BitPosition out of range"); |
1512 | 0 | WordType Mask = ~maskBit(BitPosition); |
1513 | 0 | if (isSingleWord()) |
1514 | 0 | U.VAL &= Mask; |
1515 | 0 | else |
1516 | 0 | U.pVal[whichWord(BitPosition)] &= Mask; |
1517 | 0 | } |
1518 | | |
1519 | | /// Set bottom loBits bits to 0. |
1520 | 0 | void clearLowBits(unsigned loBits) { |
1521 | 0 | assert(loBits <= BitWidth && "More bits than bitwidth"); |
1522 | 0 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); |
1523 | 0 | *this &= Keep; |
1524 | 0 | } |
1525 | | |
1526 | | /// Set the sign bit to 0. |
1527 | 0 | void clearSignBit() { |
1528 | 0 | clearBit(BitWidth - 1); |
1529 | 0 | } |
1530 | | |
1531 | | /// Toggle every bit to its opposite value. |
1532 | 0 | void flipAllBits() { |
1533 | 0 | if (isSingleWord()) { |
1534 | 0 | U.VAL ^= WORDTYPE_MAX; |
1535 | 0 | clearUnusedBits(); |
1536 | 0 | } else { |
1537 | 0 | flipAllBitsSlowCase(); |
1538 | 0 | } |
1539 | 0 | } |
1540 | | |
1541 | | /// Toggles a given bit to its opposite value. |
1542 | | /// |
1543 | | /// Toggle a given bit to its opposite value whose position is given |
1544 | | /// as "bitPosition". |
1545 | | void flipBit(unsigned bitPosition); |
1546 | | |
1547 | | /// Negate this APInt in place. |
1548 | 0 | void negate() { |
1549 | 0 | flipAllBits(); |
1550 | 0 | ++(*this); |
1551 | 0 | } |
1552 | | |
1553 | | /// Insert the bits from a smaller APInt starting at bitPosition. |
1554 | | void insertBits(const APInt &SubBits, unsigned bitPosition); |
1555 | | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); |
1556 | | |
1557 | | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). |
1558 | | APInt extractBits(unsigned numBits, unsigned bitPosition) const; |
1559 | | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; |
1560 | | |
1561 | | /// @} |
1562 | | /// \name Value Characterization Functions |
1563 | | /// @{ |
1564 | | |
1565 | | /// Return the number of bits in the APInt. |
1566 | 0 | unsigned getBitWidth() const { return BitWidth; } |
1567 | | |
1568 | | /// Get the number of words. |
1569 | | /// |
1570 | | /// Here one word's bitwidth equals to that of uint64_t. |
1571 | | /// |
1572 | | /// \returns the number of words to hold the integer value of this APInt. |
1573 | 0 | unsigned getNumWords() const { return getNumWords(BitWidth); } |
1574 | | |
1575 | | /// Get the number of words. |
1576 | | /// |
1577 | | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. |
1578 | | /// |
1579 | | /// \returns the number of words to hold the integer value with a given bit |
1580 | | /// width. |
1581 | 0 | static unsigned getNumWords(unsigned BitWidth) { |
1582 | 0 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; |
1583 | 0 | } |
1584 | | |
1585 | | /// Compute the number of active bits in the value |
1586 | | /// |
1587 | | /// This function returns the number of active bits which is defined as the |
1588 | | /// bit width minus the number of leading zeros. This is used in several |
1589 | | /// computations to see how "wide" the value is. |
1590 | 0 | unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } |
1591 | | |
1592 | | /// Compute the number of active words in the value of this APInt. |
1593 | | /// |
1594 | | /// This is used in conjunction with getActiveData to extract the raw value of |
1595 | | /// the APInt. |
1596 | 0 | unsigned getActiveWords() const { |
1597 | 0 | unsigned numActiveBits = getActiveBits(); |
1598 | 0 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; |
1599 | 0 | } |
1600 | | |
1601 | | /// Get the minimum bit size for this signed APInt |
1602 | | /// |
1603 | | /// Computes the minimum bit width for this APInt while considering it to be a |
1604 | | /// signed (and probably negative) value. If the value is not negative, this |
1605 | | /// function returns the same value as getActiveBits()+1. Otherwise, it |
1606 | | /// returns the smallest bit width that will retain the negative value. For |
1607 | | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so |
1608 | | /// for -1, this function will always return 1. |
1609 | 0 | unsigned getMinSignedBits() const { |
1610 | 0 | if (isNegative()) |
1611 | 0 | return BitWidth - countLeadingOnes() + 1; |
1612 | 0 | return getActiveBits() + 1; |
1613 | 0 | } |
1614 | | |
1615 | | /// Get zero extended value |
1616 | | /// |
1617 | | /// This method attempts to return the value of this APInt as a zero extended |
1618 | | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a |
1619 | | /// uint64_t. Otherwise an assertion will result. |
1620 | 0 | uint64_t getZExtValue() const { |
1621 | 0 | if (isSingleWord()) |
1622 | 0 | return U.VAL; |
1623 | 0 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); |
1624 | 0 | return U.pVal[0]; |
1625 | 0 | } |
1626 | | |
1627 | | /// Get sign extended value |
1628 | | /// |
1629 | | /// This method attempts to return the value of this APInt as a sign extended |
1630 | | /// int64_t. The bit width must be <= 64 or the value must fit within an |
1631 | | /// int64_t. Otherwise an assertion will result. |
1632 | 0 | int64_t getSExtValue() const { |
1633 | 0 | if (isSingleWord()) |
1634 | 0 | return SignExtend64(U.VAL, BitWidth); |
1635 | 0 | assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); |
1636 | 0 | return int64_t(U.pVal[0]); |
1637 | 0 | } |
1638 | | |
1639 | | /// Get bits required for string value. |
1640 | | /// |
1641 | | /// This method determines how many bits are required to hold the APInt |
1642 | | /// equivalent of the string given by \p str. |
1643 | | static unsigned getBitsNeeded(StringRef str, uint8_t radix); |
1644 | | |
1645 | | /// The APInt version of the countLeadingZeros functions in |
1646 | | /// MathExtras.h. |
1647 | | /// |
1648 | | /// It counts the number of zeros from the most significant bit to the first |
1649 | | /// one bit. |
1650 | | /// |
1651 | | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1652 | | /// zeros from the most significant bit to the first one bits. |
1653 | 0 | unsigned countLeadingZeros() const { |
1654 | 0 | if (isSingleWord()) { |
1655 | 0 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; |
1656 | 0 | return llvm::countLeadingZeros(U.VAL) - unusedBits; |
1657 | 0 | } |
1658 | 0 | return countLeadingZerosSlowCase(); |
1659 | 0 | } |
1660 | | |
1661 | | /// Count the number of leading one bits. |
1662 | | /// |
1663 | | /// This function is an APInt version of the countLeadingOnes |
1664 | | /// functions in MathExtras.h. It counts the number of ones from the most |
1665 | | /// significant bit to the first zero bit. |
1666 | | /// |
1667 | | /// \returns 0 if the high order bit is not set, otherwise returns the number |
1668 | | /// of 1 bits from the most significant to the least |
1669 | 0 | unsigned countLeadingOnes() const { |
1670 | 0 | if (isSingleWord()) |
1671 | 0 | return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); |
1672 | 0 | return countLeadingOnesSlowCase(); |
1673 | 0 | } |
1674 | | |
1675 | | /// Computes the number of leading bits of this APInt that are equal to its |
1676 | | /// sign bit. |
1677 | 0 | unsigned getNumSignBits() const { |
1678 | 0 | return isNegative() ? countLeadingOnes() : countLeadingZeros(); |
1679 | 0 | } |
1680 | | |
1681 | | /// Count the number of trailing zero bits. |
1682 | | /// |
1683 | | /// This function is an APInt version of the countTrailingZeros |
1684 | | /// functions in MathExtras.h. It counts the number of zeros from the least |
1685 | | /// significant bit to the first set bit. |
1686 | | /// |
1687 | | /// \returns BitWidth if the value is zero, otherwise returns the number of |
1688 | | /// zeros from the least significant bit to the first one bit. |
1689 | 0 | unsigned countTrailingZeros() const { |
1690 | 0 | if (isSingleWord()) |
1691 | 0 | return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); |
1692 | 0 | return countTrailingZerosSlowCase(); |
1693 | 0 | } |
1694 | | |
1695 | | /// Count the number of trailing one bits. |
1696 | | /// |
1697 | | /// This function is an APInt version of the countTrailingOnes |
1698 | | /// functions in MathExtras.h. It counts the number of ones from the least |
1699 | | /// significant bit to the first zero bit. |
1700 | | /// |
1701 | | /// \returns BitWidth if the value is all ones, otherwise returns the number |
1702 | | /// of ones from the least significant bit to the first zero bit. |
1703 | 0 | unsigned countTrailingOnes() const { |
1704 | 0 | if (isSingleWord()) |
1705 | 0 | return llvm::countTrailingOnes(U.VAL); |
1706 | 0 | return countTrailingOnesSlowCase(); |
1707 | 0 | } |
1708 | | |
1709 | | /// Count the number of bits set. |
1710 | | /// |
1711 | | /// This function is an APInt version of the countPopulation functions |
1712 | | /// in MathExtras.h. It counts the number of 1 bits in the APInt value. |
1713 | | /// |
1714 | | /// \returns 0 if the value is zero, otherwise returns the number of set bits. |
1715 | 0 | unsigned countPopulation() const { |
1716 | 0 | if (isSingleWord()) |
1717 | 0 | return llvm::countPopulation(U.VAL); |
1718 | 0 | return countPopulationSlowCase(); |
1719 | 0 | } |
1720 | | |
1721 | | /// @} |
1722 | | /// \name Conversion Functions |
1723 | | /// @{ |
1724 | | void print(raw_ostream &OS, bool isSigned) const; |
1725 | | |
1726 | | /// Converts an APInt to a string and append it to Str. Str is commonly a |
1727 | | /// SmallString. |
1728 | | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, |
1729 | | bool formatAsCLiteral = false) const; |
1730 | | |
1731 | | /// Considers the APInt to be unsigned and converts it into a string in the |
1732 | | /// radix given. The radix can be 2, 8, 10 16, or 36. |
1733 | 0 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1734 | 0 | toString(Str, Radix, false, false); |
1735 | 0 | } |
1736 | | |
1737 | | /// Considers the APInt to be signed and converts it into a string in the |
1738 | | /// radix given. The radix can be 2, 8, 10, 16, or 36. |
1739 | 0 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { |
1740 | 0 | toString(Str, Radix, true, false); |
1741 | 0 | } |
1742 | | |
1743 | | /// Return the APInt as a std::string. |
1744 | | /// |
1745 | | /// Note that this is an inefficient method. It is better to pass in a |
1746 | | /// SmallVector/SmallString to the methods above to avoid thrashing the heap |
1747 | | /// for the string. |
1748 | | std::string toString(unsigned Radix, bool Signed) const; |
1749 | | |
1750 | | /// \returns a byte-swapped representation of this APInt Value. |
1751 | | APInt byteSwap() const; |
1752 | | |
1753 | | /// \returns the value with the bit representation reversed of this APInt |
1754 | | /// Value. |
1755 | | APInt reverseBits() const; |
1756 | | |
1757 | | /// Converts this APInt to a double value. |
1758 | | double roundToDouble(bool isSigned) const; |
1759 | | |
1760 | | /// Converts this unsigned APInt to a double value. |
1761 | 0 | double roundToDouble() const { return roundToDouble(false); } |
1762 | | |
1763 | | /// Converts this signed APInt to a double value. |
1764 | 0 | double signedRoundToDouble() const { return roundToDouble(true); } |
1765 | | |
1766 | | /// Converts APInt bits to a double |
1767 | | /// |
1768 | | /// The conversion does not do a translation from integer to double, it just |
1769 | | /// re-interprets the bits as a double. Note that it is valid to do this on |
1770 | | /// any bit width. Exactly 64 bits will be translated. |
1771 | 0 | double bitsToDouble() const { |
1772 | 0 | return BitsToDouble(getWord(0)); |
1773 | 0 | } |
1774 | | |
1775 | | /// Converts APInt bits to a float |
1776 | | /// |
1777 | | /// The conversion does not do a translation from integer to float, it just |
1778 | | /// re-interprets the bits as a float. Note that it is valid to do this on |
1779 | | /// any bit width. Exactly 32 bits will be translated. |
1780 | 0 | float bitsToFloat() const { |
1781 | 0 | return BitsToFloat(static_cast<uint32_t>(getWord(0))); |
1782 | 0 | } |
1783 | | |
1784 | | /// Converts a double to APInt bits. |
1785 | | /// |
1786 | | /// The conversion does not do a translation from double to integer, it just |
1787 | | /// re-interprets the bits of the double. |
1788 | 0 | static APInt doubleToBits(double V) { |
1789 | 0 | return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); |
1790 | 0 | } |
1791 | | |
1792 | | /// Converts a float to APInt bits. |
1793 | | /// |
1794 | | /// The conversion does not do a translation from float to integer, it just |
1795 | | /// re-interprets the bits of the float. |
1796 | 0 | static APInt floatToBits(float V) { |
1797 | 0 | return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); |
1798 | 0 | } |
1799 | | |
1800 | | /// @} |
1801 | | /// \name Mathematics Operations |
1802 | | /// @{ |
1803 | | |
1804 | | /// \returns the floor log base 2 of this APInt. |
1805 | 0 | unsigned logBase2() const { return getActiveBits() - 1; } |
1806 | | |
1807 | | /// \returns the ceil log base 2 of this APInt. |
1808 | 0 | unsigned ceilLogBase2() const { |
1809 | 0 | APInt temp(*this); |
1810 | 0 | --temp; |
1811 | 0 | return temp.getActiveBits(); |
1812 | 0 | } |
1813 | | |
1814 | | /// \returns the nearest log base 2 of this APInt. Ties round up. |
1815 | | /// |
1816 | | /// NOTE: When we have a BitWidth of 1, we define: |
1817 | | /// |
1818 | | /// log2(0) = UINT32_MAX |
1819 | | /// log2(1) = 0 |
1820 | | /// |
1821 | | /// to get around any mathematical concerns resulting from |
1822 | | /// referencing 2 in a space where 2 does no exist. |
1823 | 0 | unsigned nearestLogBase2() const { |
1824 | 0 | // Special case when we have a bitwidth of 1. If VAL is 1, then we |
1825 | 0 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to |
1826 | 0 | // UINT32_MAX. |
1827 | 0 | if (BitWidth == 1) |
1828 | 0 | return U.VAL - 1; |
1829 | 0 |
|
1830 | 0 | // Handle the zero case. |
1831 | 0 | if (isNullValue()) |
1832 | 0 | return UINT32_MAX; |
1833 | 0 |
|
1834 | 0 | // The non-zero case is handled by computing: |
1835 | 0 | // |
1836 | 0 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. |
1837 | 0 | // |
1838 | 0 | // where x[i] is referring to the value of the ith bit of x. |
1839 | 0 | unsigned lg = logBase2(); |
1840 | 0 | return lg + unsigned((*this)[lg - 1]); |
1841 | 0 | } |
1842 | | |
1843 | | /// \returns the log base 2 of this APInt if its an exact power of two, -1 |
1844 | | /// otherwise |
1845 | 0 | int32_t exactLogBase2() const { |
1846 | 0 | if (!isPowerOf2()) |
1847 | 0 | return -1; |
1848 | 0 | return logBase2(); |
1849 | 0 | } |
1850 | | |
1851 | | /// Compute the square root |
1852 | | APInt sqrt() const; |
1853 | | |
1854 | | /// Get the absolute value; |
1855 | | /// |
1856 | | /// If *this is < 0 then return -(*this), otherwise *this; |
1857 | 0 | APInt abs() const { |
1858 | 0 | if (isNegative()) |
1859 | 0 | return -(*this); |
1860 | 0 | return *this; |
1861 | 0 | } |
1862 | | |
1863 | | /// \returns the multiplicative inverse for a given modulo. |
1864 | | APInt multiplicativeInverse(const APInt &modulo) const; |
1865 | | |
1866 | | /// @} |
1867 | | /// \name Support for division by constant |
1868 | | /// @{ |
1869 | | |
1870 | | /// Calculate the magic number for signed division by a constant. |
1871 | | struct ms; |
1872 | | ms magic() const; |
1873 | | |
1874 | | /// Calculate the magic number for unsigned division by a constant. |
1875 | | struct mu; |
1876 | | mu magicu(unsigned LeadingZeros = 0) const; |
1877 | | |
1878 | | /// @} |
1879 | | /// \name Building-block Operations for APInt and APFloat |
1880 | | /// @{ |
1881 | | |
1882 | | // These building block operations operate on a representation of arbitrary |
1883 | | // precision, two's-complement, bignum integer values. They should be |
1884 | | // sufficient to implement APInt and APFloat bignum requirements. Inputs are |
1885 | | // generally a pointer to the base of an array of integer parts, representing |
1886 | | // an unsigned bignum, and a count of how many parts there are. |
1887 | | |
1888 | | /// Sets the least significant part of a bignum to the input value, and zeroes |
1889 | | /// out higher parts. |
1890 | | static void tcSet(WordType *, WordType, unsigned); |
1891 | | |
1892 | | /// Assign one bignum to another. |
1893 | | static void tcAssign(WordType *, const WordType *, unsigned); |
1894 | | |
1895 | | /// Returns true if a bignum is zero, false otherwise. |
1896 | | static bool tcIsZero(const WordType *, unsigned); |
1897 | | |
1898 | | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. |
1899 | | static int tcExtractBit(const WordType *, unsigned bit); |
1900 | | |
1901 | | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to |
1902 | | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least |
1903 | | /// significant bit of DST. All high bits above srcBITS in DST are |
1904 | | /// zero-filled. |
1905 | | static void tcExtract(WordType *, unsigned dstCount, |
1906 | | const WordType *, unsigned srcBits, |
1907 | | unsigned srcLSB); |
1908 | | |
1909 | | /// Set the given bit of a bignum. Zero-based. |
1910 | | static void tcSetBit(WordType *, unsigned bit); |
1911 | | |
1912 | | /// Clear the given bit of a bignum. Zero-based. |
1913 | | static void tcClearBit(WordType *, unsigned bit); |
1914 | | |
1915 | | /// Returns the bit number of the least or most significant set bit of a |
1916 | | /// number. If the input number has no bits set -1U is returned. |
1917 | | static unsigned tcLSB(const WordType *, unsigned n); |
1918 | | static unsigned tcMSB(const WordType *parts, unsigned n); |
1919 | | |
1920 | | /// Negate a bignum in-place. |
1921 | | static void tcNegate(WordType *, unsigned); |
1922 | | |
1923 | | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1924 | | static WordType tcAdd(WordType *, const WordType *, |
1925 | | WordType carry, unsigned); |
1926 | | /// DST += RHS. Returns the carry flag. |
1927 | | static WordType tcAddPart(WordType *, WordType, unsigned); |
1928 | | |
1929 | | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. |
1930 | | static WordType tcSubtract(WordType *, const WordType *, |
1931 | | WordType carry, unsigned); |
1932 | | /// DST -= RHS. Returns the carry flag. |
1933 | | static WordType tcSubtractPart(WordType *, WordType, unsigned); |
1934 | | |
1935 | | /// DST += SRC * MULTIPLIER + PART if add is true |
1936 | | /// DST = SRC * MULTIPLIER + PART if add is false |
1937 | | /// |
1938 | | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must |
1939 | | /// start at the same point, i.e. DST == SRC. |
1940 | | /// |
1941 | | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. |
1942 | | /// Otherwise DST is filled with the least significant DSTPARTS parts of the |
1943 | | /// result, and if all of the omitted higher parts were zero return zero, |
1944 | | /// otherwise overflow occurred and return one. |
1945 | | static int tcMultiplyPart(WordType *dst, const WordType *src, |
1946 | | WordType multiplier, WordType carry, |
1947 | | unsigned srcParts, unsigned dstParts, |
1948 | | bool add); |
1949 | | |
1950 | | /// DST = LHS * RHS, where DST has the same width as the operands and is |
1951 | | /// filled with the least significant parts of the result. Returns one if |
1952 | | /// overflow occurred, otherwise zero. DST must be disjoint from both |
1953 | | /// operands. |
1954 | | static int tcMultiply(WordType *, const WordType *, const WordType *, |
1955 | | unsigned); |
1956 | | |
1957 | | /// DST = LHS * RHS, where DST has width the sum of the widths of the |
1958 | | /// operands. No overflow occurs. DST must be disjoint from both operands. |
1959 | | static void tcFullMultiply(WordType *, const WordType *, |
1960 | | const WordType *, unsigned, unsigned); |
1961 | | |
1962 | | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. |
1963 | | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set |
1964 | | /// REMAINDER to the remainder, return zero. i.e. |
1965 | | /// |
1966 | | /// OLD_LHS = RHS * LHS + REMAINDER |
1967 | | /// |
1968 | | /// SCRATCH is a bignum of the same size as the operands and result for use by |
1969 | | /// the routine; its contents need not be initialized and are destroyed. LHS, |
1970 | | /// REMAINDER and SCRATCH must be distinct. |
1971 | | static int tcDivide(WordType *lhs, const WordType *rhs, |
1972 | | WordType *remainder, WordType *scratch, |
1973 | | unsigned parts); |
1974 | | |
1975 | | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no |
1976 | | /// restrictions on Count. |
1977 | | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); |
1978 | | |
1979 | | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no |
1980 | | /// restrictions on Count. |
1981 | | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); |
1982 | | |
1983 | | /// The obvious AND, OR and XOR and complement operations. |
1984 | | static void tcAnd(WordType *, const WordType *, unsigned); |
1985 | | static void tcOr(WordType *, const WordType *, unsigned); |
1986 | | static void tcXor(WordType *, const WordType *, unsigned); |
1987 | | static void tcComplement(WordType *, unsigned); |
1988 | | |
1989 | | /// Comparison (unsigned) of two bignums. |
1990 | | static int tcCompare(const WordType *, const WordType *, unsigned); |
1991 | | |
1992 | | /// Increment a bignum in-place. Return the carry flag. |
1993 | 0 | static WordType tcIncrement(WordType *dst, unsigned parts) { |
1994 | 0 | return tcAddPart(dst, 1, parts); |
1995 | 0 | } |
1996 | | |
1997 | | /// Decrement a bignum in-place. Return the borrow flag. |
1998 | 0 | static WordType tcDecrement(WordType *dst, unsigned parts) { |
1999 | 0 | return tcSubtractPart(dst, 1, parts); |
2000 | 0 | } |
2001 | | |
2002 | | /// Set the least significant BITS and clear the rest. |
2003 | | static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); |
2004 | | |
2005 | | /// debug method |
2006 | | void dump() const; |
2007 | | |
2008 | | /// @} |
2009 | | }; |
2010 | | |
2011 | | /// Magic data for optimising signed division by a constant. |
2012 | | struct APInt::ms { |
2013 | | APInt m; ///< magic number |
2014 | | unsigned s; ///< shift amount |
2015 | | }; |
2016 | | |
2017 | | /// Magic data for optimising unsigned division by a constant. |
2018 | | struct APInt::mu { |
2019 | | APInt m; ///< magic number |
2020 | | bool a; ///< add indicator |
2021 | | unsigned s; ///< shift amount |
2022 | | }; |
2023 | | |
2024 | 0 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } |
2025 | | |
2026 | 0 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } |
2027 | | |
2028 | | /// Unary bitwise complement operator. |
2029 | | /// |
2030 | | /// \returns an APInt that is the bitwise complement of \p v. |
2031 | 0 | inline APInt operator~(APInt v) { |
2032 | 0 | v.flipAllBits(); |
2033 | 0 | return v; |
2034 | 0 | } |
2035 | | |
2036 | 0 | inline APInt operator&(APInt a, const APInt &b) { |
2037 | 0 | a &= b; |
2038 | 0 | return a; |
2039 | 0 | } |
2040 | | |
2041 | 0 | inline APInt operator&(const APInt &a, APInt &&b) { |
2042 | 0 | b &= a; |
2043 | 0 | return std::move(b); |
2044 | 0 | } |
2045 | | |
2046 | 0 | inline APInt operator&(APInt a, uint64_t RHS) { |
2047 | 0 | a &= RHS; |
2048 | 0 | return a; |
2049 | 0 | } |
2050 | | |
2051 | 0 | inline APInt operator&(uint64_t LHS, APInt b) { |
2052 | 0 | b &= LHS; |
2053 | 0 | return b; |
2054 | 0 | } |
2055 | | |
2056 | 0 | inline APInt operator|(APInt a, const APInt &b) { |
2057 | 0 | a |= b; |
2058 | 0 | return a; |
2059 | 0 | } |
2060 | | |
2061 | 0 | inline APInt operator|(const APInt &a, APInt &&b) { |
2062 | 0 | b |= a; |
2063 | 0 | return std::move(b); |
2064 | 0 | } |
2065 | | |
2066 | 0 | inline APInt operator|(APInt a, uint64_t RHS) { |
2067 | 0 | a |= RHS; |
2068 | 0 | return a; |
2069 | 0 | } |
2070 | | |
2071 | 0 | inline APInt operator|(uint64_t LHS, APInt b) { |
2072 | 0 | b |= LHS; |
2073 | 0 | return b; |
2074 | 0 | } |
2075 | | |
2076 | 0 | inline APInt operator^(APInt a, const APInt &b) { |
2077 | 0 | a ^= b; |
2078 | 0 | return a; |
2079 | 0 | } |
2080 | | |
2081 | 0 | inline APInt operator^(const APInt &a, APInt &&b) { |
2082 | 0 | b ^= a; |
2083 | 0 | return std::move(b); |
2084 | 0 | } |
2085 | | |
2086 | 0 | inline APInt operator^(APInt a, uint64_t RHS) { |
2087 | 0 | a ^= RHS; |
2088 | 0 | return a; |
2089 | 0 | } |
2090 | | |
2091 | 0 | inline APInt operator^(uint64_t LHS, APInt b) { |
2092 | 0 | b ^= LHS; |
2093 | 0 | return b; |
2094 | 0 | } |
2095 | | |
2096 | 0 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { |
2097 | 0 | I.print(OS, true); |
2098 | 0 | return OS; |
2099 | 0 | } |
2100 | | |
2101 | 0 | inline APInt operator-(APInt v) { |
2102 | 0 | v.negate(); |
2103 | 0 | return v; |
2104 | 0 | } |
2105 | | |
2106 | 0 | inline APInt operator+(APInt a, const APInt &b) { |
2107 | 0 | a += b; |
2108 | 0 | return a; |
2109 | 0 | } |
2110 | | |
2111 | 0 | inline APInt operator+(const APInt &a, APInt &&b) { |
2112 | 0 | b += a; |
2113 | 0 | return std::move(b); |
2114 | 0 | } |
2115 | | |
2116 | 0 | inline APInt operator+(APInt a, uint64_t RHS) { |
2117 | 0 | a += RHS; |
2118 | 0 | return a; |
2119 | 0 | } |
2120 | | |
2121 | 0 | inline APInt operator+(uint64_t LHS, APInt b) { |
2122 | 0 | b += LHS; |
2123 | 0 | return b; |
2124 | 0 | } |
2125 | | |
2126 | 0 | inline APInt operator-(APInt a, const APInt &b) { |
2127 | 0 | a -= b; |
2128 | 0 | return a; |
2129 | 0 | } |
2130 | | |
2131 | 0 | inline APInt operator-(const APInt &a, APInt &&b) { |
2132 | 0 | b.negate(); |
2133 | 0 | b += a; |
2134 | 0 | return std::move(b); |
2135 | 0 | } |
2136 | | |
2137 | 0 | inline APInt operator-(APInt a, uint64_t RHS) { |
2138 | 0 | a -= RHS; |
2139 | 0 | return a; |
2140 | 0 | } |
2141 | | |
2142 | 0 | inline APInt operator-(uint64_t LHS, APInt b) { |
2143 | 0 | b.negate(); |
2144 | 0 | b += LHS; |
2145 | 0 | return b; |
2146 | 0 | } |
2147 | | |
2148 | 0 | inline APInt operator*(APInt a, uint64_t RHS) { |
2149 | 0 | a *= RHS; |
2150 | 0 | return a; |
2151 | 0 | } |
2152 | | |
2153 | 0 | inline APInt operator*(uint64_t LHS, APInt b) { |
2154 | 0 | b *= LHS; |
2155 | 0 | return b; |
2156 | 0 | } |
2157 | | |
2158 | | |
2159 | | namespace APIntOps { |
2160 | | |
2161 | | /// Determine the smaller of two APInts considered to be signed. |
2162 | 0 | inline const APInt &smin(const APInt &A, const APInt &B) { |
2163 | 0 | return A.slt(B) ? A : B; |
2164 | 0 | } |
2165 | | |
2166 | | /// Determine the larger of two APInts considered to be signed. |
2167 | 0 | inline const APInt &smax(const APInt &A, const APInt &B) { |
2168 | 0 | return A.sgt(B) ? A : B; |
2169 | 0 | } |
2170 | | |
2171 | | /// Determine the smaller of two APInts considered to be signed. |
2172 | 0 | inline const APInt &umin(const APInt &A, const APInt &B) { |
2173 | 0 | return A.ult(B) ? A : B; |
2174 | 0 | } |
2175 | | |
2176 | | /// Determine the larger of two APInts considered to be unsigned. |
2177 | 0 | inline const APInt &umax(const APInt &A, const APInt &B) { |
2178 | 0 | return A.ugt(B) ? A : B; |
2179 | 0 | } |
2180 | | |
2181 | | /// Compute GCD of two unsigned APInt values. |
2182 | | /// |
2183 | | /// This function returns the greatest common divisor of the two APInt values |
2184 | | /// using Stein's algorithm. |
2185 | | /// |
2186 | | /// \returns the greatest common divisor of A and B. |
2187 | | APInt GreatestCommonDivisor(APInt A, APInt B); |
2188 | | |
2189 | | /// Converts the given APInt to a double value. |
2190 | | /// |
2191 | | /// Treats the APInt as an unsigned value for conversion purposes. |
2192 | 0 | inline double RoundAPIntToDouble(const APInt &APIVal) { |
2193 | 0 | return APIVal.roundToDouble(); |
2194 | 0 | } |
2195 | | |
2196 | | /// Converts the given APInt to a double value. |
2197 | | /// |
2198 | | /// Treats the APInt as a signed value for conversion purposes. |
2199 | 0 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { |
2200 | 0 | return APIVal.signedRoundToDouble(); |
2201 | 0 | } |
2202 | | |
2203 | | /// Converts the given APInt to a float vlalue. |
2204 | 0 | inline float RoundAPIntToFloat(const APInt &APIVal) { |
2205 | 0 | return float(RoundAPIntToDouble(APIVal)); |
2206 | 0 | } |
2207 | | |
2208 | | /// Converts the given APInt to a float value. |
2209 | | /// |
2210 | | /// Treats the APInt as a signed value for conversion purposes. |
2211 | 0 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { |
2212 | 0 | return float(APIVal.signedRoundToDouble()); |
2213 | 0 | } |
2214 | | |
2215 | | /// Converts the given double value into a APInt. |
2216 | | /// |
2217 | | /// This function convert a double value to an APInt value. |
2218 | | APInt RoundDoubleToAPInt(double Double, unsigned width); |
2219 | | |
2220 | | /// Converts a float value into a APInt. |
2221 | | /// |
2222 | | /// Converts a float value into an APInt value. |
2223 | 0 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { |
2224 | 0 | return RoundDoubleToAPInt(double(Float), width); |
2225 | 0 | } |
2226 | | |
2227 | | /// Return A unsign-divided by B, rounded by the given rounding mode. |
2228 | | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2229 | | |
2230 | | /// Return A sign-divided by B, rounded by the given rounding mode. |
2231 | | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); |
2232 | | |
2233 | | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range |
2234 | | /// (e.g. 32 for i32). |
2235 | | /// This function finds the smallest number n, such that |
2236 | | /// (a) n >= 0 and q(n) = 0, or |
2237 | | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all |
2238 | | /// integers, belong to two different intervals [Rk, Rk+R), |
2239 | | /// where R = 2^BW, and k is an integer. |
2240 | | /// The idea here is to find when q(n) "overflows" 2^BW, while at the |
2241 | | /// same time "allowing" subtraction. In unsigned modulo arithmetic a |
2242 | | /// subtraction (treated as addition of negated numbers) would always |
2243 | | /// count as an overflow, but here we want to allow values to decrease |
2244 | | /// and increase as long as they are within the same interval. |
2245 | | /// Specifically, adding of two negative numbers should not cause an |
2246 | | /// overflow (as long as the magnitude does not exceed the bit width). |
2247 | | /// On the other hand, given a positive number, adding a negative |
2248 | | /// number to it can give a negative result, which would cause the |
2249 | | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is |
2250 | | /// treated as a special case of an overflow. |
2251 | | /// |
2252 | | /// This function returns None if after finding k that minimizes the |
2253 | | /// positive solution to q(n) = kR, both solutions are contained between |
2254 | | /// two consecutive integers. |
2255 | | /// |
2256 | | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation |
2257 | | /// in arithmetic modulo 2^BW, and treating the values as signed) by the |
2258 | | /// virtue of *signed* overflow. This function will *not* find such an n, |
2259 | | /// however it may find a value of n satisfying the inequalities due to |
2260 | | /// an *unsigned* overflow (if the values are treated as unsigned). |
2261 | | /// To find a solution for a signed overflow, treat it as a problem of |
2262 | | /// finding an unsigned overflow with a range with of BW-1. |
2263 | | /// |
2264 | | /// The returned value may have a different bit width from the input |
2265 | | /// coefficients. |
2266 | | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, |
2267 | | unsigned RangeWidth); |
2268 | | |
2269 | | /// Compare two values, and if they are different, return the position of the |
2270 | | /// most significant bit that is different in the values. |
2271 | | Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, |
2272 | | const APInt &B); |
2273 | | |
2274 | | } // End of APIntOps namespace |
2275 | | |
2276 | | // See friend declaration above. This additional declaration is required in |
2277 | | // order to compile LLVM with IBM xlC compiler. |
2278 | | hash_code hash_value(const APInt &Arg); |
2279 | | |
2280 | | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst |
2281 | | /// with the integer held in IntVal. |
2282 | | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); |
2283 | | |
2284 | | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting |
2285 | | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. |
2286 | | void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes); |
2287 | | |
2288 | | } // namespace llvm |
2289 | | |
2290 | | #endif |