Coverage Report

Created: 2020-06-26 05:44

/home/arjun/llvm-project/llvm/include/llvm/ADT/APInt.h
Line
Count
Source (jump to first uncovered line)
1
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file implements a class to represent arbitrary precision
11
/// integral constant values and operations on them.
12
///
13
//===----------------------------------------------------------------------===//
14
15
#ifndef LLVM_ADT_APINT_H
16
#define LLVM_ADT_APINT_H
17
18
#include "llvm/Support/Compiler.h"
19
#include "llvm/Support/MathExtras.h"
20
#include <cassert>
21
#include <climits>
22
#include <cstring>
23
#include <string>
24
25
namespace llvm {
26
class FoldingSetNodeID;
27
class StringRef;
28
class hash_code;
29
class raw_ostream;
30
31
template <typename T> class SmallVectorImpl;
32
template <typename T> class ArrayRef;
33
template <typename T> class Optional;
34
35
class APInt;
36
37
inline APInt operator-(APInt);
38
39
//===----------------------------------------------------------------------===//
40
//                              APInt Class
41
//===----------------------------------------------------------------------===//
42
43
/// Class for arbitrary precision integers.
44
///
45
/// APInt is a functional replacement for common case unsigned integer type like
46
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49
/// and methods to manipulate integer values of any bit-width. It supports both
50
/// the typical integer arithmetic and comparison operations as well as bitwise
51
/// manipulation.
52
///
53
/// The class has several invariants worth noting:
54
///   * All bit, byte, and word positions are zero-based.
55
///   * Once the bit width is set, it doesn't change except by the Truncate,
56
///     SignExtend, or ZeroExtend operations.
57
///   * All binary operators must be on APInt instances of the same bit width.
58
///     Attempting to use these operators on instances with different bit
59
///     widths will yield an assertion.
60
///   * The value is stored canonically as an unsigned value. For operations
61
///     where it makes a difference, there are both signed and unsigned variants
62
///     of the operation. For example, sdiv and udiv. However, because the bit
63
///     widths must be the same, operations such as Mul and Add produce the same
64
///     results regardless of whether the values are interpreted as signed or
65
///     not.
66
///   * In general, the class tries to follow the style of computation that LLVM
67
///     uses in its IR. This simplifies its use for LLVM.
68
///
69
class LLVM_NODISCARD APInt {
70
public:
71
  typedef uint64_t WordType;
72
73
  /// This enum is used to hold the constants we needed for APInt.
74
  enum : unsigned {
75
    /// Byte size of a word.
76
    APINT_WORD_SIZE = sizeof(WordType),
77
    /// Bits in a word.
78
    APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79
  };
80
81
  enum class Rounding {
82
    DOWN,
83
    TOWARD_ZERO,
84
    UP,
85
  };
86
87
  static constexpr WordType WORDTYPE_MAX = ~WordType(0);
88
89
private:
90
  /// This union is used to store the integer value. When the
91
  /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
92
  union {
93
    uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
94
    uint64_t *pVal; ///< Used to store the >64 bits integer value.
95
  } U;
96
97
  unsigned BitWidth; ///< The number of bits in this APInt.
98
99
  friend struct DenseMapAPIntKeyInfo;
100
101
  friend class APSInt;
102
103
  /// Fast internal constructor
104
  ///
105
  /// This constructor is used only internally for speed of construction of
106
  /// temporaries. It is unsafe for general use so it is not public.
107
0
  APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
108
0
    U.pVal = val;
109
0
  }
110
111
  /// Determine if this APInt just has one word to store value.
112
  ///
113
  /// \returns true if the number of bits <= 64, false otherwise.
114
0
  bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
115
116
  /// Determine which word a bit is in.
117
  ///
118
  /// \returns the word position for the specified bit position.
119
0
  static unsigned whichWord(unsigned bitPosition) {
120
0
    return bitPosition / APINT_BITS_PER_WORD;
121
0
  }
122
123
  /// Determine which bit in a word a bit is in.
124
  ///
125
  /// \returns the bit position in a word for the specified bit position
126
  /// in the APInt.
127
0
  static unsigned whichBit(unsigned bitPosition) {
128
0
    return bitPosition % APINT_BITS_PER_WORD;
129
0
  }
130
131
  /// Get a single bit mask.
132
  ///
133
  /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134
  /// This method generates and returns a uint64_t (word) mask for a single
135
  /// bit at a specific bit position. This is used to mask the bit in the
136
  /// corresponding word.
137
0
  static uint64_t maskBit(unsigned bitPosition) {
138
0
    return 1ULL << whichBit(bitPosition);
139
0
  }
140
141
  /// Clear unused high order bits
142
  ///
143
  /// This method is used internally to clear the top "N" bits in the high order
144
  /// word that are not used by the APInt. This is needed after the most
145
  /// significant word is assigned a value to ensure that those bits are
146
  /// zero'd out.
147
0
  APInt &clearUnusedBits() {
148
0
    // Compute how many bits are used in the final word
149
0
    unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
150
0
151
0
    // Mask out the high bits.
152
0
    uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
153
0
    if (isSingleWord())
154
0
      U.VAL &= mask;
155
0
    else
156
0
      U.pVal[getNumWords() - 1] &= mask;
157
0
    return *this;
158
0
  }
159
160
  /// Get the word corresponding to a bit position
161
  /// \returns the corresponding word for the specified bit position.
162
0
  uint64_t getWord(unsigned bitPosition) const {
163
0
    return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
164
0
  }
165
166
  /// Utility method to change the bit width of this APInt to new bit width,
167
  /// allocating and/or deallocating as necessary. There is no guarantee on the
168
  /// value of any bits upon return. Caller should populate the bits after.
169
  void reallocate(unsigned NewBitWidth);
170
171
  /// Convert a char array into an APInt
172
  ///
173
  /// \param radix 2, 8, 10, 16, or 36
174
  /// Converts a string into a number.  The string must be non-empty
175
  /// and well-formed as a number of the given base. The bit-width
176
  /// must be sufficient to hold the result.
177
  ///
178
  /// This is used by the constructors that take string arguments.
179
  ///
180
  /// StringRef::getAsInteger is superficially similar but (1) does
181
  /// not assume that the string is well-formed and (2) grows the
182
  /// result to hold the input.
183
  void fromString(unsigned numBits, StringRef str, uint8_t radix);
184
185
  /// An internal division function for dividing APInts.
186
  ///
187
  /// This is used by the toString method to divide by the radix. It simply
188
  /// provides a more convenient form of divide for internal use since KnuthDiv
189
  /// has specific constraints on its inputs. If those constraints are not met
190
  /// then it provides a simpler form of divide.
191
  static void divide(const WordType *LHS, unsigned lhsWords,
192
                     const WordType *RHS, unsigned rhsWords, WordType *Quotient,
193
                     WordType *Remainder);
194
195
  /// out-of-line slow case for inline constructor
196
  void initSlowCase(uint64_t val, bool isSigned);
197
198
  /// shared code between two array constructors
199
  void initFromArray(ArrayRef<uint64_t> array);
200
201
  /// out-of-line slow case for inline copy constructor
202
  void initSlowCase(const APInt &that);
203
204
  /// out-of-line slow case for shl
205
  void shlSlowCase(unsigned ShiftAmt);
206
207
  /// out-of-line slow case for lshr.
208
  void lshrSlowCase(unsigned ShiftAmt);
209
210
  /// out-of-line slow case for ashr.
211
  void ashrSlowCase(unsigned ShiftAmt);
212
213
  /// out-of-line slow case for operator=
214
  void AssignSlowCase(const APInt &RHS);
215
216
  /// out-of-line slow case for operator==
217
  bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
218
219
  /// out-of-line slow case for countLeadingZeros
220
  unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
221
222
  /// out-of-line slow case for countLeadingOnes.
223
  unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
224
225
  /// out-of-line slow case for countTrailingZeros.
226
  unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
227
228
  /// out-of-line slow case for countTrailingOnes
229
  unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
230
231
  /// out-of-line slow case for countPopulation
232
  unsigned countPopulationSlowCase() const LLVM_READONLY;
233
234
  /// out-of-line slow case for intersects.
235
  bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
236
237
  /// out-of-line slow case for isSubsetOf.
238
  bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
239
240
  /// out-of-line slow case for setBits.
241
  void setBitsSlowCase(unsigned loBit, unsigned hiBit);
242
243
  /// out-of-line slow case for flipAllBits.
244
  void flipAllBitsSlowCase();
245
246
  /// out-of-line slow case for operator&=.
247
  void AndAssignSlowCase(const APInt& RHS);
248
249
  /// out-of-line slow case for operator|=.
250
  void OrAssignSlowCase(const APInt& RHS);
251
252
  /// out-of-line slow case for operator^=.
253
  void XorAssignSlowCase(const APInt& RHS);
254
255
  /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256
  /// to, or greater than RHS.
257
  int compare(const APInt &RHS) const LLVM_READONLY;
258
259
  /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260
  /// to, or greater than RHS.
261
  int compareSigned(const APInt &RHS) const LLVM_READONLY;
262
263
public:
264
  /// \name Constructors
265
  /// @{
266
267
  /// Create a new APInt of numBits width, initialized as val.
268
  ///
269
  /// If isSigned is true then val is treated as if it were a signed value
270
  /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271
  /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272
  /// the range of val are zero filled).
273
  ///
274
  /// \param numBits the bit width of the constructed APInt
275
  /// \param val the initial value of the APInt
276
  /// \param isSigned how to treat signedness of val
277
  APInt(unsigned numBits, uint64_t val, bool isSigned = false)
278
0
      : BitWidth(numBits) {
279
0
    assert(BitWidth && "bitwidth too small");
280
0
    if (isSingleWord()) {
281
0
      U.VAL = val;
282
0
      clearUnusedBits();
283
0
    } else {
284
0
      initSlowCase(val, isSigned);
285
0
    }
286
0
  }
287
288
  /// Construct an APInt of numBits width, initialized as bigVal[].
289
  ///
290
  /// Note that bigVal.size() can be smaller or larger than the corresponding
291
  /// bit width but any extraneous bits will be dropped.
292
  ///
293
  /// \param numBits the bit width of the constructed APInt
294
  /// \param bigVal a sequence of words to form the initial value of the APInt
295
  APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
296
297
  /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298
  /// deprecated because this constructor is prone to ambiguity with the
299
  /// APInt(unsigned, uint64_t, bool) constructor.
300
  ///
301
  /// If this overload is ever deleted, care should be taken to prevent calls
302
  /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
303
  /// constructor.
304
  APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
305
306
  /// Construct an APInt from a string representation.
307
  ///
308
  /// This constructor interprets the string \p str in the given radix. The
309
  /// interpretation stops when the first character that is not suitable for the
310
  /// radix is encountered, or the end of the string. Acceptable radix values
311
  /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312
  /// string to require more bits than numBits.
313
  ///
314
  /// \param numBits the bit width of the constructed APInt
315
  /// \param str the string to be interpreted
316
  /// \param radix the radix to use for the conversion
317
  APInt(unsigned numBits, StringRef str, uint8_t radix);
318
319
  /// Simply makes *this a copy of that.
320
  /// Copy Constructor.
321
0
  APInt(const APInt &that) : BitWidth(that.BitWidth) {
322
0
    if (isSingleWord())
323
0
      U.VAL = that.U.VAL;
324
0
    else
325
0
      initSlowCase(that);
326
0
  }
327
328
  /// Move Constructor.
329
0
  APInt(APInt &&that) : BitWidth(that.BitWidth) {
330
0
    memcpy(&U, &that.U, sizeof(U));
331
0
    that.BitWidth = 0;
332
0
  }
333
334
  /// Destructor.
335
0
  ~APInt() {
336
0
    if (needsCleanup())
337
0
      delete[] U.pVal;
338
0
  }
339
340
  /// Default constructor that creates an uninteresting APInt
341
  /// representing a 1-bit zero value.
342
  ///
343
  /// This is useful for object deserialization (pair this with the static
344
  ///  method Read).
345
0
  explicit APInt() : BitWidth(1) { U.VAL = 0; }
346
347
  /// Returns whether this instance allocated memory.
348
0
  bool needsCleanup() const { return !isSingleWord(); }
349
350
  /// Used to insert APInt objects, or objects that contain APInt objects, into
351
  ///  FoldingSets.
352
  void Profile(FoldingSetNodeID &id) const;
353
354
  /// @}
355
  /// \name Value Tests
356
  /// @{
357
358
  /// Determine sign of this APInt.
359
  ///
360
  /// This tests the high bit of this APInt to determine if it is set.
361
  ///
362
  /// \returns true if this APInt is negative, false otherwise
363
0
  bool isNegative() const { return (*this)[BitWidth - 1]; }
364
365
  /// Determine if this APInt Value is non-negative (>= 0)
366
  ///
367
  /// This tests the high bit of the APInt to determine if it is unset.
368
0
  bool isNonNegative() const { return !isNegative(); }
369
370
  /// Determine if sign bit of this APInt is set.
371
  ///
372
  /// This tests the high bit of this APInt to determine if it is set.
373
  ///
374
  /// \returns true if this APInt has its sign bit set, false otherwise.
375
0
  bool isSignBitSet() const { return (*this)[BitWidth-1]; }
376
377
  /// Determine if sign bit of this APInt is clear.
378
  ///
379
  /// This tests the high bit of this APInt to determine if it is clear.
380
  ///
381
  /// \returns true if this APInt has its sign bit clear, false otherwise.
382
0
  bool isSignBitClear() const { return !isSignBitSet(); }
383
384
  /// Determine if this APInt Value is positive.
385
  ///
386
  /// This tests if the value of this APInt is positive (> 0). Note
387
  /// that 0 is not a positive value.
388
  ///
389
  /// \returns true if this APInt is positive.
390
0
  bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
391
392
  /// Determine if this APInt Value is non-positive (<= 0).
393
  ///
394
  /// \returns true if this APInt is non-positive.
395
0
  bool isNonPositive() const { return !isStrictlyPositive(); }
396
397
  /// Determine if all bits are set
398
  ///
399
  /// This checks to see if the value has all bits of the APInt are set or not.
400
0
  bool isAllOnesValue() const {
401
0
    if (isSingleWord())
402
0
      return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
403
0
    return countTrailingOnesSlowCase() == BitWidth;
404
0
  }
405
406
  /// Determine if all bits are clear
407
  ///
408
  /// This checks to see if the value has all bits of the APInt are clear or
409
  /// not.
410
0
  bool isNullValue() const { return !*this; }
411
412
  /// Determine if this is a value of 1.
413
  ///
414
  /// This checks to see if the value of this APInt is one.
415
0
  bool isOneValue() const {
416
0
    if (isSingleWord())
417
0
      return U.VAL == 1;
418
0
    return countLeadingZerosSlowCase() == BitWidth - 1;
419
0
  }
420
421
  /// Determine if this is the largest unsigned value.
422
  ///
423
  /// This checks to see if the value of this APInt is the maximum unsigned
424
  /// value for the APInt's bit width.
425
0
  bool isMaxValue() const { return isAllOnesValue(); }
426
427
  /// Determine if this is the largest signed value.
428
  ///
429
  /// This checks to see if the value of this APInt is the maximum signed
430
  /// value for the APInt's bit width.
431
0
  bool isMaxSignedValue() const {
432
0
    if (isSingleWord())
433
0
      return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
434
0
    return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
435
0
  }
436
437
  /// Determine if this is the smallest unsigned value.
438
  ///
439
  /// This checks to see if the value of this APInt is the minimum unsigned
440
  /// value for the APInt's bit width.
441
0
  bool isMinValue() const { return isNullValue(); }
442
443
  /// Determine if this is the smallest signed value.
444
  ///
445
  /// This checks to see if the value of this APInt is the minimum signed
446
  /// value for the APInt's bit width.
447
0
  bool isMinSignedValue() const {
448
0
    if (isSingleWord())
449
0
      return U.VAL == (WordType(1) << (BitWidth - 1));
450
0
    return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
451
0
  }
452
453
  /// Check if this APInt has an N-bits unsigned integer value.
454
0
  bool isIntN(unsigned N) const {
455
0
    assert(N && "N == 0 ???");
456
0
    return getActiveBits() <= N;
457
0
  }
458
459
  /// Check if this APInt has an N-bits signed integer value.
460
0
  bool isSignedIntN(unsigned N) const {
461
0
    assert(N && "N == 0 ???");
462
0
    return getMinSignedBits() <= N;
463
0
  }
464
465
  /// Check if this APInt's value is a power of two greater than zero.
466
  ///
467
  /// \returns true if the argument APInt value is a power of two > 0.
468
0
  bool isPowerOf2() const {
469
0
    if (isSingleWord())
470
0
      return isPowerOf2_64(U.VAL);
471
0
    return countPopulationSlowCase() == 1;
472
0
  }
473
474
  /// Check if the APInt's value is returned by getSignMask.
475
  ///
476
  /// \returns true if this is the value returned by getSignMask.
477
0
  bool isSignMask() const { return isMinSignedValue(); }
478
479
  /// Convert APInt to a boolean value.
480
  ///
481
  /// This converts the APInt to a boolean value as a test against zero.
482
0
  bool getBoolValue() const { return !!*this; }
483
484
  /// If this value is smaller than the specified limit, return it, otherwise
485
  /// return the limit value.  This causes the value to saturate to the limit.
486
0
  uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
487
0
    return ugt(Limit) ? Limit : getZExtValue();
488
0
  }
489
490
  /// Check if the APInt consists of a repeated bit pattern.
491
  ///
492
  /// e.g. 0x01010101 satisfies isSplat(8).
493
  /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
494
  /// width without remainder.
495
  bool isSplat(unsigned SplatSizeInBits) const;
496
497
  /// \returns true if this APInt value is a sequence of \param numBits ones
498
  /// starting at the least significant bit with the remainder zero.
499
0
  bool isMask(unsigned numBits) const {
500
0
    assert(numBits != 0 && "numBits must be non-zero");
501
0
    assert(numBits <= BitWidth && "numBits out of range");
502
0
    if (isSingleWord())
503
0
      return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
504
0
    unsigned Ones = countTrailingOnesSlowCase();
505
0
    return (numBits == Ones) &&
506
0
           ((Ones + countLeadingZerosSlowCase()) == BitWidth);
507
0
  }
508
509
  /// \returns true if this APInt is a non-empty sequence of ones starting at
510
  /// the least significant bit with the remainder zero.
511
  /// Ex. isMask(0x0000FFFFU) == true.
512
0
  bool isMask() const {
513
0
    if (isSingleWord())
514
0
      return isMask_64(U.VAL);
515
0
    unsigned Ones = countTrailingOnesSlowCase();
516
0
    return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
517
0
  }
518
519
  /// Return true if this APInt value contains a sequence of ones with
520
  /// the remainder zero.
521
0
  bool isShiftedMask() const {
522
0
    if (isSingleWord())
523
0
      return isShiftedMask_64(U.VAL);
524
0
    unsigned Ones = countPopulationSlowCase();
525
0
    unsigned LeadZ = countLeadingZerosSlowCase();
526
0
    return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
527
0
  }
528
529
  /// @}
530
  /// \name Value Generators
531
  /// @{
532
533
  /// Gets maximum unsigned value of APInt for specific bit width.
534
0
  static APInt getMaxValue(unsigned numBits) {
535
0
    return getAllOnesValue(numBits);
536
0
  }
537
538
  /// Gets maximum signed value of APInt for a specific bit width.
539
0
  static APInt getSignedMaxValue(unsigned numBits) {
540
0
    APInt API = getAllOnesValue(numBits);
541
0
    API.clearBit(numBits - 1);
542
0
    return API;
543
0
  }
544
545
  /// Gets minimum unsigned value of APInt for a specific bit width.
546
0
  static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
547
548
  /// Gets minimum signed value of APInt for a specific bit width.
549
0
  static APInt getSignedMinValue(unsigned numBits) {
550
0
    APInt API(numBits, 0);
551
0
    API.setBit(numBits - 1);
552
0
    return API;
553
0
  }
554
555
  /// Get the SignMask for a specific bit width.
556
  ///
557
  /// This is just a wrapper function of getSignedMinValue(), and it helps code
558
  /// readability when we want to get a SignMask.
559
0
  static APInt getSignMask(unsigned BitWidth) {
560
0
    return getSignedMinValue(BitWidth);
561
0
  }
562
563
  /// Get the all-ones value.
564
  ///
565
  /// \returns the all-ones value for an APInt of the specified bit-width.
566
0
  static APInt getAllOnesValue(unsigned numBits) {
567
0
    return APInt(numBits, WORDTYPE_MAX, true);
568
0
  }
569
570
  /// Get the '0' value.
571
  ///
572
  /// \returns the '0' value for an APInt of the specified bit-width.
573
0
  static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
574
575
  /// Compute an APInt containing numBits highbits from this APInt.
576
  ///
577
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
578
  /// the low bits and right shift to the least significant bit.
579
  ///
580
  /// \returns the high "numBits" bits of this APInt.
581
  APInt getHiBits(unsigned numBits) const;
582
583
  /// Compute an APInt containing numBits lowbits from this APInt.
584
  ///
585
  /// Get an APInt with the same BitWidth as this APInt, just zero mask
586
  /// the high bits.
587
  ///
588
  /// \returns the low "numBits" bits of this APInt.
589
  APInt getLoBits(unsigned numBits) const;
590
591
  /// Return an APInt with exactly one bit set in the result.
592
0
  static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
593
0
    APInt Res(numBits, 0);
594
0
    Res.setBit(BitNo);
595
0
    return Res;
596
0
  }
597
598
  /// Get a value with a block of bits set.
599
  ///
600
  /// Constructs an APInt value that has a contiguous range of bits set. The
601
  /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
602
  /// bits will be zero. For example, with parameters(32, 0, 16) you would get
603
  /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
604
  /// \p hiBit.
605
  ///
606
  /// \param numBits the intended bit width of the result
607
  /// \param loBit the index of the lowest bit set.
608
  /// \param hiBit the index of the highest bit set.
609
  ///
610
  /// \returns An APInt value with the requested bits set.
611
0
  static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
612
0
    assert(loBit <= hiBit && "loBit greater than hiBit");
613
0
    APInt Res(numBits, 0);
614
0
    Res.setBits(loBit, hiBit);
615
0
    return Res;
616
0
  }
617
618
  /// Wrap version of getBitsSet.
619
  /// If \p hiBit is no less than \p loBit, this is same with getBitsSet.
620
  /// If \p hiBit is less than \p loBit, the set bits "wrap". For example, with
621
  /// parameters (32, 28, 4), you would get 0xF000000F.
622
  static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
623
0
                                  unsigned hiBit) {
624
0
    APInt Res(numBits, 0);
625
0
    Res.setBitsWithWrap(loBit, hiBit);
626
0
    return Res;
627
0
  }
628
629
  /// Get a value with upper bits starting at loBit set.
630
  ///
631
  /// Constructs an APInt value that has a contiguous range of bits set. The
632
  /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
633
  /// bits will be zero. For example, with parameters(32, 12) you would get
634
  /// 0xFFFFF000.
635
  ///
636
  /// \param numBits the intended bit width of the result
637
  /// \param loBit the index of the lowest bit to set.
638
  ///
639
  /// \returns An APInt value with the requested bits set.
640
0
  static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
641
0
    APInt Res(numBits, 0);
642
0
    Res.setBitsFrom(loBit);
643
0
    return Res;
644
0
  }
645
646
  /// Get a value with high bits set
647
  ///
648
  /// Constructs an APInt value that has the top hiBitsSet bits set.
649
  ///
650
  /// \param numBits the bitwidth of the result
651
  /// \param hiBitsSet the number of high-order bits set in the result.
652
0
  static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
653
0
    APInt Res(numBits, 0);
654
0
    Res.setHighBits(hiBitsSet);
655
0
    return Res;
656
0
  }
657
658
  /// Get a value with low bits set
659
  ///
660
  /// Constructs an APInt value that has the bottom loBitsSet bits set.
661
  ///
662
  /// \param numBits the bitwidth of the result
663
  /// \param loBitsSet the number of low-order bits set in the result.
664
0
  static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
665
0
    APInt Res(numBits, 0);
666
0
    Res.setLowBits(loBitsSet);
667
0
    return Res;
668
0
  }
669
670
  /// Return a value containing V broadcasted over NewLen bits.
671
  static APInt getSplat(unsigned NewLen, const APInt &V);
672
673
  /// Determine if two APInts have the same value, after zero-extending
674
  /// one of them (if needed!) to ensure that the bit-widths match.
675
0
  static bool isSameValue(const APInt &I1, const APInt &I2) {
676
0
    if (I1.getBitWidth() == I2.getBitWidth())
677
0
      return I1 == I2;
678
0
679
0
    if (I1.getBitWidth() > I2.getBitWidth())
680
0
      return I1 == I2.zext(I1.getBitWidth());
681
0
682
0
    return I1.zext(I2.getBitWidth()) == I2;
683
0
  }
684
685
  /// Overload to compute a hash_code for an APInt value.
686
  friend hash_code hash_value(const APInt &Arg);
687
688
  /// This function returns a pointer to the internal storage of the APInt.
689
  /// This is useful for writing out the APInt in binary form without any
690
  /// conversions.
691
0
  const uint64_t *getRawData() const {
692
0
    if (isSingleWord())
693
0
      return &U.VAL;
694
0
    return &U.pVal[0];
695
0
  }
696
697
  /// @}
698
  /// \name Unary Operators
699
  /// @{
700
701
  /// Postfix increment operator.
702
  ///
703
  /// Increments *this by 1.
704
  ///
705
  /// \returns a new APInt value representing the original value of *this.
706
0
  const APInt operator++(int) {
707
0
    APInt API(*this);
708
0
    ++(*this);
709
0
    return API;
710
0
  }
711
712
  /// Prefix increment operator.
713
  ///
714
  /// \returns *this incremented by one
715
  APInt &operator++();
716
717
  /// Postfix decrement operator.
718
  ///
719
  /// Decrements *this by 1.
720
  ///
721
  /// \returns a new APInt value representing the original value of *this.
722
0
  const APInt operator--(int) {
723
0
    APInt API(*this);
724
0
    --(*this);
725
0
    return API;
726
0
  }
727
728
  /// Prefix decrement operator.
729
  ///
730
  /// \returns *this decremented by one.
731
  APInt &operator--();
732
733
  /// Logical negation operator.
734
  ///
735
  /// Performs logical negation operation on this APInt.
736
  ///
737
  /// \returns true if *this is zero, false otherwise.
738
0
  bool operator!() const {
739
0
    if (isSingleWord())
740
0
      return U.VAL == 0;
741
0
    return countLeadingZerosSlowCase() == BitWidth;
742
0
  }
743
744
  /// @}
745
  /// \name Assignment Operators
746
  /// @{
747
748
  /// Copy assignment operator.
749
  ///
750
  /// \returns *this after assignment of RHS.
751
0
  APInt &operator=(const APInt &RHS) {
752
0
    // If the bitwidths are the same, we can avoid mucking with memory
753
0
    if (isSingleWord() && RHS.isSingleWord()) {
754
0
      U.VAL = RHS.U.VAL;
755
0
      BitWidth = RHS.BitWidth;
756
0
      return clearUnusedBits();
757
0
    }
758
0
759
0
    AssignSlowCase(RHS);
760
0
    return *this;
761
0
  }
762
763
  /// Move assignment operator.
764
0
  APInt &operator=(APInt &&that) {
765
#ifdef _MSC_VER
766
    // The MSVC std::shuffle implementation still does self-assignment.
767
    if (this == &that)
768
      return *this;
769
#endif
770
    assert(this != &that && "Self-move not supported");
771
0
    if (!isSingleWord())
772
0
      delete[] U.pVal;
773
0
774
0
    // Use memcpy so that type based alias analysis sees both VAL and pVal
775
0
    // as modified.
776
0
    memcpy(&U, &that.U, sizeof(U));
777
0
778
0
    BitWidth = that.BitWidth;
779
0
    that.BitWidth = 0;
780
0
781
0
    return *this;
782
0
  }
783
784
  /// Assignment operator.
785
  ///
786
  /// The RHS value is assigned to *this. If the significant bits in RHS exceed
787
  /// the bit width, the excess bits are truncated. If the bit width is larger
788
  /// than 64, the value is zero filled in the unspecified high order bits.
789
  ///
790
  /// \returns *this after assignment of RHS value.
791
0
  APInt &operator=(uint64_t RHS) {
792
0
    if (isSingleWord()) {
793
0
      U.VAL = RHS;
794
0
      clearUnusedBits();
795
0
    } else {
796
0
      U.pVal[0] = RHS;
797
0
      memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
798
0
    }
799
0
    return *this;
800
0
  }
801
802
  /// Bitwise AND assignment operator.
803
  ///
804
  /// Performs a bitwise AND operation on this APInt and RHS. The result is
805
  /// assigned to *this.
806
  ///
807
  /// \returns *this after ANDing with RHS.
808
0
  APInt &operator&=(const APInt &RHS) {
809
0
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
810
0
    if (isSingleWord())
811
0
      U.VAL &= RHS.U.VAL;
812
0
    else
813
0
      AndAssignSlowCase(RHS);
814
0
    return *this;
815
0
  }
816
817
  /// Bitwise AND assignment operator.
818
  ///
819
  /// Performs a bitwise AND operation on this APInt and RHS. RHS is
820
  /// logically zero-extended or truncated to match the bit-width of
821
  /// the LHS.
822
0
  APInt &operator&=(uint64_t RHS) {
823
0
    if (isSingleWord()) {
824
0
      U.VAL &= RHS;
825
0
      return *this;
826
0
    }
827
0
    U.pVal[0] &= RHS;
828
0
    memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
829
0
    return *this;
830
0
  }
831
832
  /// Bitwise OR assignment operator.
833
  ///
834
  /// Performs a bitwise OR operation on this APInt and RHS. The result is
835
  /// assigned *this;
836
  ///
837
  /// \returns *this after ORing with RHS.
838
0
  APInt &operator|=(const APInt &RHS) {
839
0
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
840
0
    if (isSingleWord())
841
0
      U.VAL |= RHS.U.VAL;
842
0
    else
843
0
      OrAssignSlowCase(RHS);
844
0
    return *this;
845
0
  }
846
847
  /// Bitwise OR assignment operator.
848
  ///
849
  /// Performs a bitwise OR operation on this APInt and RHS. RHS is
850
  /// logically zero-extended or truncated to match the bit-width of
851
  /// the LHS.
852
0
  APInt &operator|=(uint64_t RHS) {
853
0
    if (isSingleWord()) {
854
0
      U.VAL |= RHS;
855
0
      clearUnusedBits();
856
0
    } else {
857
0
      U.pVal[0] |= RHS;
858
0
    }
859
0
    return *this;
860
0
  }
861
862
  /// Bitwise XOR assignment operator.
863
  ///
864
  /// Performs a bitwise XOR operation on this APInt and RHS. The result is
865
  /// assigned to *this.
866
  ///
867
  /// \returns *this after XORing with RHS.
868
0
  APInt &operator^=(const APInt &RHS) {
869
0
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
870
0
    if (isSingleWord())
871
0
      U.VAL ^= RHS.U.VAL;
872
0
    else
873
0
      XorAssignSlowCase(RHS);
874
0
    return *this;
875
0
  }
876
877
  /// Bitwise XOR assignment operator.
878
  ///
879
  /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
880
  /// logically zero-extended or truncated to match the bit-width of
881
  /// the LHS.
882
0
  APInt &operator^=(uint64_t RHS) {
883
0
    if (isSingleWord()) {
884
0
      U.VAL ^= RHS;
885
0
      clearUnusedBits();
886
0
    } else {
887
0
      U.pVal[0] ^= RHS;
888
0
    }
889
0
    return *this;
890
0
  }
891
892
  /// Multiplication assignment operator.
893
  ///
894
  /// Multiplies this APInt by RHS and assigns the result to *this.
895
  ///
896
  /// \returns *this
897
  APInt &operator*=(const APInt &RHS);
898
  APInt &operator*=(uint64_t RHS);
899
900
  /// Addition assignment operator.
901
  ///
902
  /// Adds RHS to *this and assigns the result to *this.
903
  ///
904
  /// \returns *this
905
  APInt &operator+=(const APInt &RHS);
906
  APInt &operator+=(uint64_t RHS);
907
908
  /// Subtraction assignment operator.
909
  ///
910
  /// Subtracts RHS from *this and assigns the result to *this.
911
  ///
912
  /// \returns *this
913
  APInt &operator-=(const APInt &RHS);
914
  APInt &operator-=(uint64_t RHS);
915
916
  /// Left-shift assignment function.
917
  ///
918
  /// Shifts *this left by shiftAmt and assigns the result to *this.
919
  ///
920
  /// \returns *this after shifting left by ShiftAmt
921
0
  APInt &operator<<=(unsigned ShiftAmt) {
922
0
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
923
0
    if (isSingleWord()) {
924
0
      if (ShiftAmt == BitWidth)
925
0
        U.VAL = 0;
926
0
      else
927
0
        U.VAL <<= ShiftAmt;
928
0
      return clearUnusedBits();
929
0
    }
930
0
    shlSlowCase(ShiftAmt);
931
0
    return *this;
932
0
  }
933
934
  /// Left-shift assignment function.
935
  ///
936
  /// Shifts *this left by shiftAmt and assigns the result to *this.
937
  ///
938
  /// \returns *this after shifting left by ShiftAmt
939
  APInt &operator<<=(const APInt &ShiftAmt);
940
941
  /// @}
942
  /// \name Binary Operators
943
  /// @{
944
945
  /// Multiplication operator.
946
  ///
947
  /// Multiplies this APInt by RHS and returns the result.
948
  APInt operator*(const APInt &RHS) const;
949
950
  /// Left logical shift operator.
951
  ///
952
  /// Shifts this APInt left by \p Bits and returns the result.
953
0
  APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955
  /// Left logical shift operator.
956
  ///
957
  /// Shifts this APInt left by \p Bits and returns the result.
958
0
  APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960
  /// Arithmetic right-shift function.
961
  ///
962
  /// Arithmetic right-shift this APInt by shiftAmt.
963
0
  APInt ashr(unsigned ShiftAmt) const {
964
0
    APInt R(*this);
965
0
    R.ashrInPlace(ShiftAmt);
966
0
    return R;
967
0
  }
968
969
  /// Arithmetic right-shift this APInt by ShiftAmt in place.
970
0
  void ashrInPlace(unsigned ShiftAmt) {
971
0
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
972
0
    if (isSingleWord()) {
973
0
      int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974
0
      if (ShiftAmt == BitWidth)
975
0
        U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976
0
      else
977
0
        U.VAL = SExtVAL >> ShiftAmt;
978
0
      clearUnusedBits();
979
0
      return;
980
0
    }
981
0
    ashrSlowCase(ShiftAmt);
982
0
  }
983
984
  /// Logical right-shift function.
985
  ///
986
  /// Logical right-shift this APInt by shiftAmt.
987
0
  APInt lshr(unsigned shiftAmt) const {
988
0
    APInt R(*this);
989
0
    R.lshrInPlace(shiftAmt);
990
0
    return R;
991
0
  }
992
993
  /// Logical right-shift this APInt by ShiftAmt in place.
994
0
  void lshrInPlace(unsigned ShiftAmt) {
995
0
    assert(ShiftAmt <= BitWidth && "Invalid shift amount");
996
0
    if (isSingleWord()) {
997
0
      if (ShiftAmt == BitWidth)
998
0
        U.VAL = 0;
999
0
      else
1000
0
        U.VAL >>= ShiftAmt;
1001
0
      return;
1002
0
    }
1003
0
    lshrSlowCase(ShiftAmt);
1004
0
  }
1005
1006
  /// Left-shift function.
1007
  ///
1008
  /// Left-shift this APInt by shiftAmt.
1009
0
  APInt shl(unsigned shiftAmt) const {
1010
0
    APInt R(*this);
1011
0
    R <<= shiftAmt;
1012
0
    return R;
1013
0
  }
1014
1015
  /// Rotate left by rotateAmt.
1016
  APInt rotl(unsigned rotateAmt) const;
1017
1018
  /// Rotate right by rotateAmt.
1019
  APInt rotr(unsigned rotateAmt) const;
1020
1021
  /// Arithmetic right-shift function.
1022
  ///
1023
  /// Arithmetic right-shift this APInt by shiftAmt.
1024
0
  APInt ashr(const APInt &ShiftAmt) const {
1025
0
    APInt R(*this);
1026
0
    R.ashrInPlace(ShiftAmt);
1027
0
    return R;
1028
0
  }
1029
1030
  /// Arithmetic right-shift this APInt by shiftAmt in place.
1031
  void ashrInPlace(const APInt &shiftAmt);
1032
1033
  /// Logical right-shift function.
1034
  ///
1035
  /// Logical right-shift this APInt by shiftAmt.
1036
0
  APInt lshr(const APInt &ShiftAmt) const {
1037
0
    APInt R(*this);
1038
0
    R.lshrInPlace(ShiftAmt);
1039
0
    return R;
1040
0
  }
1041
1042
  /// Logical right-shift this APInt by ShiftAmt in place.
1043
  void lshrInPlace(const APInt &ShiftAmt);
1044
1045
  /// Left-shift function.
1046
  ///
1047
  /// Left-shift this APInt by shiftAmt.
1048
0
  APInt shl(const APInt &ShiftAmt) const {
1049
0
    APInt R(*this);
1050
0
    R <<= ShiftAmt;
1051
0
    return R;
1052
0
  }
1053
1054
  /// Rotate left by rotateAmt.
1055
  APInt rotl(const APInt &rotateAmt) const;
1056
1057
  /// Rotate right by rotateAmt.
1058
  APInt rotr(const APInt &rotateAmt) const;
1059
1060
  /// Unsigned division operation.
1061
  ///
1062
  /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063
  /// RHS are treated as unsigned quantities for purposes of this division.
1064
  ///
1065
  /// \returns a new APInt value containing the division result, rounded towards
1066
  /// zero.
1067
  APInt udiv(const APInt &RHS) const;
1068
  APInt udiv(uint64_t RHS) const;
1069
1070
  /// Signed division function for APInt.
1071
  ///
1072
  /// Signed divide this APInt by APInt RHS.
1073
  ///
1074
  /// The result is rounded towards zero.
1075
  APInt sdiv(const APInt &RHS) const;
1076
  APInt sdiv(int64_t RHS) const;
1077
1078
  /// Unsigned remainder operation.
1079
  ///
1080
  /// Perform an unsigned remainder operation on this APInt with RHS being the
1081
  /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082
  /// of this operation. Note that this is a true remainder operation and not a
1083
  /// modulo operation because the sign follows the sign of the dividend which
1084
  /// is *this.
1085
  ///
1086
  /// \returns a new APInt value containing the remainder result
1087
  APInt urem(const APInt &RHS) const;
1088
  uint64_t urem(uint64_t RHS) const;
1089
1090
  /// Function for signed remainder operation.
1091
  ///
1092
  /// Signed remainder operation on APInt.
1093
  APInt srem(const APInt &RHS) const;
1094
  int64_t srem(int64_t RHS) const;
1095
1096
  /// Dual division/remainder interface.
1097
  ///
1098
  /// Sometimes it is convenient to divide two APInt values and obtain both the
1099
  /// quotient and remainder. This function does both operations in the same
1100
  /// computation making it a little more efficient. The pair of input arguments
1101
  /// may overlap with the pair of output arguments. It is safe to call
1102
  /// udivrem(X, Y, X, Y), for example.
1103
  static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104
                      APInt &Remainder);
1105
  static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106
                      uint64_t &Remainder);
1107
1108
  static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109
                      APInt &Remainder);
1110
  static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111
                      int64_t &Remainder);
1112
1113
  // Operations that return overflow indicators.
1114
  APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115
  APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116
  APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117
  APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118
  APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119
  APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120
  APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121
  APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122
  APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124
  // Operations that saturate
1125
  APInt sadd_sat(const APInt &RHS) const;
1126
  APInt uadd_sat(const APInt &RHS) const;
1127
  APInt ssub_sat(const APInt &RHS) const;
1128
  APInt usub_sat(const APInt &RHS) const;
1129
  APInt smul_sat(const APInt &RHS) const;
1130
  APInt umul_sat(const APInt &RHS) const;
1131
  APInt sshl_sat(const APInt &RHS) const;
1132
  APInt ushl_sat(const APInt &RHS) const;
1133
1134
  /// Array-indexing support.
1135
  ///
1136
  /// \returns the bit value at bitPosition
1137
0
  bool operator[](unsigned bitPosition) const {
1138
0
    assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1139
0
    return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140
0
  }
1141
1142
  /// @}
1143
  /// \name Comparison Operators
1144
  /// @{
1145
1146
  /// Equality operator.
1147
  ///
1148
  /// Compares this APInt with RHS for the validity of the equality
1149
  /// relationship.
1150
0
  bool operator==(const APInt &RHS) const {
1151
0
    assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1152
0
    if (isSingleWord())
1153
0
      return U.VAL == RHS.U.VAL;
1154
0
    return EqualSlowCase(RHS);
1155
0
  }
1156
1157
  /// Equality operator.
1158
  ///
1159
  /// Compares this APInt with a uint64_t for the validity of the equality
1160
  /// relationship.
1161
  ///
1162
  /// \returns true if *this == Val
1163
0
  bool operator==(uint64_t Val) const {
1164
0
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165
0
  }
1166
1167
  /// Equality comparison.
1168
  ///
1169
  /// Compares this APInt with RHS for the validity of the equality
1170
  /// relationship.
1171
  ///
1172
  /// \returns true if *this == Val
1173
0
  bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175
  /// Inequality operator.
1176
  ///
1177
  /// Compares this APInt with RHS for the validity of the inequality
1178
  /// relationship.
1179
  ///
1180
  /// \returns true if *this != Val
1181
0
  bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183
  /// Inequality operator.
1184
  ///
1185
  /// Compares this APInt with a uint64_t for the validity of the inequality
1186
  /// relationship.
1187
  ///
1188
  /// \returns true if *this != Val
1189
0
  bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191
  /// Inequality comparison
1192
  ///
1193
  /// Compares this APInt with RHS for the validity of the inequality
1194
  /// relationship.
1195
  ///
1196
  /// \returns true if *this != Val
1197
0
  bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199
  /// Unsigned less than comparison
1200
  ///
1201
  /// Regards both *this and RHS as unsigned quantities and compares them for
1202
  /// the validity of the less-than relationship.
1203
  ///
1204
  /// \returns true if *this < RHS when both are considered unsigned.
1205
0
  bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207
  /// Unsigned less than comparison
1208
  ///
1209
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1210
  /// the validity of the less-than relationship.
1211
  ///
1212
  /// \returns true if *this < RHS when considered unsigned.
1213
0
  bool ult(uint64_t RHS) const {
1214
0
    // Only need to check active bits if not a single word.
1215
0
    return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216
0
  }
1217
1218
  /// Signed less than comparison
1219
  ///
1220
  /// Regards both *this and RHS as signed quantities and compares them for
1221
  /// validity of the less-than relationship.
1222
  ///
1223
  /// \returns true if *this < RHS when both are considered signed.
1224
0
  bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226
  /// Signed less than comparison
1227
  ///
1228
  /// Regards both *this as a signed quantity and compares it with RHS for
1229
  /// the validity of the less-than relationship.
1230
  ///
1231
  /// \returns true if *this < RHS when considered signed.
1232
0
  bool slt(int64_t RHS) const {
1233
0
    return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234
0
                                                        : getSExtValue() < RHS;
1235
0
  }
1236
1237
  /// Unsigned less or equal comparison
1238
  ///
1239
  /// Regards both *this and RHS as unsigned quantities and compares them for
1240
  /// validity of the less-or-equal relationship.
1241
  ///
1242
  /// \returns true if *this <= RHS when both are considered unsigned.
1243
0
  bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245
  /// Unsigned less or equal comparison
1246
  ///
1247
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1248
  /// the validity of the less-or-equal relationship.
1249
  ///
1250
  /// \returns true if *this <= RHS when considered unsigned.
1251
0
  bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253
  /// Signed less or equal comparison
1254
  ///
1255
  /// Regards both *this and RHS as signed quantities and compares them for
1256
  /// validity of the less-or-equal relationship.
1257
  ///
1258
  /// \returns true if *this <= RHS when both are considered signed.
1259
0
  bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261
  /// Signed less or equal comparison
1262
  ///
1263
  /// Regards both *this as a signed quantity and compares it with RHS for the
1264
  /// validity of the less-or-equal relationship.
1265
  ///
1266
  /// \returns true if *this <= RHS when considered signed.
1267
0
  bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269
  /// Unsigned greater than comparison
1270
  ///
1271
  /// Regards both *this and RHS as unsigned quantities and compares them for
1272
  /// the validity of the greater-than relationship.
1273
  ///
1274
  /// \returns true if *this > RHS when both are considered unsigned.
1275
0
  bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277
  /// Unsigned greater than comparison
1278
  ///
1279
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1280
  /// the validity of the greater-than relationship.
1281
  ///
1282
  /// \returns true if *this > RHS when considered unsigned.
1283
0
  bool ugt(uint64_t RHS) const {
1284
0
    // Only need to check active bits if not a single word.
1285
0
    return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286
0
  }
1287
1288
  /// Signed greater than comparison
1289
  ///
1290
  /// Regards both *this and RHS as signed quantities and compares them for the
1291
  /// validity of the greater-than relationship.
1292
  ///
1293
  /// \returns true if *this > RHS when both are considered signed.
1294
0
  bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296
  /// Signed greater than comparison
1297
  ///
1298
  /// Regards both *this as a signed quantity and compares it with RHS for
1299
  /// the validity of the greater-than relationship.
1300
  ///
1301
  /// \returns true if *this > RHS when considered signed.
1302
0
  bool sgt(int64_t RHS) const {
1303
0
    return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304
0
                                                        : getSExtValue() > RHS;
1305
0
  }
1306
1307
  /// Unsigned greater or equal comparison
1308
  ///
1309
  /// Regards both *this and RHS as unsigned quantities and compares them for
1310
  /// validity of the greater-or-equal relationship.
1311
  ///
1312
  /// \returns true if *this >= RHS when both are considered unsigned.
1313
0
  bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315
  /// Unsigned greater or equal comparison
1316
  ///
1317
  /// Regards both *this as an unsigned quantity and compares it with RHS for
1318
  /// the validity of the greater-or-equal relationship.
1319
  ///
1320
  /// \returns true if *this >= RHS when considered unsigned.
1321
0
  bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323
  /// Signed greater or equal comparison
1324
  ///
1325
  /// Regards both *this and RHS as signed quantities and compares them for
1326
  /// validity of the greater-or-equal relationship.
1327
  ///
1328
  /// \returns true if *this >= RHS when both are considered signed.
1329
0
  bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331
  /// Signed greater or equal comparison
1332
  ///
1333
  /// Regards both *this as a signed quantity and compares it with RHS for
1334
  /// the validity of the greater-or-equal relationship.
1335
  ///
1336
  /// \returns true if *this >= RHS when considered signed.
1337
0
  bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339
  /// This operation tests if there are any pairs of corresponding bits
1340
  /// between this APInt and RHS that are both set.
1341
0
  bool intersects(const APInt &RHS) const {
1342
0
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1343
0
    if (isSingleWord())
1344
0
      return (U.VAL & RHS.U.VAL) != 0;
1345
0
    return intersectsSlowCase(RHS);
1346
0
  }
1347
1348
  /// This operation checks that all bits set in this APInt are also set in RHS.
1349
0
  bool isSubsetOf(const APInt &RHS) const {
1350
0
    assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1351
0
    if (isSingleWord())
1352
0
      return (U.VAL & ~RHS.U.VAL) == 0;
1353
0
    return isSubsetOfSlowCase(RHS);
1354
0
  }
1355
1356
  /// @}
1357
  /// \name Resizing Operators
1358
  /// @{
1359
1360
  /// Truncate to new width.
1361
  ///
1362
  /// Truncate the APInt to a specified width. It is an error to specify a width
1363
  /// that is greater than or equal to the current width.
1364
  APInt trunc(unsigned width) const;
1365
1366
  /// Truncate to new width with unsigned saturation.
1367
  ///
1368
  /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369
  /// the new bitwidth, then return truncated APInt. Else, return max value.
1370
  APInt truncUSat(unsigned width) const;
1371
1372
  /// Truncate to new width with signed saturation.
1373
  ///
1374
  /// If this APInt, treated as signed integer, can be losslessly truncated to
1375
  /// the new bitwidth, then return truncated APInt. Else, return either
1376
  /// signed min value if the APInt was negative, or signed max value.
1377
  APInt truncSSat(unsigned width) const;
1378
1379
  /// Sign extend to a new width.
1380
  ///
1381
  /// This operation sign extends the APInt to a new width. If the high order
1382
  /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383
  /// It is an error to specify a width that is less than or equal to the
1384
  /// current width.
1385
  APInt sext(unsigned width) const;
1386
1387
  /// Zero extend to a new width.
1388
  ///
1389
  /// This operation zero extends the APInt to a new width. The high order bits
1390
  /// are filled with 0 bits.  It is an error to specify a width that is less
1391
  /// than or equal to the current width.
1392
  APInt zext(unsigned width) const;
1393
1394
  /// Sign extend or truncate to width
1395
  ///
1396
  /// Make this APInt have the bit width given by \p width. The value is sign
1397
  /// extended, truncated, or left alone to make it that width.
1398
  APInt sextOrTrunc(unsigned width) const;
1399
1400
  /// Zero extend or truncate to width
1401
  ///
1402
  /// Make this APInt have the bit width given by \p width. The value is zero
1403
  /// extended, truncated, or left alone to make it that width.
1404
  APInt zextOrTrunc(unsigned width) const;
1405
1406
  /// Sign extend or truncate to width
1407
  ///
1408
  /// Make this APInt have the bit width given by \p width. The value is sign
1409
  /// extended, or left alone to make it that width.
1410
  APInt sextOrSelf(unsigned width) const;
1411
1412
  /// Zero extend or truncate to width
1413
  ///
1414
  /// Make this APInt have the bit width given by \p width. The value is zero
1415
  /// extended, or left alone to make it that width.
1416
  APInt zextOrSelf(unsigned width) const;
1417
1418
  /// @}
1419
  /// \name Bit Manipulation Operators
1420
  /// @{
1421
1422
  /// Set every bit to 1.
1423
0
  void setAllBits() {
1424
0
    if (isSingleWord())
1425
0
      U.VAL = WORDTYPE_MAX;
1426
0
    else
1427
0
      // Set all the bits in all the words.
1428
0
      memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1429
0
    // Clear the unused ones
1430
0
    clearUnusedBits();
1431
0
  }
1432
1433
  /// Set a given bit to 1.
1434
  ///
1435
  /// Set the given bit to 1 whose position is given as "bitPosition".
1436
0
  void setBit(unsigned BitPosition) {
1437
0
    assert(BitPosition < BitWidth && "BitPosition out of range");
1438
0
    WordType Mask = maskBit(BitPosition);
1439
0
    if (isSingleWord())
1440
0
      U.VAL |= Mask;
1441
0
    else
1442
0
      U.pVal[whichWord(BitPosition)] |= Mask;
1443
0
  }
1444
1445
  /// Set the sign bit to 1.
1446
0
  void setSignBit() {
1447
0
    setBit(BitWidth - 1);
1448
0
  }
1449
1450
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1451
  /// This function handles "wrap" case when \p loBit > \p hiBit, and calls
1452
  /// setBits when \p loBit <= \p hiBit.
1453
0
  void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1454
0
    assert(hiBit <= BitWidth && "hiBit out of range");
1455
0
    assert(loBit <= BitWidth && "loBit out of range");
1456
0
    if (loBit <= hiBit) {
1457
0
      setBits(loBit, hiBit);
1458
0
      return;
1459
0
    }
1460
0
    setLowBits(hiBit);
1461
0
    setHighBits(BitWidth - loBit);
1462
0
  }
1463
1464
  /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465
  /// This function handles case when \p loBit <= \p hiBit.
1466
0
  void setBits(unsigned loBit, unsigned hiBit) {
1467
0
    assert(hiBit <= BitWidth && "hiBit out of range");
1468
0
    assert(loBit <= BitWidth && "loBit out of range");
1469
0
    assert(loBit <= hiBit && "loBit greater than hiBit");
1470
0
    if (loBit == hiBit)
1471
0
      return;
1472
0
    if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1473
0
      uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1474
0
      mask <<= loBit;
1475
0
      if (isSingleWord())
1476
0
        U.VAL |= mask;
1477
0
      else
1478
0
        U.pVal[0] |= mask;
1479
0
    } else {
1480
0
      setBitsSlowCase(loBit, hiBit);
1481
0
    }
1482
0
  }
1483
1484
  /// Set the top bits starting from loBit.
1485
0
  void setBitsFrom(unsigned loBit) {
1486
0
    return setBits(loBit, BitWidth);
1487
0
  }
1488
1489
  /// Set the bottom loBits bits.
1490
0
  void setLowBits(unsigned loBits) {
1491
0
    return setBits(0, loBits);
1492
0
  }
1493
1494
  /// Set the top hiBits bits.
1495
0
  void setHighBits(unsigned hiBits) {
1496
0
    return setBits(BitWidth - hiBits, BitWidth);
1497
0
  }
1498
1499
  /// Set every bit to 0.
1500
0
  void clearAllBits() {
1501
0
    if (isSingleWord())
1502
0
      U.VAL = 0;
1503
0
    else
1504
0
      memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1505
0
  }
1506
1507
  /// Set a given bit to 0.
1508
  ///
1509
  /// Set the given bit to 0 whose position is given as "bitPosition".
1510
0
  void clearBit(unsigned BitPosition) {
1511
0
    assert(BitPosition < BitWidth && "BitPosition out of range");
1512
0
    WordType Mask = ~maskBit(BitPosition);
1513
0
    if (isSingleWord())
1514
0
      U.VAL &= Mask;
1515
0
    else
1516
0
      U.pVal[whichWord(BitPosition)] &= Mask;
1517
0
  }
1518
1519
  /// Set bottom loBits bits to 0.
1520
0
  void clearLowBits(unsigned loBits) {
1521
0
    assert(loBits <= BitWidth && "More bits than bitwidth");
1522
0
    APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1523
0
    *this &= Keep;
1524
0
  }
1525
1526
  /// Set the sign bit to 0.
1527
0
  void clearSignBit() {
1528
0
    clearBit(BitWidth - 1);
1529
0
  }
1530
1531
  /// Toggle every bit to its opposite value.
1532
0
  void flipAllBits() {
1533
0
    if (isSingleWord()) {
1534
0
      U.VAL ^= WORDTYPE_MAX;
1535
0
      clearUnusedBits();
1536
0
    } else {
1537
0
      flipAllBitsSlowCase();
1538
0
    }
1539
0
  }
1540
1541
  /// Toggles a given bit to its opposite value.
1542
  ///
1543
  /// Toggle a given bit to its opposite value whose position is given
1544
  /// as "bitPosition".
1545
  void flipBit(unsigned bitPosition);
1546
1547
  /// Negate this APInt in place.
1548
0
  void negate() {
1549
0
    flipAllBits();
1550
0
    ++(*this);
1551
0
  }
1552
1553
  /// Insert the bits from a smaller APInt starting at bitPosition.
1554
  void insertBits(const APInt &SubBits, unsigned bitPosition);
1555
  void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1556
1557
  /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1558
  APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1559
  uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1560
1561
  /// @}
1562
  /// \name Value Characterization Functions
1563
  /// @{
1564
1565
  /// Return the number of bits in the APInt.
1566
0
  unsigned getBitWidth() const { return BitWidth; }
1567
1568
  /// Get the number of words.
1569
  ///
1570
  /// Here one word's bitwidth equals to that of uint64_t.
1571
  ///
1572
  /// \returns the number of words to hold the integer value of this APInt.
1573
0
  unsigned getNumWords() const { return getNumWords(BitWidth); }
1574
1575
  /// Get the number of words.
1576
  ///
1577
  /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1578
  ///
1579
  /// \returns the number of words to hold the integer value with a given bit
1580
  /// width.
1581
0
  static unsigned getNumWords(unsigned BitWidth) {
1582
0
    return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1583
0
  }
1584
1585
  /// Compute the number of active bits in the value
1586
  ///
1587
  /// This function returns the number of active bits which is defined as the
1588
  /// bit width minus the number of leading zeros. This is used in several
1589
  /// computations to see how "wide" the value is.
1590
0
  unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1591
1592
  /// Compute the number of active words in the value of this APInt.
1593
  ///
1594
  /// This is used in conjunction with getActiveData to extract the raw value of
1595
  /// the APInt.
1596
0
  unsigned getActiveWords() const {
1597
0
    unsigned numActiveBits = getActiveBits();
1598
0
    return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1599
0
  }
1600
1601
  /// Get the minimum bit size for this signed APInt
1602
  ///
1603
  /// Computes the minimum bit width for this APInt while considering it to be a
1604
  /// signed (and probably negative) value. If the value is not negative, this
1605
  /// function returns the same value as getActiveBits()+1. Otherwise, it
1606
  /// returns the smallest bit width that will retain the negative value. For
1607
  /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1608
  /// for -1, this function will always return 1.
1609
0
  unsigned getMinSignedBits() const {
1610
0
    if (isNegative())
1611
0
      return BitWidth - countLeadingOnes() + 1;
1612
0
    return getActiveBits() + 1;
1613
0
  }
1614
1615
  /// Get zero extended value
1616
  ///
1617
  /// This method attempts to return the value of this APInt as a zero extended
1618
  /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1619
  /// uint64_t. Otherwise an assertion will result.
1620
0
  uint64_t getZExtValue() const {
1621
0
    if (isSingleWord())
1622
0
      return U.VAL;
1623
0
    assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1624
0
    return U.pVal[0];
1625
0
  }
1626
1627
  /// Get sign extended value
1628
  ///
1629
  /// This method attempts to return the value of this APInt as a sign extended
1630
  /// int64_t. The bit width must be <= 64 or the value must fit within an
1631
  /// int64_t. Otherwise an assertion will result.
1632
0
  int64_t getSExtValue() const {
1633
0
    if (isSingleWord())
1634
0
      return SignExtend64(U.VAL, BitWidth);
1635
0
    assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1636
0
    return int64_t(U.pVal[0]);
1637
0
  }
1638
1639
  /// Get bits required for string value.
1640
  ///
1641
  /// This method determines how many bits are required to hold the APInt
1642
  /// equivalent of the string given by \p str.
1643
  static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1644
1645
  /// The APInt version of the countLeadingZeros functions in
1646
  ///   MathExtras.h.
1647
  ///
1648
  /// It counts the number of zeros from the most significant bit to the first
1649
  /// one bit.
1650
  ///
1651
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1652
  ///   zeros from the most significant bit to the first one bits.
1653
0
  unsigned countLeadingZeros() const {
1654
0
    if (isSingleWord()) {
1655
0
      unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1656
0
      return llvm::countLeadingZeros(U.VAL) - unusedBits;
1657
0
    }
1658
0
    return countLeadingZerosSlowCase();
1659
0
  }
1660
1661
  /// Count the number of leading one bits.
1662
  ///
1663
  /// This function is an APInt version of the countLeadingOnes
1664
  /// functions in MathExtras.h. It counts the number of ones from the most
1665
  /// significant bit to the first zero bit.
1666
  ///
1667
  /// \returns 0 if the high order bit is not set, otherwise returns the number
1668
  /// of 1 bits from the most significant to the least
1669
0
  unsigned countLeadingOnes() const {
1670
0
    if (isSingleWord())
1671
0
      return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1672
0
    return countLeadingOnesSlowCase();
1673
0
  }
1674
1675
  /// Computes the number of leading bits of this APInt that are equal to its
1676
  /// sign bit.
1677
0
  unsigned getNumSignBits() const {
1678
0
    return isNegative() ? countLeadingOnes() : countLeadingZeros();
1679
0
  }
1680
1681
  /// Count the number of trailing zero bits.
1682
  ///
1683
  /// This function is an APInt version of the countTrailingZeros
1684
  /// functions in MathExtras.h. It counts the number of zeros from the least
1685
  /// significant bit to the first set bit.
1686
  ///
1687
  /// \returns BitWidth if the value is zero, otherwise returns the number of
1688
  /// zeros from the least significant bit to the first one bit.
1689
0
  unsigned countTrailingZeros() const {
1690
0
    if (isSingleWord())
1691
0
      return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1692
0
    return countTrailingZerosSlowCase();
1693
0
  }
1694
1695
  /// Count the number of trailing one bits.
1696
  ///
1697
  /// This function is an APInt version of the countTrailingOnes
1698
  /// functions in MathExtras.h. It counts the number of ones from the least
1699
  /// significant bit to the first zero bit.
1700
  ///
1701
  /// \returns BitWidth if the value is all ones, otherwise returns the number
1702
  /// of ones from the least significant bit to the first zero bit.
1703
0
  unsigned countTrailingOnes() const {
1704
0
    if (isSingleWord())
1705
0
      return llvm::countTrailingOnes(U.VAL);
1706
0
    return countTrailingOnesSlowCase();
1707
0
  }
1708
1709
  /// Count the number of bits set.
1710
  ///
1711
  /// This function is an APInt version of the countPopulation functions
1712
  /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1713
  ///
1714
  /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1715
0
  unsigned countPopulation() const {
1716
0
    if (isSingleWord())
1717
0
      return llvm::countPopulation(U.VAL);
1718
0
    return countPopulationSlowCase();
1719
0
  }
1720
1721
  /// @}
1722
  /// \name Conversion Functions
1723
  /// @{
1724
  void print(raw_ostream &OS, bool isSigned) const;
1725
1726
  /// Converts an APInt to a string and append it to Str.  Str is commonly a
1727
  /// SmallString.
1728
  void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1729
                bool formatAsCLiteral = false) const;
1730
1731
  /// Considers the APInt to be unsigned and converts it into a string in the
1732
  /// radix given. The radix can be 2, 8, 10 16, or 36.
1733
0
  void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1734
0
    toString(Str, Radix, false, false);
1735
0
  }
1736
1737
  /// Considers the APInt to be signed and converts it into a string in the
1738
  /// radix given. The radix can be 2, 8, 10, 16, or 36.
1739
0
  void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1740
0
    toString(Str, Radix, true, false);
1741
0
  }
1742
1743
  /// Return the APInt as a std::string.
1744
  ///
1745
  /// Note that this is an inefficient method.  It is better to pass in a
1746
  /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1747
  /// for the string.
1748
  std::string toString(unsigned Radix, bool Signed) const;
1749
1750
  /// \returns a byte-swapped representation of this APInt Value.
1751
  APInt byteSwap() const;
1752
1753
  /// \returns the value with the bit representation reversed of this APInt
1754
  /// Value.
1755
  APInt reverseBits() const;
1756
1757
  /// Converts this APInt to a double value.
1758
  double roundToDouble(bool isSigned) const;
1759
1760
  /// Converts this unsigned APInt to a double value.
1761
0
  double roundToDouble() const { return roundToDouble(false); }
1762
1763
  /// Converts this signed APInt to a double value.
1764
0
  double signedRoundToDouble() const { return roundToDouble(true); }
1765
1766
  /// Converts APInt bits to a double
1767
  ///
1768
  /// The conversion does not do a translation from integer to double, it just
1769
  /// re-interprets the bits as a double. Note that it is valid to do this on
1770
  /// any bit width. Exactly 64 bits will be translated.
1771
0
  double bitsToDouble() const {
1772
0
    return BitsToDouble(getWord(0));
1773
0
  }
1774
1775
  /// Converts APInt bits to a float
1776
  ///
1777
  /// The conversion does not do a translation from integer to float, it just
1778
  /// re-interprets the bits as a float. Note that it is valid to do this on
1779
  /// any bit width. Exactly 32 bits will be translated.
1780
0
  float bitsToFloat() const {
1781
0
    return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1782
0
  }
1783
1784
  /// Converts a double to APInt bits.
1785
  ///
1786
  /// The conversion does not do a translation from double to integer, it just
1787
  /// re-interprets the bits of the double.
1788
0
  static APInt doubleToBits(double V) {
1789
0
    return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1790
0
  }
1791
1792
  /// Converts a float to APInt bits.
1793
  ///
1794
  /// The conversion does not do a translation from float to integer, it just
1795
  /// re-interprets the bits of the float.
1796
0
  static APInt floatToBits(float V) {
1797
0
    return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1798
0
  }
1799
1800
  /// @}
1801
  /// \name Mathematics Operations
1802
  /// @{
1803
1804
  /// \returns the floor log base 2 of this APInt.
1805
0
  unsigned logBase2() const { return getActiveBits() -  1; }
1806
1807
  /// \returns the ceil log base 2 of this APInt.
1808
0
  unsigned ceilLogBase2() const {
1809
0
    APInt temp(*this);
1810
0
    --temp;
1811
0
    return temp.getActiveBits();
1812
0
  }
1813
1814
  /// \returns the nearest log base 2 of this APInt. Ties round up.
1815
  ///
1816
  /// NOTE: When we have a BitWidth of 1, we define:
1817
  ///
1818
  ///   log2(0) = UINT32_MAX
1819
  ///   log2(1) = 0
1820
  ///
1821
  /// to get around any mathematical concerns resulting from
1822
  /// referencing 2 in a space where 2 does no exist.
1823
0
  unsigned nearestLogBase2() const {
1824
0
    // Special case when we have a bitwidth of 1. If VAL is 1, then we
1825
0
    // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1826
0
    // UINT32_MAX.
1827
0
    if (BitWidth == 1)
1828
0
      return U.VAL - 1;
1829
0
1830
0
    // Handle the zero case.
1831
0
    if (isNullValue())
1832
0
      return UINT32_MAX;
1833
0
1834
0
    // The non-zero case is handled by computing:
1835
0
    //
1836
0
    //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1837
0
    //
1838
0
    // where x[i] is referring to the value of the ith bit of x.
1839
0
    unsigned lg = logBase2();
1840
0
    return lg + unsigned((*this)[lg - 1]);
1841
0
  }
1842
1843
  /// \returns the log base 2 of this APInt if its an exact power of two, -1
1844
  /// otherwise
1845
0
  int32_t exactLogBase2() const {
1846
0
    if (!isPowerOf2())
1847
0
      return -1;
1848
0
    return logBase2();
1849
0
  }
1850
1851
  /// Compute the square root
1852
  APInt sqrt() const;
1853
1854
  /// Get the absolute value;
1855
  ///
1856
  /// If *this is < 0 then return -(*this), otherwise *this;
1857
0
  APInt abs() const {
1858
0
    if (isNegative())
1859
0
      return -(*this);
1860
0
    return *this;
1861
0
  }
1862
1863
  /// \returns the multiplicative inverse for a given modulo.
1864
  APInt multiplicativeInverse(const APInt &modulo) const;
1865
1866
  /// @}
1867
  /// \name Support for division by constant
1868
  /// @{
1869
1870
  /// Calculate the magic number for signed division by a constant.
1871
  struct ms;
1872
  ms magic() const;
1873
1874
  /// Calculate the magic number for unsigned division by a constant.
1875
  struct mu;
1876
  mu magicu(unsigned LeadingZeros = 0) const;
1877
1878
  /// @}
1879
  /// \name Building-block Operations for APInt and APFloat
1880
  /// @{
1881
1882
  // These building block operations operate on a representation of arbitrary
1883
  // precision, two's-complement, bignum integer values. They should be
1884
  // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1885
  // generally a pointer to the base of an array of integer parts, representing
1886
  // an unsigned bignum, and a count of how many parts there are.
1887
1888
  /// Sets the least significant part of a bignum to the input value, and zeroes
1889
  /// out higher parts.
1890
  static void tcSet(WordType *, WordType, unsigned);
1891
1892
  /// Assign one bignum to another.
1893
  static void tcAssign(WordType *, const WordType *, unsigned);
1894
1895
  /// Returns true if a bignum is zero, false otherwise.
1896
  static bool tcIsZero(const WordType *, unsigned);
1897
1898
  /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1899
  static int tcExtractBit(const WordType *, unsigned bit);
1900
1901
  /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1902
  /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1903
  /// significant bit of DST.  All high bits above srcBITS in DST are
1904
  /// zero-filled.
1905
  static void tcExtract(WordType *, unsigned dstCount,
1906
                        const WordType *, unsigned srcBits,
1907
                        unsigned srcLSB);
1908
1909
  /// Set the given bit of a bignum.  Zero-based.
1910
  static void tcSetBit(WordType *, unsigned bit);
1911
1912
  /// Clear the given bit of a bignum.  Zero-based.
1913
  static void tcClearBit(WordType *, unsigned bit);
1914
1915
  /// Returns the bit number of the least or most significant set bit of a
1916
  /// number.  If the input number has no bits set -1U is returned.
1917
  static unsigned tcLSB(const WordType *, unsigned n);
1918
  static unsigned tcMSB(const WordType *parts, unsigned n);
1919
1920
  /// Negate a bignum in-place.
1921
  static void tcNegate(WordType *, unsigned);
1922
1923
  /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1924
  static WordType tcAdd(WordType *, const WordType *,
1925
                        WordType carry, unsigned);
1926
  /// DST += RHS.  Returns the carry flag.
1927
  static WordType tcAddPart(WordType *, WordType, unsigned);
1928
1929
  /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1930
  static WordType tcSubtract(WordType *, const WordType *,
1931
                             WordType carry, unsigned);
1932
  /// DST -= RHS.  Returns the carry flag.
1933
  static WordType tcSubtractPart(WordType *, WordType, unsigned);
1934
1935
  /// DST += SRC * MULTIPLIER + PART   if add is true
1936
  /// DST  = SRC * MULTIPLIER + PART   if add is false
1937
  ///
1938
  /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1939
  /// start at the same point, i.e. DST == SRC.
1940
  ///
1941
  /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1942
  /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1943
  /// result, and if all of the omitted higher parts were zero return zero,
1944
  /// otherwise overflow occurred and return one.
1945
  static int tcMultiplyPart(WordType *dst, const WordType *src,
1946
                            WordType multiplier, WordType carry,
1947
                            unsigned srcParts, unsigned dstParts,
1948
                            bool add);
1949
1950
  /// DST = LHS * RHS, where DST has the same width as the operands and is
1951
  /// filled with the least significant parts of the result.  Returns one if
1952
  /// overflow occurred, otherwise zero.  DST must be disjoint from both
1953
  /// operands.
1954
  static int tcMultiply(WordType *, const WordType *, const WordType *,
1955
                        unsigned);
1956
1957
  /// DST = LHS * RHS, where DST has width the sum of the widths of the
1958
  /// operands. No overflow occurs. DST must be disjoint from both operands.
1959
  static void tcFullMultiply(WordType *, const WordType *,
1960
                             const WordType *, unsigned, unsigned);
1961
1962
  /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1963
  /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1964
  /// REMAINDER to the remainder, return zero.  i.e.
1965
  ///
1966
  ///  OLD_LHS = RHS * LHS + REMAINDER
1967
  ///
1968
  /// SCRATCH is a bignum of the same size as the operands and result for use by
1969
  /// the routine; its contents need not be initialized and are destroyed.  LHS,
1970
  /// REMAINDER and SCRATCH must be distinct.
1971
  static int tcDivide(WordType *lhs, const WordType *rhs,
1972
                      WordType *remainder, WordType *scratch,
1973
                      unsigned parts);
1974
1975
  /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1976
  /// restrictions on Count.
1977
  static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1978
1979
  /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1980
  /// restrictions on Count.
1981
  static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1982
1983
  /// The obvious AND, OR and XOR and complement operations.
1984
  static void tcAnd(WordType *, const WordType *, unsigned);
1985
  static void tcOr(WordType *, const WordType *, unsigned);
1986
  static void tcXor(WordType *, const WordType *, unsigned);
1987
  static void tcComplement(WordType *, unsigned);
1988
1989
  /// Comparison (unsigned) of two bignums.
1990
  static int tcCompare(const WordType *, const WordType *, unsigned);
1991
1992
  /// Increment a bignum in-place.  Return the carry flag.
1993
0
  static WordType tcIncrement(WordType *dst, unsigned parts) {
1994
0
    return tcAddPart(dst, 1, parts);
1995
0
  }
1996
1997
  /// Decrement a bignum in-place.  Return the borrow flag.
1998
0
  static WordType tcDecrement(WordType *dst, unsigned parts) {
1999
0
    return tcSubtractPart(dst, 1, parts);
2000
0
  }
2001
2002
  /// Set the least significant BITS and clear the rest.
2003
  static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2004
2005
  /// debug method
2006
  void dump() const;
2007
2008
  /// @}
2009
};
2010
2011
/// Magic data for optimising signed division by a constant.
2012
struct APInt::ms {
2013
  APInt m;    ///< magic number
2014
  unsigned s; ///< shift amount
2015
};
2016
2017
/// Magic data for optimising unsigned division by a constant.
2018
struct APInt::mu {
2019
  APInt m;    ///< magic number
2020
  bool a;     ///< add indicator
2021
  unsigned s; ///< shift amount
2022
};
2023
2024
0
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2025
2026
0
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2027
2028
/// Unary bitwise complement operator.
2029
///
2030
/// \returns an APInt that is the bitwise complement of \p v.
2031
0
inline APInt operator~(APInt v) {
2032
0
  v.flipAllBits();
2033
0
  return v;
2034
0
}
2035
2036
0
inline APInt operator&(APInt a, const APInt &b) {
2037
0
  a &= b;
2038
0
  return a;
2039
0
}
2040
2041
0
inline APInt operator&(const APInt &a, APInt &&b) {
2042
0
  b &= a;
2043
0
  return std::move(b);
2044
0
}
2045
2046
0
inline APInt operator&(APInt a, uint64_t RHS) {
2047
0
  a &= RHS;
2048
0
  return a;
2049
0
}
2050
2051
0
inline APInt operator&(uint64_t LHS, APInt b) {
2052
0
  b &= LHS;
2053
0
  return b;
2054
0
}
2055
2056
0
inline APInt operator|(APInt a, const APInt &b) {
2057
0
  a |= b;
2058
0
  return a;
2059
0
}
2060
2061
0
inline APInt operator|(const APInt &a, APInt &&b) {
2062
0
  b |= a;
2063
0
  return std::move(b);
2064
0
}
2065
2066
0
inline APInt operator|(APInt a, uint64_t RHS) {
2067
0
  a |= RHS;
2068
0
  return a;
2069
0
}
2070
2071
0
inline APInt operator|(uint64_t LHS, APInt b) {
2072
0
  b |= LHS;
2073
0
  return b;
2074
0
}
2075
2076
0
inline APInt operator^(APInt a, const APInt &b) {
2077
0
  a ^= b;
2078
0
  return a;
2079
0
}
2080
2081
0
inline APInt operator^(const APInt &a, APInt &&b) {
2082
0
  b ^= a;
2083
0
  return std::move(b);
2084
0
}
2085
2086
0
inline APInt operator^(APInt a, uint64_t RHS) {
2087
0
  a ^= RHS;
2088
0
  return a;
2089
0
}
2090
2091
0
inline APInt operator^(uint64_t LHS, APInt b) {
2092
0
  b ^= LHS;
2093
0
  return b;
2094
0
}
2095
2096
0
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2097
0
  I.print(OS, true);
2098
0
  return OS;
2099
0
}
2100
2101
0
inline APInt operator-(APInt v) {
2102
0
  v.negate();
2103
0
  return v;
2104
0
}
2105
2106
0
inline APInt operator+(APInt a, const APInt &b) {
2107
0
  a += b;
2108
0
  return a;
2109
0
}
2110
2111
0
inline APInt operator+(const APInt &a, APInt &&b) {
2112
0
  b += a;
2113
0
  return std::move(b);
2114
0
}
2115
2116
0
inline APInt operator+(APInt a, uint64_t RHS) {
2117
0
  a += RHS;
2118
0
  return a;
2119
0
}
2120
2121
0
inline APInt operator+(uint64_t LHS, APInt b) {
2122
0
  b += LHS;
2123
0
  return b;
2124
0
}
2125
2126
0
inline APInt operator-(APInt a, const APInt &b) {
2127
0
  a -= b;
2128
0
  return a;
2129
0
}
2130
2131
0
inline APInt operator-(const APInt &a, APInt &&b) {
2132
0
  b.negate();
2133
0
  b += a;
2134
0
  return std::move(b);
2135
0
}
2136
2137
0
inline APInt operator-(APInt a, uint64_t RHS) {
2138
0
  a -= RHS;
2139
0
  return a;
2140
0
}
2141
2142
0
inline APInt operator-(uint64_t LHS, APInt b) {
2143
0
  b.negate();
2144
0
  b += LHS;
2145
0
  return b;
2146
0
}
2147
2148
0
inline APInt operator*(APInt a, uint64_t RHS) {
2149
0
  a *= RHS;
2150
0
  return a;
2151
0
}
2152
2153
0
inline APInt operator*(uint64_t LHS, APInt b) {
2154
0
  b *= LHS;
2155
0
  return b;
2156
0
}
2157
2158
2159
namespace APIntOps {
2160
2161
/// Determine the smaller of two APInts considered to be signed.
2162
0
inline const APInt &smin(const APInt &A, const APInt &B) {
2163
0
  return A.slt(B) ? A : B;
2164
0
}
2165
2166
/// Determine the larger of two APInts considered to be signed.
2167
0
inline const APInt &smax(const APInt &A, const APInt &B) {
2168
0
  return A.sgt(B) ? A : B;
2169
0
}
2170
2171
/// Determine the smaller of two APInts considered to be signed.
2172
0
inline const APInt &umin(const APInt &A, const APInt &B) {
2173
0
  return A.ult(B) ? A : B;
2174
0
}
2175
2176
/// Determine the larger of two APInts considered to be unsigned.
2177
0
inline const APInt &umax(const APInt &A, const APInt &B) {
2178
0
  return A.ugt(B) ? A : B;
2179
0
}
2180
2181
/// Compute GCD of two unsigned APInt values.
2182
///
2183
/// This function returns the greatest common divisor of the two APInt values
2184
/// using Stein's algorithm.
2185
///
2186
/// \returns the greatest common divisor of A and B.
2187
APInt GreatestCommonDivisor(APInt A, APInt B);
2188
2189
/// Converts the given APInt to a double value.
2190
///
2191
/// Treats the APInt as an unsigned value for conversion purposes.
2192
0
inline double RoundAPIntToDouble(const APInt &APIVal) {
2193
0
  return APIVal.roundToDouble();
2194
0
}
2195
2196
/// Converts the given APInt to a double value.
2197
///
2198
/// Treats the APInt as a signed value for conversion purposes.
2199
0
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2200
0
  return APIVal.signedRoundToDouble();
2201
0
}
2202
2203
/// Converts the given APInt to a float vlalue.
2204
0
inline float RoundAPIntToFloat(const APInt &APIVal) {
2205
0
  return float(RoundAPIntToDouble(APIVal));
2206
0
}
2207
2208
/// Converts the given APInt to a float value.
2209
///
2210
/// Treats the APInt as a signed value for conversion purposes.
2211
0
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2212
0
  return float(APIVal.signedRoundToDouble());
2213
0
}
2214
2215
/// Converts the given double value into a APInt.
2216
///
2217
/// This function convert a double value to an APInt value.
2218
APInt RoundDoubleToAPInt(double Double, unsigned width);
2219
2220
/// Converts a float value into a APInt.
2221
///
2222
/// Converts a float value into an APInt value.
2223
0
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2224
0
  return RoundDoubleToAPInt(double(Float), width);
2225
0
}
2226
2227
/// Return A unsign-divided by B, rounded by the given rounding mode.
2228
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2229
2230
/// Return A sign-divided by B, rounded by the given rounding mode.
2231
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2232
2233
/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2234
/// (e.g. 32 for i32).
2235
/// This function finds the smallest number n, such that
2236
/// (a) n >= 0 and q(n) = 0, or
2237
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2238
///     integers, belong to two different intervals [Rk, Rk+R),
2239
///     where R = 2^BW, and k is an integer.
2240
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2241
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2242
/// subtraction (treated as addition of negated numbers) would always
2243
/// count as an overflow, but here we want to allow values to decrease
2244
/// and increase as long as they are within the same interval.
2245
/// Specifically, adding of two negative numbers should not cause an
2246
/// overflow (as long as the magnitude does not exceed the bit width).
2247
/// On the other hand, given a positive number, adding a negative
2248
/// number to it can give a negative result, which would cause the
2249
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2250
/// treated as a special case of an overflow.
2251
///
2252
/// This function returns None if after finding k that minimizes the
2253
/// positive solution to q(n) = kR, both solutions are contained between
2254
/// two consecutive integers.
2255
///
2256
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2257
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2258
/// virtue of *signed* overflow. This function will *not* find such an n,
2259
/// however it may find a value of n satisfying the inequalities due to
2260
/// an *unsigned* overflow (if the values are treated as unsigned).
2261
/// To find a solution for a signed overflow, treat it as a problem of
2262
/// finding an unsigned overflow with a range with of BW-1.
2263
///
2264
/// The returned value may have a different bit width from the input
2265
/// coefficients.
2266
Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2267
                                           unsigned RangeWidth);
2268
2269
/// Compare two values, and if they are different, return the position of the
2270
/// most significant bit that is different in the values.
2271
Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2272
                                                  const APInt &B);
2273
2274
} // End of APIntOps namespace
2275
2276
// See friend declaration above. This additional declaration is required in
2277
// order to compile LLVM with IBM xlC compiler.
2278
hash_code hash_value(const APInt &Arg);
2279
2280
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2281
/// with the integer held in IntVal.
2282
void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2283
2284
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2285
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2286
void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);
2287
2288
} // namespace llvm
2289
2290
#endif