/home/arjun/llvm-project/llvm/include/llvm/ADT/APInt.h
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// | 
| 2 |  | // | 
| 3 |  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 |  | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 |  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 |  | // | 
| 7 |  | //===----------------------------------------------------------------------===// | 
| 8 |  | /// | 
| 9 |  | /// \file | 
| 10 |  | /// This file implements a class to represent arbitrary precision | 
| 11 |  | /// integral constant values and operations on them. | 
| 12 |  | /// | 
| 13 |  | //===----------------------------------------------------------------------===// | 
| 14 |  |  | 
| 15 |  | #ifndef LLVM_ADT_APINT_H | 
| 16 |  | #define LLVM_ADT_APINT_H | 
| 17 |  |  | 
| 18 |  | #include "llvm/Support/Compiler.h" | 
| 19 |  | #include "llvm/Support/MathExtras.h" | 
| 20 |  | #include <cassert> | 
| 21 |  | #include <climits> | 
| 22 |  | #include <cstring> | 
| 23 |  | #include <string> | 
| 24 |  |  | 
| 25 |  | namespace llvm { | 
| 26 |  | class FoldingSetNodeID; | 
| 27 |  | class StringRef; | 
| 28 |  | class hash_code; | 
| 29 |  | class raw_ostream; | 
| 30 |  |  | 
| 31 |  | template <typename T> class SmallVectorImpl; | 
| 32 |  | template <typename T> class ArrayRef; | 
| 33 |  | template <typename T> class Optional; | 
| 34 |  |  | 
| 35 |  | class APInt; | 
| 36 |  |  | 
| 37 |  | inline APInt operator-(APInt); | 
| 38 |  |  | 
| 39 |  | //===----------------------------------------------------------------------===// | 
| 40 |  | //                              APInt Class | 
| 41 |  | //===----------------------------------------------------------------------===// | 
| 42 |  |  | 
| 43 |  | /// Class for arbitrary precision integers. | 
| 44 |  | /// | 
| 45 |  | /// APInt is a functional replacement for common case unsigned integer type like | 
| 46 |  | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width | 
| 47 |  | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more | 
| 48 |  | /// than 64-bits of precision. APInt provides a variety of arithmetic operators | 
| 49 |  | /// and methods to manipulate integer values of any bit-width. It supports both | 
| 50 |  | /// the typical integer arithmetic and comparison operations as well as bitwise | 
| 51 |  | /// manipulation. | 
| 52 |  | /// | 
| 53 |  | /// The class has several invariants worth noting: | 
| 54 |  | ///   * All bit, byte, and word positions are zero-based. | 
| 55 |  | ///   * Once the bit width is set, it doesn't change except by the Truncate, | 
| 56 |  | ///     SignExtend, or ZeroExtend operations. | 
| 57 |  | ///   * All binary operators must be on APInt instances of the same bit width. | 
| 58 |  | ///     Attempting to use these operators on instances with different bit | 
| 59 |  | ///     widths will yield an assertion. | 
| 60 |  | ///   * The value is stored canonically as an unsigned value. For operations | 
| 61 |  | ///     where it makes a difference, there are both signed and unsigned variants | 
| 62 |  | ///     of the operation. For example, sdiv and udiv. However, because the bit | 
| 63 |  | ///     widths must be the same, operations such as Mul and Add produce the same | 
| 64 |  | ///     results regardless of whether the values are interpreted as signed or | 
| 65 |  | ///     not. | 
| 66 |  | ///   * In general, the class tries to follow the style of computation that LLVM | 
| 67 |  | ///     uses in its IR. This simplifies its use for LLVM. | 
| 68 |  | /// | 
| 69 |  | class LLVM_NODISCARD APInt { | 
| 70 |  | public: | 
| 71 |  |   typedef uint64_t WordType; | 
| 72 |  |  | 
| 73 |  |   /// This enum is used to hold the constants we needed for APInt. | 
| 74 |  |   enum : unsigned { | 
| 75 |  |     /// Byte size of a word. | 
| 76 |  |     APINT_WORD_SIZE = sizeof(WordType), | 
| 77 |  |     /// Bits in a word. | 
| 78 |  |     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT | 
| 79 |  |   }; | 
| 80 |  |  | 
| 81 |  |   enum class Rounding { | 
| 82 |  |     DOWN, | 
| 83 |  |     TOWARD_ZERO, | 
| 84 |  |     UP, | 
| 85 |  |   }; | 
| 86 |  |  | 
| 87 |  |   static constexpr WordType WORDTYPE_MAX = ~WordType(0); | 
| 88 |  |  | 
| 89 |  | private: | 
| 90 |  |   /// This union is used to store the integer value. When the | 
| 91 |  |   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. | 
| 92 |  |   union { | 
| 93 |  |     uint64_t VAL;   ///< Used to store the <= 64 bits integer value. | 
| 94 |  |     uint64_t *pVal; ///< Used to store the >64 bits integer value. | 
| 95 |  |   } U; | 
| 96 |  |  | 
| 97 |  |   unsigned BitWidth; ///< The number of bits in this APInt. | 
| 98 |  |  | 
| 99 |  |   friend struct DenseMapAPIntKeyInfo; | 
| 100 |  |  | 
| 101 |  |   friend class APSInt; | 
| 102 |  |  | 
| 103 |  |   /// Fast internal constructor | 
| 104 |  |   /// | 
| 105 |  |   /// This constructor is used only internally for speed of construction of | 
| 106 |  |   /// temporaries. It is unsafe for general use so it is not public. | 
| 107 | 0 |   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { | 
| 108 | 0 |     U.pVal = val; | 
| 109 | 0 |   } | 
| 110 |  |  | 
| 111 |  |   /// Determine if this APInt just has one word to store value. | 
| 112 |  |   /// | 
| 113 |  |   /// \returns true if the number of bits <= 64, false otherwise. | 
| 114 | 0 |   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } | 
| 115 |  |  | 
| 116 |  |   /// Determine which word a bit is in. | 
| 117 |  |   /// | 
| 118 |  |   /// \returns the word position for the specified bit position. | 
| 119 | 0 |   static unsigned whichWord(unsigned bitPosition) { | 
| 120 | 0 |     return bitPosition / APINT_BITS_PER_WORD; | 
| 121 | 0 |   } | 
| 122 |  |  | 
| 123 |  |   /// Determine which bit in a word a bit is in. | 
| 124 |  |   /// | 
| 125 |  |   /// \returns the bit position in a word for the specified bit position | 
| 126 |  |   /// in the APInt. | 
| 127 | 0 |   static unsigned whichBit(unsigned bitPosition) { | 
| 128 | 0 |     return bitPosition % APINT_BITS_PER_WORD; | 
| 129 | 0 |   } | 
| 130 |  |  | 
| 131 |  |   /// Get a single bit mask. | 
| 132 |  |   /// | 
| 133 |  |   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set | 
| 134 |  |   /// This method generates and returns a uint64_t (word) mask for a single | 
| 135 |  |   /// bit at a specific bit position. This is used to mask the bit in the | 
| 136 |  |   /// corresponding word. | 
| 137 | 0 |   static uint64_t maskBit(unsigned bitPosition) { | 
| 138 | 0 |     return 1ULL << whichBit(bitPosition); | 
| 139 | 0 |   } | 
| 140 |  |  | 
| 141 |  |   /// Clear unused high order bits | 
| 142 |  |   /// | 
| 143 |  |   /// This method is used internally to clear the top "N" bits in the high order | 
| 144 |  |   /// word that are not used by the APInt. This is needed after the most | 
| 145 |  |   /// significant word is assigned a value to ensure that those bits are | 
| 146 |  |   /// zero'd out. | 
| 147 | 0 |   APInt &clearUnusedBits() { | 
| 148 | 0 |     // Compute how many bits are used in the final word | 
| 149 | 0 |     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; | 
| 150 | 0 | 
 | 
| 151 | 0 |     // Mask out the high bits. | 
| 152 | 0 |     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); | 
| 153 | 0 |     if (isSingleWord()) | 
| 154 | 0 |       U.VAL &= mask; | 
| 155 | 0 |     else | 
| 156 | 0 |       U.pVal[getNumWords() - 1] &= mask; | 
| 157 | 0 |     return *this; | 
| 158 | 0 |   } | 
| 159 |  |  | 
| 160 |  |   /// Get the word corresponding to a bit position | 
| 161 |  |   /// \returns the corresponding word for the specified bit position. | 
| 162 | 0 |   uint64_t getWord(unsigned bitPosition) const { | 
| 163 | 0 |     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; | 
| 164 | 0 |   } | 
| 165 |  |  | 
| 166 |  |   /// Utility method to change the bit width of this APInt to new bit width, | 
| 167 |  |   /// allocating and/or deallocating as necessary. There is no guarantee on the | 
| 168 |  |   /// value of any bits upon return. Caller should populate the bits after. | 
| 169 |  |   void reallocate(unsigned NewBitWidth); | 
| 170 |  |  | 
| 171 |  |   /// Convert a char array into an APInt | 
| 172 |  |   /// | 
| 173 |  |   /// \param radix 2, 8, 10, 16, or 36 | 
| 174 |  |   /// Converts a string into a number.  The string must be non-empty | 
| 175 |  |   /// and well-formed as a number of the given base. The bit-width | 
| 176 |  |   /// must be sufficient to hold the result. | 
| 177 |  |   /// | 
| 178 |  |   /// This is used by the constructors that take string arguments. | 
| 179 |  |   /// | 
| 180 |  |   /// StringRef::getAsInteger is superficially similar but (1) does | 
| 181 |  |   /// not assume that the string is well-formed and (2) grows the | 
| 182 |  |   /// result to hold the input. | 
| 183 |  |   void fromString(unsigned numBits, StringRef str, uint8_t radix); | 
| 184 |  |  | 
| 185 |  |   /// An internal division function for dividing APInts. | 
| 186 |  |   /// | 
| 187 |  |   /// This is used by the toString method to divide by the radix. It simply | 
| 188 |  |   /// provides a more convenient form of divide for internal use since KnuthDiv | 
| 189 |  |   /// has specific constraints on its inputs. If those constraints are not met | 
| 190 |  |   /// then it provides a simpler form of divide. | 
| 191 |  |   static void divide(const WordType *LHS, unsigned lhsWords, | 
| 192 |  |                      const WordType *RHS, unsigned rhsWords, WordType *Quotient, | 
| 193 |  |                      WordType *Remainder); | 
| 194 |  |  | 
| 195 |  |   /// out-of-line slow case for inline constructor | 
| 196 |  |   void initSlowCase(uint64_t val, bool isSigned); | 
| 197 |  |  | 
| 198 |  |   /// shared code between two array constructors | 
| 199 |  |   void initFromArray(ArrayRef<uint64_t> array); | 
| 200 |  |  | 
| 201 |  |   /// out-of-line slow case for inline copy constructor | 
| 202 |  |   void initSlowCase(const APInt &that); | 
| 203 |  |  | 
| 204 |  |   /// out-of-line slow case for shl | 
| 205 |  |   void shlSlowCase(unsigned ShiftAmt); | 
| 206 |  |  | 
| 207 |  |   /// out-of-line slow case for lshr. | 
| 208 |  |   void lshrSlowCase(unsigned ShiftAmt); | 
| 209 |  |  | 
| 210 |  |   /// out-of-line slow case for ashr. | 
| 211 |  |   void ashrSlowCase(unsigned ShiftAmt); | 
| 212 |  |  | 
| 213 |  |   /// out-of-line slow case for operator= | 
| 214 |  |   void AssignSlowCase(const APInt &RHS); | 
| 215 |  |  | 
| 216 |  |   /// out-of-line slow case for operator== | 
| 217 |  |   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; | 
| 218 |  |  | 
| 219 |  |   /// out-of-line slow case for countLeadingZeros | 
| 220 |  |   unsigned countLeadingZerosSlowCase() const LLVM_READONLY; | 
| 221 |  |  | 
| 222 |  |   /// out-of-line slow case for countLeadingOnes. | 
| 223 |  |   unsigned countLeadingOnesSlowCase() const LLVM_READONLY; | 
| 224 |  |  | 
| 225 |  |   /// out-of-line slow case for countTrailingZeros. | 
| 226 |  |   unsigned countTrailingZerosSlowCase() const LLVM_READONLY; | 
| 227 |  |  | 
| 228 |  |   /// out-of-line slow case for countTrailingOnes | 
| 229 |  |   unsigned countTrailingOnesSlowCase() const LLVM_READONLY; | 
| 230 |  |  | 
| 231 |  |   /// out-of-line slow case for countPopulation | 
| 232 |  |   unsigned countPopulationSlowCase() const LLVM_READONLY; | 
| 233 |  |  | 
| 234 |  |   /// out-of-line slow case for intersects. | 
| 235 |  |   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; | 
| 236 |  |  | 
| 237 |  |   /// out-of-line slow case for isSubsetOf. | 
| 238 |  |   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; | 
| 239 |  |  | 
| 240 |  |   /// out-of-line slow case for setBits. | 
| 241 |  |   void setBitsSlowCase(unsigned loBit, unsigned hiBit); | 
| 242 |  |  | 
| 243 |  |   /// out-of-line slow case for flipAllBits. | 
| 244 |  |   void flipAllBitsSlowCase(); | 
| 245 |  |  | 
| 246 |  |   /// out-of-line slow case for operator&=. | 
| 247 |  |   void AndAssignSlowCase(const APInt& RHS); | 
| 248 |  |  | 
| 249 |  |   /// out-of-line slow case for operator|=. | 
| 250 |  |   void OrAssignSlowCase(const APInt& RHS); | 
| 251 |  |  | 
| 252 |  |   /// out-of-line slow case for operator^=. | 
| 253 |  |   void XorAssignSlowCase(const APInt& RHS); | 
| 254 |  |  | 
| 255 |  |   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal | 
| 256 |  |   /// to, or greater than RHS. | 
| 257 |  |   int compare(const APInt &RHS) const LLVM_READONLY; | 
| 258 |  |  | 
| 259 |  |   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal | 
| 260 |  |   /// to, or greater than RHS. | 
| 261 |  |   int compareSigned(const APInt &RHS) const LLVM_READONLY; | 
| 262 |  |  | 
| 263 |  | public: | 
| 264 |  |   /// \name Constructors | 
| 265 |  |   /// @{ | 
| 266 |  |  | 
| 267 |  |   /// Create a new APInt of numBits width, initialized as val. | 
| 268 |  |   /// | 
| 269 |  |   /// If isSigned is true then val is treated as if it were a signed value | 
| 270 |  |   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width | 
| 271 |  |   /// will be done. Otherwise, no sign extension occurs (high order bits beyond | 
| 272 |  |   /// the range of val are zero filled). | 
| 273 |  |   /// | 
| 274 |  |   /// \param numBits the bit width of the constructed APInt | 
| 275 |  |   /// \param val the initial value of the APInt | 
| 276 |  |   /// \param isSigned how to treat signedness of val | 
| 277 |  |   APInt(unsigned numBits, uint64_t val, bool isSigned = false) | 
| 278 | 0 |       : BitWidth(numBits) { | 
| 279 | 0 |     assert(BitWidth && "bitwidth too small"); | 
| 280 | 0 |     if (isSingleWord()) { | 
| 281 | 0 |       U.VAL = val; | 
| 282 | 0 |       clearUnusedBits(); | 
| 283 | 0 |     } else { | 
| 284 | 0 |       initSlowCase(val, isSigned); | 
| 285 | 0 |     } | 
| 286 | 0 |   } | 
| 287 |  |  | 
| 288 |  |   /// Construct an APInt of numBits width, initialized as bigVal[]. | 
| 289 |  |   /// | 
| 290 |  |   /// Note that bigVal.size() can be smaller or larger than the corresponding | 
| 291 |  |   /// bit width but any extraneous bits will be dropped. | 
| 292 |  |   /// | 
| 293 |  |   /// \param numBits the bit width of the constructed APInt | 
| 294 |  |   /// \param bigVal a sequence of words to form the initial value of the APInt | 
| 295 |  |   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); | 
| 296 |  |  | 
| 297 |  |   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but | 
| 298 |  |   /// deprecated because this constructor is prone to ambiguity with the | 
| 299 |  |   /// APInt(unsigned, uint64_t, bool) constructor. | 
| 300 |  |   /// | 
| 301 |  |   /// If this overload is ever deleted, care should be taken to prevent calls | 
| 302 |  |   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) | 
| 303 |  |   /// constructor. | 
| 304 |  |   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); | 
| 305 |  |  | 
| 306 |  |   /// Construct an APInt from a string representation. | 
| 307 |  |   /// | 
| 308 |  |   /// This constructor interprets the string \p str in the given radix. The | 
| 309 |  |   /// interpretation stops when the first character that is not suitable for the | 
| 310 |  |   /// radix is encountered, or the end of the string. Acceptable radix values | 
| 311 |  |   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the | 
| 312 |  |   /// string to require more bits than numBits. | 
| 313 |  |   /// | 
| 314 |  |   /// \param numBits the bit width of the constructed APInt | 
| 315 |  |   /// \param str the string to be interpreted | 
| 316 |  |   /// \param radix the radix to use for the conversion | 
| 317 |  |   APInt(unsigned numBits, StringRef str, uint8_t radix); | 
| 318 |  |  | 
| 319 |  |   /// Simply makes *this a copy of that. | 
| 320 |  |   /// Copy Constructor. | 
| 321 | 0 |   APInt(const APInt &that) : BitWidth(that.BitWidth) { | 
| 322 | 0 |     if (isSingleWord()) | 
| 323 | 0 |       U.VAL = that.U.VAL; | 
| 324 | 0 |     else | 
| 325 | 0 |       initSlowCase(that); | 
| 326 | 0 |   } | 
| 327 |  |  | 
| 328 |  |   /// Move Constructor. | 
| 329 | 0 |   APInt(APInt &&that) : BitWidth(that.BitWidth) { | 
| 330 | 0 |     memcpy(&U, &that.U, sizeof(U)); | 
| 331 | 0 |     that.BitWidth = 0; | 
| 332 | 0 |   } | 
| 333 |  |  | 
| 334 |  |   /// Destructor. | 
| 335 | 0 |   ~APInt() { | 
| 336 | 0 |     if (needsCleanup()) | 
| 337 | 0 |       delete[] U.pVal; | 
| 338 | 0 |   } | 
| 339 |  |  | 
| 340 |  |   /// Default constructor that creates an uninteresting APInt | 
| 341 |  |   /// representing a 1-bit zero value. | 
| 342 |  |   /// | 
| 343 |  |   /// This is useful for object deserialization (pair this with the static | 
| 344 |  |   ///  method Read). | 
| 345 | 0 |   explicit APInt() : BitWidth(1) { U.VAL = 0; } | 
| 346 |  |  | 
| 347 |  |   /// Returns whether this instance allocated memory. | 
| 348 | 0 |   bool needsCleanup() const { return !isSingleWord(); } | 
| 349 |  |  | 
| 350 |  |   /// Used to insert APInt objects, or objects that contain APInt objects, into | 
| 351 |  |   ///  FoldingSets. | 
| 352 |  |   void Profile(FoldingSetNodeID &id) const; | 
| 353 |  |  | 
| 354 |  |   /// @} | 
| 355 |  |   /// \name Value Tests | 
| 356 |  |   /// @{ | 
| 357 |  |  | 
| 358 |  |   /// Determine sign of this APInt. | 
| 359 |  |   /// | 
| 360 |  |   /// This tests the high bit of this APInt to determine if it is set. | 
| 361 |  |   /// | 
| 362 |  |   /// \returns true if this APInt is negative, false otherwise | 
| 363 | 0 |   bool isNegative() const { return (*this)[BitWidth - 1]; } | 
| 364 |  |  | 
| 365 |  |   /// Determine if this APInt Value is non-negative (>= 0) | 
| 366 |  |   /// | 
| 367 |  |   /// This tests the high bit of the APInt to determine if it is unset. | 
| 368 | 0 |   bool isNonNegative() const { return !isNegative(); } | 
| 369 |  |  | 
| 370 |  |   /// Determine if sign bit of this APInt is set. | 
| 371 |  |   /// | 
| 372 |  |   /// This tests the high bit of this APInt to determine if it is set. | 
| 373 |  |   /// | 
| 374 |  |   /// \returns true if this APInt has its sign bit set, false otherwise. | 
| 375 | 0 |   bool isSignBitSet() const { return (*this)[BitWidth-1]; } | 
| 376 |  |  | 
| 377 |  |   /// Determine if sign bit of this APInt is clear. | 
| 378 |  |   /// | 
| 379 |  |   /// This tests the high bit of this APInt to determine if it is clear. | 
| 380 |  |   /// | 
| 381 |  |   /// \returns true if this APInt has its sign bit clear, false otherwise. | 
| 382 | 0 |   bool isSignBitClear() const { return !isSignBitSet(); } | 
| 383 |  |  | 
| 384 |  |   /// Determine if this APInt Value is positive. | 
| 385 |  |   /// | 
| 386 |  |   /// This tests if the value of this APInt is positive (> 0). Note | 
| 387 |  |   /// that 0 is not a positive value. | 
| 388 |  |   /// | 
| 389 |  |   /// \returns true if this APInt is positive. | 
| 390 | 0 |   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } | 
| 391 |  |  | 
| 392 |  |   /// Determine if this APInt Value is non-positive (<= 0). | 
| 393 |  |   /// | 
| 394 |  |   /// \returns true if this APInt is non-positive. | 
| 395 | 0 |   bool isNonPositive() const { return !isStrictlyPositive(); } | 
| 396 |  |  | 
| 397 |  |   /// Determine if all bits are set | 
| 398 |  |   /// | 
| 399 |  |   /// This checks to see if the value has all bits of the APInt are set or not. | 
| 400 | 0 |   bool isAllOnesValue() const { | 
| 401 | 0 |     if (isSingleWord()) | 
| 402 | 0 |       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); | 
| 403 | 0 |     return countTrailingOnesSlowCase() == BitWidth; | 
| 404 | 0 |   } | 
| 405 |  |  | 
| 406 |  |   /// Determine if all bits are clear | 
| 407 |  |   /// | 
| 408 |  |   /// This checks to see if the value has all bits of the APInt are clear or | 
| 409 |  |   /// not. | 
| 410 | 0 |   bool isNullValue() const { return !*this; } | 
| 411 |  |  | 
| 412 |  |   /// Determine if this is a value of 1. | 
| 413 |  |   /// | 
| 414 |  |   /// This checks to see if the value of this APInt is one. | 
| 415 | 0 |   bool isOneValue() const { | 
| 416 | 0 |     if (isSingleWord()) | 
| 417 | 0 |       return U.VAL == 1; | 
| 418 | 0 |     return countLeadingZerosSlowCase() == BitWidth - 1; | 
| 419 | 0 |   } | 
| 420 |  |  | 
| 421 |  |   /// Determine if this is the largest unsigned value. | 
| 422 |  |   /// | 
| 423 |  |   /// This checks to see if the value of this APInt is the maximum unsigned | 
| 424 |  |   /// value for the APInt's bit width. | 
| 425 | 0 |   bool isMaxValue() const { return isAllOnesValue(); } | 
| 426 |  |  | 
| 427 |  |   /// Determine if this is the largest signed value. | 
| 428 |  |   /// | 
| 429 |  |   /// This checks to see if the value of this APInt is the maximum signed | 
| 430 |  |   /// value for the APInt's bit width. | 
| 431 | 0 |   bool isMaxSignedValue() const { | 
| 432 | 0 |     if (isSingleWord()) | 
| 433 | 0 |       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); | 
| 434 | 0 |     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; | 
| 435 | 0 |   } | 
| 436 |  |  | 
| 437 |  |   /// Determine if this is the smallest unsigned value. | 
| 438 |  |   /// | 
| 439 |  |   /// This checks to see if the value of this APInt is the minimum unsigned | 
| 440 |  |   /// value for the APInt's bit width. | 
| 441 | 0 |   bool isMinValue() const { return isNullValue(); } | 
| 442 |  |  | 
| 443 |  |   /// Determine if this is the smallest signed value. | 
| 444 |  |   /// | 
| 445 |  |   /// This checks to see if the value of this APInt is the minimum signed | 
| 446 |  |   /// value for the APInt's bit width. | 
| 447 | 0 |   bool isMinSignedValue() const { | 
| 448 | 0 |     if (isSingleWord()) | 
| 449 | 0 |       return U.VAL == (WordType(1) << (BitWidth - 1)); | 
| 450 | 0 |     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; | 
| 451 | 0 |   } | 
| 452 |  |  | 
| 453 |  |   /// Check if this APInt has an N-bits unsigned integer value. | 
| 454 | 0 |   bool isIntN(unsigned N) const { | 
| 455 | 0 |     assert(N && "N == 0 ???"); | 
| 456 | 0 |     return getActiveBits() <= N; | 
| 457 | 0 |   } | 
| 458 |  |  | 
| 459 |  |   /// Check if this APInt has an N-bits signed integer value. | 
| 460 | 0 |   bool isSignedIntN(unsigned N) const { | 
| 461 | 0 |     assert(N && "N == 0 ???"); | 
| 462 | 0 |     return getMinSignedBits() <= N; | 
| 463 | 0 |   } | 
| 464 |  |  | 
| 465 |  |   /// Check if this APInt's value is a power of two greater than zero. | 
| 466 |  |   /// | 
| 467 |  |   /// \returns true if the argument APInt value is a power of two > 0. | 
| 468 | 0 |   bool isPowerOf2() const { | 
| 469 | 0 |     if (isSingleWord()) | 
| 470 | 0 |       return isPowerOf2_64(U.VAL); | 
| 471 | 0 |     return countPopulationSlowCase() == 1; | 
| 472 | 0 |   } | 
| 473 |  |  | 
| 474 |  |   /// Check if the APInt's value is returned by getSignMask. | 
| 475 |  |   /// | 
| 476 |  |   /// \returns true if this is the value returned by getSignMask. | 
| 477 | 0 |   bool isSignMask() const { return isMinSignedValue(); } | 
| 478 |  |  | 
| 479 |  |   /// Convert APInt to a boolean value. | 
| 480 |  |   /// | 
| 481 |  |   /// This converts the APInt to a boolean value as a test against zero. | 
| 482 | 0 |   bool getBoolValue() const { return !!*this; } | 
| 483 |  |  | 
| 484 |  |   /// If this value is smaller than the specified limit, return it, otherwise | 
| 485 |  |   /// return the limit value.  This causes the value to saturate to the limit. | 
| 486 | 0 |   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { | 
| 487 | 0 |     return ugt(Limit) ? Limit : getZExtValue(); | 
| 488 | 0 |   } | 
| 489 |  |  | 
| 490 |  |   /// Check if the APInt consists of a repeated bit pattern. | 
| 491 |  |   /// | 
| 492 |  |   /// e.g. 0x01010101 satisfies isSplat(8). | 
| 493 |  |   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit | 
| 494 |  |   /// width without remainder. | 
| 495 |  |   bool isSplat(unsigned SplatSizeInBits) const; | 
| 496 |  |  | 
| 497 |  |   /// \returns true if this APInt value is a sequence of \param numBits ones | 
| 498 |  |   /// starting at the least significant bit with the remainder zero. | 
| 499 | 0 |   bool isMask(unsigned numBits) const { | 
| 500 | 0 |     assert(numBits != 0 && "numBits must be non-zero"); | 
| 501 | 0 |     assert(numBits <= BitWidth && "numBits out of range"); | 
| 502 | 0 |     if (isSingleWord()) | 
| 503 | 0 |       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); | 
| 504 | 0 |     unsigned Ones = countTrailingOnesSlowCase(); | 
| 505 | 0 |     return (numBits == Ones) && | 
| 506 | 0 |            ((Ones + countLeadingZerosSlowCase()) == BitWidth); | 
| 507 | 0 |   } | 
| 508 |  |  | 
| 509 |  |   /// \returns true if this APInt is a non-empty sequence of ones starting at | 
| 510 |  |   /// the least significant bit with the remainder zero. | 
| 511 |  |   /// Ex. isMask(0x0000FFFFU) == true. | 
| 512 | 0 |   bool isMask() const { | 
| 513 | 0 |     if (isSingleWord()) | 
| 514 | 0 |       return isMask_64(U.VAL); | 
| 515 | 0 |     unsigned Ones = countTrailingOnesSlowCase(); | 
| 516 | 0 |     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); | 
| 517 | 0 |   } | 
| 518 |  |  | 
| 519 |  |   /// Return true if this APInt value contains a sequence of ones with | 
| 520 |  |   /// the remainder zero. | 
| 521 | 0 |   bool isShiftedMask() const { | 
| 522 | 0 |     if (isSingleWord()) | 
| 523 | 0 |       return isShiftedMask_64(U.VAL); | 
| 524 | 0 |     unsigned Ones = countPopulationSlowCase(); | 
| 525 | 0 |     unsigned LeadZ = countLeadingZerosSlowCase(); | 
| 526 | 0 |     return (Ones + LeadZ + countTrailingZeros()) == BitWidth; | 
| 527 | 0 |   } | 
| 528 |  |  | 
| 529 |  |   /// @} | 
| 530 |  |   /// \name Value Generators | 
| 531 |  |   /// @{ | 
| 532 |  |  | 
| 533 |  |   /// Gets maximum unsigned value of APInt for specific bit width. | 
| 534 | 0 |   static APInt getMaxValue(unsigned numBits) { | 
| 535 | 0 |     return getAllOnesValue(numBits); | 
| 536 | 0 |   } | 
| 537 |  |  | 
| 538 |  |   /// Gets maximum signed value of APInt for a specific bit width. | 
| 539 | 0 |   static APInt getSignedMaxValue(unsigned numBits) { | 
| 540 | 0 |     APInt API = getAllOnesValue(numBits); | 
| 541 | 0 |     API.clearBit(numBits - 1); | 
| 542 | 0 |     return API; | 
| 543 | 0 |   } | 
| 544 |  |  | 
| 545 |  |   /// Gets minimum unsigned value of APInt for a specific bit width. | 
| 546 | 0 |   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } | 
| 547 |  |  | 
| 548 |  |   /// Gets minimum signed value of APInt for a specific bit width. | 
| 549 | 0 |   static APInt getSignedMinValue(unsigned numBits) { | 
| 550 | 0 |     APInt API(numBits, 0); | 
| 551 | 0 |     API.setBit(numBits - 1); | 
| 552 | 0 |     return API; | 
| 553 | 0 |   } | 
| 554 |  |  | 
| 555 |  |   /// Get the SignMask for a specific bit width. | 
| 556 |  |   /// | 
| 557 |  |   /// This is just a wrapper function of getSignedMinValue(), and it helps code | 
| 558 |  |   /// readability when we want to get a SignMask. | 
| 559 | 0 |   static APInt getSignMask(unsigned BitWidth) { | 
| 560 | 0 |     return getSignedMinValue(BitWidth); | 
| 561 | 0 |   } | 
| 562 |  |  | 
| 563 |  |   /// Get the all-ones value. | 
| 564 |  |   /// | 
| 565 |  |   /// \returns the all-ones value for an APInt of the specified bit-width. | 
| 566 | 0 |   static APInt getAllOnesValue(unsigned numBits) { | 
| 567 | 0 |     return APInt(numBits, WORDTYPE_MAX, true); | 
| 568 | 0 |   } | 
| 569 |  |  | 
| 570 |  |   /// Get the '0' value. | 
| 571 |  |   /// | 
| 572 |  |   /// \returns the '0' value for an APInt of the specified bit-width. | 
| 573 | 0 |   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } | 
| 574 |  |  | 
| 575 |  |   /// Compute an APInt containing numBits highbits from this APInt. | 
| 576 |  |   /// | 
| 577 |  |   /// Get an APInt with the same BitWidth as this APInt, just zero mask | 
| 578 |  |   /// the low bits and right shift to the least significant bit. | 
| 579 |  |   /// | 
| 580 |  |   /// \returns the high "numBits" bits of this APInt. | 
| 581 |  |   APInt getHiBits(unsigned numBits) const; | 
| 582 |  |  | 
| 583 |  |   /// Compute an APInt containing numBits lowbits from this APInt. | 
| 584 |  |   /// | 
| 585 |  |   /// Get an APInt with the same BitWidth as this APInt, just zero mask | 
| 586 |  |   /// the high bits. | 
| 587 |  |   /// | 
| 588 |  |   /// \returns the low "numBits" bits of this APInt. | 
| 589 |  |   APInt getLoBits(unsigned numBits) const; | 
| 590 |  |  | 
| 591 |  |   /// Return an APInt with exactly one bit set in the result. | 
| 592 | 0 |   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { | 
| 593 | 0 |     APInt Res(numBits, 0); | 
| 594 | 0 |     Res.setBit(BitNo); | 
| 595 | 0 |     return Res; | 
| 596 | 0 |   } | 
| 597 |  |  | 
| 598 |  |   /// Get a value with a block of bits set. | 
| 599 |  |   /// | 
| 600 |  |   /// Constructs an APInt value that has a contiguous range of bits set. The | 
| 601 |  |   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other | 
| 602 |  |   /// bits will be zero. For example, with parameters(32, 0, 16) you would get | 
| 603 |  |   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than | 
| 604 |  |   /// \p hiBit. | 
| 605 |  |   /// | 
| 606 |  |   /// \param numBits the intended bit width of the result | 
| 607 |  |   /// \param loBit the index of the lowest bit set. | 
| 608 |  |   /// \param hiBit the index of the highest bit set. | 
| 609 |  |   /// | 
| 610 |  |   /// \returns An APInt value with the requested bits set. | 
| 611 | 0 |   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { | 
| 612 | 0 |     assert(loBit <= hiBit && "loBit greater than hiBit"); | 
| 613 | 0 |     APInt Res(numBits, 0); | 
| 614 | 0 |     Res.setBits(loBit, hiBit); | 
| 615 | 0 |     return Res; | 
| 616 | 0 |   } | 
| 617 |  |  | 
| 618 |  |   /// Wrap version of getBitsSet. | 
| 619 |  |   /// If \p hiBit is no less than \p loBit, this is same with getBitsSet. | 
| 620 |  |   /// If \p hiBit is less than \p loBit, the set bits "wrap". For example, with | 
| 621 |  |   /// parameters (32, 28, 4), you would get 0xF000000F. | 
| 622 |  |   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, | 
| 623 | 0 |                                   unsigned hiBit) { | 
| 624 | 0 |     APInt Res(numBits, 0); | 
| 625 | 0 |     Res.setBitsWithWrap(loBit, hiBit); | 
| 626 | 0 |     return Res; | 
| 627 | 0 |   } | 
| 628 |  |  | 
| 629 |  |   /// Get a value with upper bits starting at loBit set. | 
| 630 |  |   /// | 
| 631 |  |   /// Constructs an APInt value that has a contiguous range of bits set. The | 
| 632 |  |   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other | 
| 633 |  |   /// bits will be zero. For example, with parameters(32, 12) you would get | 
| 634 |  |   /// 0xFFFFF000. | 
| 635 |  |   /// | 
| 636 |  |   /// \param numBits the intended bit width of the result | 
| 637 |  |   /// \param loBit the index of the lowest bit to set. | 
| 638 |  |   /// | 
| 639 |  |   /// \returns An APInt value with the requested bits set. | 
| 640 | 0 |   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { | 
| 641 | 0 |     APInt Res(numBits, 0); | 
| 642 | 0 |     Res.setBitsFrom(loBit); | 
| 643 | 0 |     return Res; | 
| 644 | 0 |   } | 
| 645 |  |  | 
| 646 |  |   /// Get a value with high bits set | 
| 647 |  |   /// | 
| 648 |  |   /// Constructs an APInt value that has the top hiBitsSet bits set. | 
| 649 |  |   /// | 
| 650 |  |   /// \param numBits the bitwidth of the result | 
| 651 |  |   /// \param hiBitsSet the number of high-order bits set in the result. | 
| 652 | 0 |   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { | 
| 653 | 0 |     APInt Res(numBits, 0); | 
| 654 | 0 |     Res.setHighBits(hiBitsSet); | 
| 655 | 0 |     return Res; | 
| 656 | 0 |   } | 
| 657 |  |  | 
| 658 |  |   /// Get a value with low bits set | 
| 659 |  |   /// | 
| 660 |  |   /// Constructs an APInt value that has the bottom loBitsSet bits set. | 
| 661 |  |   /// | 
| 662 |  |   /// \param numBits the bitwidth of the result | 
| 663 |  |   /// \param loBitsSet the number of low-order bits set in the result. | 
| 664 | 0 |   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { | 
| 665 | 0 |     APInt Res(numBits, 0); | 
| 666 | 0 |     Res.setLowBits(loBitsSet); | 
| 667 | 0 |     return Res; | 
| 668 | 0 |   } | 
| 669 |  |  | 
| 670 |  |   /// Return a value containing V broadcasted over NewLen bits. | 
| 671 |  |   static APInt getSplat(unsigned NewLen, const APInt &V); | 
| 672 |  |  | 
| 673 |  |   /// Determine if two APInts have the same value, after zero-extending | 
| 674 |  |   /// one of them (if needed!) to ensure that the bit-widths match. | 
| 675 | 0 |   static bool isSameValue(const APInt &I1, const APInt &I2) { | 
| 676 | 0 |     if (I1.getBitWidth() == I2.getBitWidth()) | 
| 677 | 0 |       return I1 == I2; | 
| 678 | 0 | 
 | 
| 679 | 0 |     if (I1.getBitWidth() > I2.getBitWidth()) | 
| 680 | 0 |       return I1 == I2.zext(I1.getBitWidth()); | 
| 681 | 0 | 
 | 
| 682 | 0 |     return I1.zext(I2.getBitWidth()) == I2; | 
| 683 | 0 |   } | 
| 684 |  |  | 
| 685 |  |   /// Overload to compute a hash_code for an APInt value. | 
| 686 |  |   friend hash_code hash_value(const APInt &Arg); | 
| 687 |  |  | 
| 688 |  |   /// This function returns a pointer to the internal storage of the APInt. | 
| 689 |  |   /// This is useful for writing out the APInt in binary form without any | 
| 690 |  |   /// conversions. | 
| 691 | 0 |   const uint64_t *getRawData() const { | 
| 692 | 0 |     if (isSingleWord()) | 
| 693 | 0 |       return &U.VAL; | 
| 694 | 0 |     return &U.pVal[0]; | 
| 695 | 0 |   } | 
| 696 |  |  | 
| 697 |  |   /// @} | 
| 698 |  |   /// \name Unary Operators | 
| 699 |  |   /// @{ | 
| 700 |  |  | 
| 701 |  |   /// Postfix increment operator. | 
| 702 |  |   /// | 
| 703 |  |   /// Increments *this by 1. | 
| 704 |  |   /// | 
| 705 |  |   /// \returns a new APInt value representing the original value of *this. | 
| 706 | 0 |   const APInt operator++(int) { | 
| 707 | 0 |     APInt API(*this); | 
| 708 | 0 |     ++(*this); | 
| 709 | 0 |     return API; | 
| 710 | 0 |   } | 
| 711 |  |  | 
| 712 |  |   /// Prefix increment operator. | 
| 713 |  |   /// | 
| 714 |  |   /// \returns *this incremented by one | 
| 715 |  |   APInt &operator++(); | 
| 716 |  |  | 
| 717 |  |   /// Postfix decrement operator. | 
| 718 |  |   /// | 
| 719 |  |   /// Decrements *this by 1. | 
| 720 |  |   /// | 
| 721 |  |   /// \returns a new APInt value representing the original value of *this. | 
| 722 | 0 |   const APInt operator--(int) { | 
| 723 | 0 |     APInt API(*this); | 
| 724 | 0 |     --(*this); | 
| 725 | 0 |     return API; | 
| 726 | 0 |   } | 
| 727 |  |  | 
| 728 |  |   /// Prefix decrement operator. | 
| 729 |  |   /// | 
| 730 |  |   /// \returns *this decremented by one. | 
| 731 |  |   APInt &operator--(); | 
| 732 |  |  | 
| 733 |  |   /// Logical negation operator. | 
| 734 |  |   /// | 
| 735 |  |   /// Performs logical negation operation on this APInt. | 
| 736 |  |   /// | 
| 737 |  |   /// \returns true if *this is zero, false otherwise. | 
| 738 | 0 |   bool operator!() const { | 
| 739 | 0 |     if (isSingleWord()) | 
| 740 | 0 |       return U.VAL == 0; | 
| 741 | 0 |     return countLeadingZerosSlowCase() == BitWidth; | 
| 742 | 0 |   } | 
| 743 |  |  | 
| 744 |  |   /// @} | 
| 745 |  |   /// \name Assignment Operators | 
| 746 |  |   /// @{ | 
| 747 |  |  | 
| 748 |  |   /// Copy assignment operator. | 
| 749 |  |   /// | 
| 750 |  |   /// \returns *this after assignment of RHS. | 
| 751 | 0 |   APInt &operator=(const APInt &RHS) { | 
| 752 | 0 |     // If the bitwidths are the same, we can avoid mucking with memory | 
| 753 | 0 |     if (isSingleWord() && RHS.isSingleWord()) { | 
| 754 | 0 |       U.VAL = RHS.U.VAL; | 
| 755 | 0 |       BitWidth = RHS.BitWidth; | 
| 756 | 0 |       return clearUnusedBits(); | 
| 757 | 0 |     } | 
| 758 | 0 |  | 
| 759 | 0 |     AssignSlowCase(RHS); | 
| 760 | 0 |     return *this; | 
| 761 | 0 |   } | 
| 762 |  |  | 
| 763 |  |   /// Move assignment operator. | 
| 764 | 0 |   APInt &operator=(APInt &&that) { | 
| 765 |  | #ifdef _MSC_VER | 
| 766 |  |     // The MSVC std::shuffle implementation still does self-assignment. | 
| 767 |  |     if (this == &that) | 
| 768 |  |       return *this; | 
| 769 |  | #endif | 
| 770 |  |     assert(this != &that && "Self-move not supported"); | 
| 771 | 0 |     if (!isSingleWord()) | 
| 772 | 0 |       delete[] U.pVal; | 
| 773 | 0 | 
 | 
| 774 | 0 |     // Use memcpy so that type based alias analysis sees both VAL and pVal | 
| 775 | 0 |     // as modified. | 
| 776 | 0 |     memcpy(&U, &that.U, sizeof(U)); | 
| 777 | 0 | 
 | 
| 778 | 0 |     BitWidth = that.BitWidth; | 
| 779 | 0 |     that.BitWidth = 0; | 
| 780 | 0 | 
 | 
| 781 | 0 |     return *this; | 
| 782 | 0 |   } | 
| 783 |  |  | 
| 784 |  |   /// Assignment operator. | 
| 785 |  |   /// | 
| 786 |  |   /// The RHS value is assigned to *this. If the significant bits in RHS exceed | 
| 787 |  |   /// the bit width, the excess bits are truncated. If the bit width is larger | 
| 788 |  |   /// than 64, the value is zero filled in the unspecified high order bits. | 
| 789 |  |   /// | 
| 790 |  |   /// \returns *this after assignment of RHS value. | 
| 791 | 0 |   APInt &operator=(uint64_t RHS) { | 
| 792 | 0 |     if (isSingleWord()) { | 
| 793 | 0 |       U.VAL = RHS; | 
| 794 | 0 |       clearUnusedBits(); | 
| 795 | 0 |     } else { | 
| 796 | 0 |       U.pVal[0] = RHS; | 
| 797 | 0 |       memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | 
| 798 | 0 |     } | 
| 799 | 0 |     return *this; | 
| 800 | 0 |   } | 
| 801 |  |  | 
| 802 |  |   /// Bitwise AND assignment operator. | 
| 803 |  |   /// | 
| 804 |  |   /// Performs a bitwise AND operation on this APInt and RHS. The result is | 
| 805 |  |   /// assigned to *this. | 
| 806 |  |   /// | 
| 807 |  |   /// \returns *this after ANDing with RHS. | 
| 808 | 0 |   APInt &operator&=(const APInt &RHS) { | 
| 809 | 0 |     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 810 | 0 |     if (isSingleWord()) | 
| 811 | 0 |       U.VAL &= RHS.U.VAL; | 
| 812 | 0 |     else | 
| 813 | 0 |       AndAssignSlowCase(RHS); | 
| 814 | 0 |     return *this; | 
| 815 | 0 |   } | 
| 816 |  |  | 
| 817 |  |   /// Bitwise AND assignment operator. | 
| 818 |  |   /// | 
| 819 |  |   /// Performs a bitwise AND operation on this APInt and RHS. RHS is | 
| 820 |  |   /// logically zero-extended or truncated to match the bit-width of | 
| 821 |  |   /// the LHS. | 
| 822 | 0 |   APInt &operator&=(uint64_t RHS) { | 
| 823 | 0 |     if (isSingleWord()) { | 
| 824 | 0 |       U.VAL &= RHS; | 
| 825 | 0 |       return *this; | 
| 826 | 0 |     } | 
| 827 | 0 |     U.pVal[0] &= RHS; | 
| 828 | 0 |     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | 
| 829 | 0 |     return *this; | 
| 830 | 0 |   } | 
| 831 |  |  | 
| 832 |  |   /// Bitwise OR assignment operator. | 
| 833 |  |   /// | 
| 834 |  |   /// Performs a bitwise OR operation on this APInt and RHS. The result is | 
| 835 |  |   /// assigned *this; | 
| 836 |  |   /// | 
| 837 |  |   /// \returns *this after ORing with RHS. | 
| 838 | 0 |   APInt &operator|=(const APInt &RHS) { | 
| 839 | 0 |     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 840 | 0 |     if (isSingleWord()) | 
| 841 | 0 |       U.VAL |= RHS.U.VAL; | 
| 842 | 0 |     else | 
| 843 | 0 |       OrAssignSlowCase(RHS); | 
| 844 | 0 |     return *this; | 
| 845 | 0 |   } | 
| 846 |  |  | 
| 847 |  |   /// Bitwise OR assignment operator. | 
| 848 |  |   /// | 
| 849 |  |   /// Performs a bitwise OR operation on this APInt and RHS. RHS is | 
| 850 |  |   /// logically zero-extended or truncated to match the bit-width of | 
| 851 |  |   /// the LHS. | 
| 852 | 0 |   APInt &operator|=(uint64_t RHS) { | 
| 853 | 0 |     if (isSingleWord()) { | 
| 854 | 0 |       U.VAL |= RHS; | 
| 855 | 0 |       clearUnusedBits(); | 
| 856 | 0 |     } else { | 
| 857 | 0 |       U.pVal[0] |= RHS; | 
| 858 | 0 |     } | 
| 859 | 0 |     return *this; | 
| 860 | 0 |   } | 
| 861 |  |  | 
| 862 |  |   /// Bitwise XOR assignment operator. | 
| 863 |  |   /// | 
| 864 |  |   /// Performs a bitwise XOR operation on this APInt and RHS. The result is | 
| 865 |  |   /// assigned to *this. | 
| 866 |  |   /// | 
| 867 |  |   /// \returns *this after XORing with RHS. | 
| 868 | 0 |   APInt &operator^=(const APInt &RHS) { | 
| 869 | 0 |     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 870 | 0 |     if (isSingleWord()) | 
| 871 | 0 |       U.VAL ^= RHS.U.VAL; | 
| 872 | 0 |     else | 
| 873 | 0 |       XorAssignSlowCase(RHS); | 
| 874 | 0 |     return *this; | 
| 875 | 0 |   } | 
| 876 |  |  | 
| 877 |  |   /// Bitwise XOR assignment operator. | 
| 878 |  |   /// | 
| 879 |  |   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is | 
| 880 |  |   /// logically zero-extended or truncated to match the bit-width of | 
| 881 |  |   /// the LHS. | 
| 882 | 0 |   APInt &operator^=(uint64_t RHS) { | 
| 883 | 0 |     if (isSingleWord()) { | 
| 884 | 0 |       U.VAL ^= RHS; | 
| 885 | 0 |       clearUnusedBits(); | 
| 886 | 0 |     } else { | 
| 887 | 0 |       U.pVal[0] ^= RHS; | 
| 888 | 0 |     } | 
| 889 | 0 |     return *this; | 
| 890 | 0 |   } | 
| 891 |  |  | 
| 892 |  |   /// Multiplication assignment operator. | 
| 893 |  |   /// | 
| 894 |  |   /// Multiplies this APInt by RHS and assigns the result to *this. | 
| 895 |  |   /// | 
| 896 |  |   /// \returns *this | 
| 897 |  |   APInt &operator*=(const APInt &RHS); | 
| 898 |  |   APInt &operator*=(uint64_t RHS); | 
| 899 |  |  | 
| 900 |  |   /// Addition assignment operator. | 
| 901 |  |   /// | 
| 902 |  |   /// Adds RHS to *this and assigns the result to *this. | 
| 903 |  |   /// | 
| 904 |  |   /// \returns *this | 
| 905 |  |   APInt &operator+=(const APInt &RHS); | 
| 906 |  |   APInt &operator+=(uint64_t RHS); | 
| 907 |  |  | 
| 908 |  |   /// Subtraction assignment operator. | 
| 909 |  |   /// | 
| 910 |  |   /// Subtracts RHS from *this and assigns the result to *this. | 
| 911 |  |   /// | 
| 912 |  |   /// \returns *this | 
| 913 |  |   APInt &operator-=(const APInt &RHS); | 
| 914 |  |   APInt &operator-=(uint64_t RHS); | 
| 915 |  |  | 
| 916 |  |   /// Left-shift assignment function. | 
| 917 |  |   /// | 
| 918 |  |   /// Shifts *this left by shiftAmt and assigns the result to *this. | 
| 919 |  |   /// | 
| 920 |  |   /// \returns *this after shifting left by ShiftAmt | 
| 921 | 0 |   APInt &operator<<=(unsigned ShiftAmt) { | 
| 922 | 0 |     assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | 
| 923 | 0 |     if (isSingleWord()) { | 
| 924 | 0 |       if (ShiftAmt == BitWidth) | 
| 925 | 0 |         U.VAL = 0; | 
| 926 | 0 |       else | 
| 927 | 0 |         U.VAL <<= ShiftAmt; | 
| 928 | 0 |       return clearUnusedBits(); | 
| 929 | 0 |     } | 
| 930 | 0 |     shlSlowCase(ShiftAmt); | 
| 931 | 0 |     return *this; | 
| 932 | 0 |   } | 
| 933 |  |  | 
| 934 |  |   /// Left-shift assignment function. | 
| 935 |  |   /// | 
| 936 |  |   /// Shifts *this left by shiftAmt and assigns the result to *this. | 
| 937 |  |   /// | 
| 938 |  |   /// \returns *this after shifting left by ShiftAmt | 
| 939 |  |   APInt &operator<<=(const APInt &ShiftAmt); | 
| 940 |  |  | 
| 941 |  |   /// @} | 
| 942 |  |   /// \name Binary Operators | 
| 943 |  |   /// @{ | 
| 944 |  |  | 
| 945 |  |   /// Multiplication operator. | 
| 946 |  |   /// | 
| 947 |  |   /// Multiplies this APInt by RHS and returns the result. | 
| 948 |  |   APInt operator*(const APInt &RHS) const; | 
| 949 |  |  | 
| 950 |  |   /// Left logical shift operator. | 
| 951 |  |   /// | 
| 952 |  |   /// Shifts this APInt left by \p Bits and returns the result. | 
| 953 | 0 |   APInt operator<<(unsigned Bits) const { return shl(Bits); } | 
| 954 |  |  | 
| 955 |  |   /// Left logical shift operator. | 
| 956 |  |   /// | 
| 957 |  |   /// Shifts this APInt left by \p Bits and returns the result. | 
| 958 | 0 |   APInt operator<<(const APInt &Bits) const { return shl(Bits); } | 
| 959 |  |  | 
| 960 |  |   /// Arithmetic right-shift function. | 
| 961 |  |   /// | 
| 962 |  |   /// Arithmetic right-shift this APInt by shiftAmt. | 
| 963 | 0 |   APInt ashr(unsigned ShiftAmt) const { | 
| 964 | 0 |     APInt R(*this); | 
| 965 | 0 |     R.ashrInPlace(ShiftAmt); | 
| 966 | 0 |     return R; | 
| 967 | 0 |   } | 
| 968 |  |  | 
| 969 |  |   /// Arithmetic right-shift this APInt by ShiftAmt in place. | 
| 970 | 0 |   void ashrInPlace(unsigned ShiftAmt) { | 
| 971 | 0 |     assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | 
| 972 | 0 |     if (isSingleWord()) { | 
| 973 | 0 |       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); | 
| 974 | 0 |       if (ShiftAmt == BitWidth) | 
| 975 | 0 |         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. | 
| 976 | 0 |       else | 
| 977 | 0 |         U.VAL = SExtVAL >> ShiftAmt; | 
| 978 | 0 |       clearUnusedBits(); | 
| 979 | 0 |       return; | 
| 980 | 0 |     } | 
| 981 | 0 |     ashrSlowCase(ShiftAmt); | 
| 982 | 0 |   } | 
| 983 |  |  | 
| 984 |  |   /// Logical right-shift function. | 
| 985 |  |   /// | 
| 986 |  |   /// Logical right-shift this APInt by shiftAmt. | 
| 987 | 0 |   APInt lshr(unsigned shiftAmt) const { | 
| 988 | 0 |     APInt R(*this); | 
| 989 | 0 |     R.lshrInPlace(shiftAmt); | 
| 990 | 0 |     return R; | 
| 991 | 0 |   } | 
| 992 |  |  | 
| 993 |  |   /// Logical right-shift this APInt by ShiftAmt in place. | 
| 994 | 0 |   void lshrInPlace(unsigned ShiftAmt) { | 
| 995 | 0 |     assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | 
| 996 | 0 |     if (isSingleWord()) { | 
| 997 | 0 |       if (ShiftAmt == BitWidth) | 
| 998 | 0 |         U.VAL = 0; | 
| 999 | 0 |       else | 
| 1000 | 0 |         U.VAL >>= ShiftAmt; | 
| 1001 | 0 |       return; | 
| 1002 | 0 |     } | 
| 1003 | 0 |     lshrSlowCase(ShiftAmt); | 
| 1004 | 0 |   } | 
| 1005 |  |  | 
| 1006 |  |   /// Left-shift function. | 
| 1007 |  |   /// | 
| 1008 |  |   /// Left-shift this APInt by shiftAmt. | 
| 1009 | 0 |   APInt shl(unsigned shiftAmt) const { | 
| 1010 | 0 |     APInt R(*this); | 
| 1011 | 0 |     R <<= shiftAmt; | 
| 1012 | 0 |     return R; | 
| 1013 | 0 |   } | 
| 1014 |  |  | 
| 1015 |  |   /// Rotate left by rotateAmt. | 
| 1016 |  |   APInt rotl(unsigned rotateAmt) const; | 
| 1017 |  |  | 
| 1018 |  |   /// Rotate right by rotateAmt. | 
| 1019 |  |   APInt rotr(unsigned rotateAmt) const; | 
| 1020 |  |  | 
| 1021 |  |   /// Arithmetic right-shift function. | 
| 1022 |  |   /// | 
| 1023 |  |   /// Arithmetic right-shift this APInt by shiftAmt. | 
| 1024 | 0 |   APInt ashr(const APInt &ShiftAmt) const { | 
| 1025 | 0 |     APInt R(*this); | 
| 1026 | 0 |     R.ashrInPlace(ShiftAmt); | 
| 1027 | 0 |     return R; | 
| 1028 | 0 |   } | 
| 1029 |  |  | 
| 1030 |  |   /// Arithmetic right-shift this APInt by shiftAmt in place. | 
| 1031 |  |   void ashrInPlace(const APInt &shiftAmt); | 
| 1032 |  |  | 
| 1033 |  |   /// Logical right-shift function. | 
| 1034 |  |   /// | 
| 1035 |  |   /// Logical right-shift this APInt by shiftAmt. | 
| 1036 | 0 |   APInt lshr(const APInt &ShiftAmt) const { | 
| 1037 | 0 |     APInt R(*this); | 
| 1038 | 0 |     R.lshrInPlace(ShiftAmt); | 
| 1039 | 0 |     return R; | 
| 1040 | 0 |   } | 
| 1041 |  |  | 
| 1042 |  |   /// Logical right-shift this APInt by ShiftAmt in place. | 
| 1043 |  |   void lshrInPlace(const APInt &ShiftAmt); | 
| 1044 |  |  | 
| 1045 |  |   /// Left-shift function. | 
| 1046 |  |   /// | 
| 1047 |  |   /// Left-shift this APInt by shiftAmt. | 
| 1048 | 0 |   APInt shl(const APInt &ShiftAmt) const { | 
| 1049 | 0 |     APInt R(*this); | 
| 1050 | 0 |     R <<= ShiftAmt; | 
| 1051 | 0 |     return R; | 
| 1052 | 0 |   } | 
| 1053 |  |  | 
| 1054 |  |   /// Rotate left by rotateAmt. | 
| 1055 |  |   APInt rotl(const APInt &rotateAmt) const; | 
| 1056 |  |  | 
| 1057 |  |   /// Rotate right by rotateAmt. | 
| 1058 |  |   APInt rotr(const APInt &rotateAmt) const; | 
| 1059 |  |  | 
| 1060 |  |   /// Unsigned division operation. | 
| 1061 |  |   /// | 
| 1062 |  |   /// Perform an unsigned divide operation on this APInt by RHS. Both this and | 
| 1063 |  |   /// RHS are treated as unsigned quantities for purposes of this division. | 
| 1064 |  |   /// | 
| 1065 |  |   /// \returns a new APInt value containing the division result, rounded towards | 
| 1066 |  |   /// zero. | 
| 1067 |  |   APInt udiv(const APInt &RHS) const; | 
| 1068 |  |   APInt udiv(uint64_t RHS) const; | 
| 1069 |  |  | 
| 1070 |  |   /// Signed division function for APInt. | 
| 1071 |  |   /// | 
| 1072 |  |   /// Signed divide this APInt by APInt RHS. | 
| 1073 |  |   /// | 
| 1074 |  |   /// The result is rounded towards zero. | 
| 1075 |  |   APInt sdiv(const APInt &RHS) const; | 
| 1076 |  |   APInt sdiv(int64_t RHS) const; | 
| 1077 |  |  | 
| 1078 |  |   /// Unsigned remainder operation. | 
| 1079 |  |   /// | 
| 1080 |  |   /// Perform an unsigned remainder operation on this APInt with RHS being the | 
| 1081 |  |   /// divisor. Both this and RHS are treated as unsigned quantities for purposes | 
| 1082 |  |   /// of this operation. Note that this is a true remainder operation and not a | 
| 1083 |  |   /// modulo operation because the sign follows the sign of the dividend which | 
| 1084 |  |   /// is *this. | 
| 1085 |  |   /// | 
| 1086 |  |   /// \returns a new APInt value containing the remainder result | 
| 1087 |  |   APInt urem(const APInt &RHS) const; | 
| 1088 |  |   uint64_t urem(uint64_t RHS) const; | 
| 1089 |  |  | 
| 1090 |  |   /// Function for signed remainder operation. | 
| 1091 |  |   /// | 
| 1092 |  |   /// Signed remainder operation on APInt. | 
| 1093 |  |   APInt srem(const APInt &RHS) const; | 
| 1094 |  |   int64_t srem(int64_t RHS) const; | 
| 1095 |  |  | 
| 1096 |  |   /// Dual division/remainder interface. | 
| 1097 |  |   /// | 
| 1098 |  |   /// Sometimes it is convenient to divide two APInt values and obtain both the | 
| 1099 |  |   /// quotient and remainder. This function does both operations in the same | 
| 1100 |  |   /// computation making it a little more efficient. The pair of input arguments | 
| 1101 |  |   /// may overlap with the pair of output arguments. It is safe to call | 
| 1102 |  |   /// udivrem(X, Y, X, Y), for example. | 
| 1103 |  |   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | 
| 1104 |  |                       APInt &Remainder); | 
| 1105 |  |   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | 
| 1106 |  |                       uint64_t &Remainder); | 
| 1107 |  |  | 
| 1108 |  |   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | 
| 1109 |  |                       APInt &Remainder); | 
| 1110 |  |   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, | 
| 1111 |  |                       int64_t &Remainder); | 
| 1112 |  |  | 
| 1113 |  |   // Operations that return overflow indicators. | 
| 1114 |  |   APInt sadd_ov(const APInt &RHS, bool &Overflow) const; | 
| 1115 |  |   APInt uadd_ov(const APInt &RHS, bool &Overflow) const; | 
| 1116 |  |   APInt ssub_ov(const APInt &RHS, bool &Overflow) const; | 
| 1117 |  |   APInt usub_ov(const APInt &RHS, bool &Overflow) const; | 
| 1118 |  |   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; | 
| 1119 |  |   APInt smul_ov(const APInt &RHS, bool &Overflow) const; | 
| 1120 |  |   APInt umul_ov(const APInt &RHS, bool &Overflow) const; | 
| 1121 |  |   APInt sshl_ov(const APInt &Amt, bool &Overflow) const; | 
| 1122 |  |   APInt ushl_ov(const APInt &Amt, bool &Overflow) const; | 
| 1123 |  |  | 
| 1124 |  |   // Operations that saturate | 
| 1125 |  |   APInt sadd_sat(const APInt &RHS) const; | 
| 1126 |  |   APInt uadd_sat(const APInt &RHS) const; | 
| 1127 |  |   APInt ssub_sat(const APInt &RHS) const; | 
| 1128 |  |   APInt usub_sat(const APInt &RHS) const; | 
| 1129 |  |   APInt smul_sat(const APInt &RHS) const; | 
| 1130 |  |   APInt umul_sat(const APInt &RHS) const; | 
| 1131 |  |   APInt sshl_sat(const APInt &RHS) const; | 
| 1132 |  |   APInt ushl_sat(const APInt &RHS) const; | 
| 1133 |  |  | 
| 1134 |  |   /// Array-indexing support. | 
| 1135 |  |   /// | 
| 1136 |  |   /// \returns the bit value at bitPosition | 
| 1137 | 0 |   bool operator[](unsigned bitPosition) const { | 
| 1138 | 0 |     assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); | 
| 1139 | 0 |     return (maskBit(bitPosition) & getWord(bitPosition)) != 0; | 
| 1140 | 0 |   } | 
| 1141 |  |  | 
| 1142 |  |   /// @} | 
| 1143 |  |   /// \name Comparison Operators | 
| 1144 |  |   /// @{ | 
| 1145 |  |  | 
| 1146 |  |   /// Equality operator. | 
| 1147 |  |   /// | 
| 1148 |  |   /// Compares this APInt with RHS for the validity of the equality | 
| 1149 |  |   /// relationship. | 
| 1150 | 0 |   bool operator==(const APInt &RHS) const { | 
| 1151 | 0 |     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); | 
| 1152 | 0 |     if (isSingleWord()) | 
| 1153 | 0 |       return U.VAL == RHS.U.VAL; | 
| 1154 | 0 |     return EqualSlowCase(RHS); | 
| 1155 | 0 |   } | 
| 1156 |  |  | 
| 1157 |  |   /// Equality operator. | 
| 1158 |  |   /// | 
| 1159 |  |   /// Compares this APInt with a uint64_t for the validity of the equality | 
| 1160 |  |   /// relationship. | 
| 1161 |  |   /// | 
| 1162 |  |   /// \returns true if *this == Val | 
| 1163 | 0 |   bool operator==(uint64_t Val) const { | 
| 1164 | 0 |     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; | 
| 1165 | 0 |   } | 
| 1166 |  |  | 
| 1167 |  |   /// Equality comparison. | 
| 1168 |  |   /// | 
| 1169 |  |   /// Compares this APInt with RHS for the validity of the equality | 
| 1170 |  |   /// relationship. | 
| 1171 |  |   /// | 
| 1172 |  |   /// \returns true if *this == Val | 
| 1173 | 0 |   bool eq(const APInt &RHS) const { return (*this) == RHS; } | 
| 1174 |  |  | 
| 1175 |  |   /// Inequality operator. | 
| 1176 |  |   /// | 
| 1177 |  |   /// Compares this APInt with RHS for the validity of the inequality | 
| 1178 |  |   /// relationship. | 
| 1179 |  |   /// | 
| 1180 |  |   /// \returns true if *this != Val | 
| 1181 | 0 |   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } | 
| 1182 |  |  | 
| 1183 |  |   /// Inequality operator. | 
| 1184 |  |   /// | 
| 1185 |  |   /// Compares this APInt with a uint64_t for the validity of the inequality | 
| 1186 |  |   /// relationship. | 
| 1187 |  |   /// | 
| 1188 |  |   /// \returns true if *this != Val | 
| 1189 | 0 |   bool operator!=(uint64_t Val) const { return !((*this) == Val); } | 
| 1190 |  |  | 
| 1191 |  |   /// Inequality comparison | 
| 1192 |  |   /// | 
| 1193 |  |   /// Compares this APInt with RHS for the validity of the inequality | 
| 1194 |  |   /// relationship. | 
| 1195 |  |   /// | 
| 1196 |  |   /// \returns true if *this != Val | 
| 1197 | 0 |   bool ne(const APInt &RHS) const { return !((*this) == RHS); } | 
| 1198 |  |  | 
| 1199 |  |   /// Unsigned less than comparison | 
| 1200 |  |   /// | 
| 1201 |  |   /// Regards both *this and RHS as unsigned quantities and compares them for | 
| 1202 |  |   /// the validity of the less-than relationship. | 
| 1203 |  |   /// | 
| 1204 |  |   /// \returns true if *this < RHS when both are considered unsigned. | 
| 1205 | 0 |   bool ult(const APInt &RHS) const { return compare(RHS) < 0; } | 
| 1206 |  |  | 
| 1207 |  |   /// Unsigned less than comparison | 
| 1208 |  |   /// | 
| 1209 |  |   /// Regards both *this as an unsigned quantity and compares it with RHS for | 
| 1210 |  |   /// the validity of the less-than relationship. | 
| 1211 |  |   /// | 
| 1212 |  |   /// \returns true if *this < RHS when considered unsigned. | 
| 1213 | 0 |   bool ult(uint64_t RHS) const { | 
| 1214 | 0 |     // Only need to check active bits if not a single word. | 
| 1215 | 0 |     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; | 
| 1216 | 0 |   } | 
| 1217 |  |  | 
| 1218 |  |   /// Signed less than comparison | 
| 1219 |  |   /// | 
| 1220 |  |   /// Regards both *this and RHS as signed quantities and compares them for | 
| 1221 |  |   /// validity of the less-than relationship. | 
| 1222 |  |   /// | 
| 1223 |  |   /// \returns true if *this < RHS when both are considered signed. | 
| 1224 | 0 |   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } | 
| 1225 |  |  | 
| 1226 |  |   /// Signed less than comparison | 
| 1227 |  |   /// | 
| 1228 |  |   /// Regards both *this as a signed quantity and compares it with RHS for | 
| 1229 |  |   /// the validity of the less-than relationship. | 
| 1230 |  |   /// | 
| 1231 |  |   /// \returns true if *this < RHS when considered signed. | 
| 1232 | 0 |   bool slt(int64_t RHS) const { | 
| 1233 | 0 |     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() | 
| 1234 | 0 |                                                         : getSExtValue() < RHS; | 
| 1235 | 0 |   } | 
| 1236 |  |  | 
| 1237 |  |   /// Unsigned less or equal comparison | 
| 1238 |  |   /// | 
| 1239 |  |   /// Regards both *this and RHS as unsigned quantities and compares them for | 
| 1240 |  |   /// validity of the less-or-equal relationship. | 
| 1241 |  |   /// | 
| 1242 |  |   /// \returns true if *this <= RHS when both are considered unsigned. | 
| 1243 | 0 |   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } | 
| 1244 |  |  | 
| 1245 |  |   /// Unsigned less or equal comparison | 
| 1246 |  |   /// | 
| 1247 |  |   /// Regards both *this as an unsigned quantity and compares it with RHS for | 
| 1248 |  |   /// the validity of the less-or-equal relationship. | 
| 1249 |  |   /// | 
| 1250 |  |   /// \returns true if *this <= RHS when considered unsigned. | 
| 1251 | 0 |   bool ule(uint64_t RHS) const { return !ugt(RHS); } | 
| 1252 |  |  | 
| 1253 |  |   /// Signed less or equal comparison | 
| 1254 |  |   /// | 
| 1255 |  |   /// Regards both *this and RHS as signed quantities and compares them for | 
| 1256 |  |   /// validity of the less-or-equal relationship. | 
| 1257 |  |   /// | 
| 1258 |  |   /// \returns true if *this <= RHS when both are considered signed. | 
| 1259 | 0 |   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } | 
| 1260 |  |  | 
| 1261 |  |   /// Signed less or equal comparison | 
| 1262 |  |   /// | 
| 1263 |  |   /// Regards both *this as a signed quantity and compares it with RHS for the | 
| 1264 |  |   /// validity of the less-or-equal relationship. | 
| 1265 |  |   /// | 
| 1266 |  |   /// \returns true if *this <= RHS when considered signed. | 
| 1267 | 0 |   bool sle(uint64_t RHS) const { return !sgt(RHS); } | 
| 1268 |  |  | 
| 1269 |  |   /// Unsigned greater than comparison | 
| 1270 |  |   /// | 
| 1271 |  |   /// Regards both *this and RHS as unsigned quantities and compares them for | 
| 1272 |  |   /// the validity of the greater-than relationship. | 
| 1273 |  |   /// | 
| 1274 |  |   /// \returns true if *this > RHS when both are considered unsigned. | 
| 1275 | 0 |   bool ugt(const APInt &RHS) const { return !ule(RHS); } | 
| 1276 |  |  | 
| 1277 |  |   /// Unsigned greater than comparison | 
| 1278 |  |   /// | 
| 1279 |  |   /// Regards both *this as an unsigned quantity and compares it with RHS for | 
| 1280 |  |   /// the validity of the greater-than relationship. | 
| 1281 |  |   /// | 
| 1282 |  |   /// \returns true if *this > RHS when considered unsigned. | 
| 1283 | 0 |   bool ugt(uint64_t RHS) const { | 
| 1284 | 0 |     // Only need to check active bits if not a single word. | 
| 1285 | 0 |     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; | 
| 1286 | 0 |   } | 
| 1287 |  |  | 
| 1288 |  |   /// Signed greater than comparison | 
| 1289 |  |   /// | 
| 1290 |  |   /// Regards both *this and RHS as signed quantities and compares them for the | 
| 1291 |  |   /// validity of the greater-than relationship. | 
| 1292 |  |   /// | 
| 1293 |  |   /// \returns true if *this > RHS when both are considered signed. | 
| 1294 | 0 |   bool sgt(const APInt &RHS) const { return !sle(RHS); } | 
| 1295 |  |  | 
| 1296 |  |   /// Signed greater than comparison | 
| 1297 |  |   /// | 
| 1298 |  |   /// Regards both *this as a signed quantity and compares it with RHS for | 
| 1299 |  |   /// the validity of the greater-than relationship. | 
| 1300 |  |   /// | 
| 1301 |  |   /// \returns true if *this > RHS when considered signed. | 
| 1302 | 0 |   bool sgt(int64_t RHS) const { | 
| 1303 | 0 |     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() | 
| 1304 | 0 |                                                         : getSExtValue() > RHS; | 
| 1305 | 0 |   } | 
| 1306 |  |  | 
| 1307 |  |   /// Unsigned greater or equal comparison | 
| 1308 |  |   /// | 
| 1309 |  |   /// Regards both *this and RHS as unsigned quantities and compares them for | 
| 1310 |  |   /// validity of the greater-or-equal relationship. | 
| 1311 |  |   /// | 
| 1312 |  |   /// \returns true if *this >= RHS when both are considered unsigned. | 
| 1313 | 0 |   bool uge(const APInt &RHS) const { return !ult(RHS); } | 
| 1314 |  |  | 
| 1315 |  |   /// Unsigned greater or equal comparison | 
| 1316 |  |   /// | 
| 1317 |  |   /// Regards both *this as an unsigned quantity and compares it with RHS for | 
| 1318 |  |   /// the validity of the greater-or-equal relationship. | 
| 1319 |  |   /// | 
| 1320 |  |   /// \returns true if *this >= RHS when considered unsigned. | 
| 1321 | 0 |   bool uge(uint64_t RHS) const { return !ult(RHS); } | 
| 1322 |  |  | 
| 1323 |  |   /// Signed greater or equal comparison | 
| 1324 |  |   /// | 
| 1325 |  |   /// Regards both *this and RHS as signed quantities and compares them for | 
| 1326 |  |   /// validity of the greater-or-equal relationship. | 
| 1327 |  |   /// | 
| 1328 |  |   /// \returns true if *this >= RHS when both are considered signed. | 
| 1329 | 0 |   bool sge(const APInt &RHS) const { return !slt(RHS); } | 
| 1330 |  |  | 
| 1331 |  |   /// Signed greater or equal comparison | 
| 1332 |  |   /// | 
| 1333 |  |   /// Regards both *this as a signed quantity and compares it with RHS for | 
| 1334 |  |   /// the validity of the greater-or-equal relationship. | 
| 1335 |  |   /// | 
| 1336 |  |   /// \returns true if *this >= RHS when considered signed. | 
| 1337 | 0 |   bool sge(int64_t RHS) const { return !slt(RHS); } | 
| 1338 |  |  | 
| 1339 |  |   /// This operation tests if there are any pairs of corresponding bits | 
| 1340 |  |   /// between this APInt and RHS that are both set. | 
| 1341 | 0 |   bool intersects(const APInt &RHS) const { | 
| 1342 | 0 |     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 1343 | 0 |     if (isSingleWord()) | 
| 1344 | 0 |       return (U.VAL & RHS.U.VAL) != 0; | 
| 1345 | 0 |     return intersectsSlowCase(RHS); | 
| 1346 | 0 |   } | 
| 1347 |  |  | 
| 1348 |  |   /// This operation checks that all bits set in this APInt are also set in RHS. | 
| 1349 | 0 |   bool isSubsetOf(const APInt &RHS) const { | 
| 1350 | 0 |     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
| 1351 | 0 |     if (isSingleWord()) | 
| 1352 | 0 |       return (U.VAL & ~RHS.U.VAL) == 0; | 
| 1353 | 0 |     return isSubsetOfSlowCase(RHS); | 
| 1354 | 0 |   } | 
| 1355 |  |  | 
| 1356 |  |   /// @} | 
| 1357 |  |   /// \name Resizing Operators | 
| 1358 |  |   /// @{ | 
| 1359 |  |  | 
| 1360 |  |   /// Truncate to new width. | 
| 1361 |  |   /// | 
| 1362 |  |   /// Truncate the APInt to a specified width. It is an error to specify a width | 
| 1363 |  |   /// that is greater than or equal to the current width. | 
| 1364 |  |   APInt trunc(unsigned width) const; | 
| 1365 |  |  | 
| 1366 |  |   /// Truncate to new width with unsigned saturation. | 
| 1367 |  |   /// | 
| 1368 |  |   /// If the APInt, treated as unsigned integer, can be losslessly truncated to | 
| 1369 |  |   /// the new bitwidth, then return truncated APInt. Else, return max value. | 
| 1370 |  |   APInt truncUSat(unsigned width) const; | 
| 1371 |  |  | 
| 1372 |  |   /// Truncate to new width with signed saturation. | 
| 1373 |  |   /// | 
| 1374 |  |   /// If this APInt, treated as signed integer, can be losslessly truncated to | 
| 1375 |  |   /// the new bitwidth, then return truncated APInt. Else, return either | 
| 1376 |  |   /// signed min value if the APInt was negative, or signed max value. | 
| 1377 |  |   APInt truncSSat(unsigned width) const; | 
| 1378 |  |  | 
| 1379 |  |   /// Sign extend to a new width. | 
| 1380 |  |   /// | 
| 1381 |  |   /// This operation sign extends the APInt to a new width. If the high order | 
| 1382 |  |   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. | 
| 1383 |  |   /// It is an error to specify a width that is less than or equal to the | 
| 1384 |  |   /// current width. | 
| 1385 |  |   APInt sext(unsigned width) const; | 
| 1386 |  |  | 
| 1387 |  |   /// Zero extend to a new width. | 
| 1388 |  |   /// | 
| 1389 |  |   /// This operation zero extends the APInt to a new width. The high order bits | 
| 1390 |  |   /// are filled with 0 bits.  It is an error to specify a width that is less | 
| 1391 |  |   /// than or equal to the current width. | 
| 1392 |  |   APInt zext(unsigned width) const; | 
| 1393 |  |  | 
| 1394 |  |   /// Sign extend or truncate to width | 
| 1395 |  |   /// | 
| 1396 |  |   /// Make this APInt have the bit width given by \p width. The value is sign | 
| 1397 |  |   /// extended, truncated, or left alone to make it that width. | 
| 1398 |  |   APInt sextOrTrunc(unsigned width) const; | 
| 1399 |  |  | 
| 1400 |  |   /// Zero extend or truncate to width | 
| 1401 |  |   /// | 
| 1402 |  |   /// Make this APInt have the bit width given by \p width. The value is zero | 
| 1403 |  |   /// extended, truncated, or left alone to make it that width. | 
| 1404 |  |   APInt zextOrTrunc(unsigned width) const; | 
| 1405 |  |  | 
| 1406 |  |   /// Sign extend or truncate to width | 
| 1407 |  |   /// | 
| 1408 |  |   /// Make this APInt have the bit width given by \p width. The value is sign | 
| 1409 |  |   /// extended, or left alone to make it that width. | 
| 1410 |  |   APInt sextOrSelf(unsigned width) const; | 
| 1411 |  |  | 
| 1412 |  |   /// Zero extend or truncate to width | 
| 1413 |  |   /// | 
| 1414 |  |   /// Make this APInt have the bit width given by \p width. The value is zero | 
| 1415 |  |   /// extended, or left alone to make it that width. | 
| 1416 |  |   APInt zextOrSelf(unsigned width) const; | 
| 1417 |  |  | 
| 1418 |  |   /// @} | 
| 1419 |  |   /// \name Bit Manipulation Operators | 
| 1420 |  |   /// @{ | 
| 1421 |  |  | 
| 1422 |  |   /// Set every bit to 1. | 
| 1423 | 0 |   void setAllBits() { | 
| 1424 | 0 |     if (isSingleWord()) | 
| 1425 | 0 |       U.VAL = WORDTYPE_MAX; | 
| 1426 | 0 |     else | 
| 1427 | 0 |       // Set all the bits in all the words. | 
| 1428 | 0 |       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); | 
| 1429 | 0 |     // Clear the unused ones | 
| 1430 | 0 |     clearUnusedBits(); | 
| 1431 | 0 |   } | 
| 1432 |  |  | 
| 1433 |  |   /// Set a given bit to 1. | 
| 1434 |  |   /// | 
| 1435 |  |   /// Set the given bit to 1 whose position is given as "bitPosition". | 
| 1436 | 0 |   void setBit(unsigned BitPosition) { | 
| 1437 | 0 |     assert(BitPosition < BitWidth && "BitPosition out of range"); | 
| 1438 | 0 |     WordType Mask = maskBit(BitPosition); | 
| 1439 | 0 |     if (isSingleWord()) | 
| 1440 | 0 |       U.VAL |= Mask; | 
| 1441 | 0 |     else | 
| 1442 | 0 |       U.pVal[whichWord(BitPosition)] |= Mask; | 
| 1443 | 0 |   } | 
| 1444 |  |  | 
| 1445 |  |   /// Set the sign bit to 1. | 
| 1446 | 0 |   void setSignBit() { | 
| 1447 | 0 |     setBit(BitWidth - 1); | 
| 1448 | 0 |   } | 
| 1449 |  |  | 
| 1450 |  |   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. | 
| 1451 |  |   /// This function handles "wrap" case when \p loBit > \p hiBit, and calls | 
| 1452 |  |   /// setBits when \p loBit <= \p hiBit. | 
| 1453 | 0 |   void setBitsWithWrap(unsigned loBit, unsigned hiBit) { | 
| 1454 | 0 |     assert(hiBit <= BitWidth && "hiBit out of range"); | 
| 1455 | 0 |     assert(loBit <= BitWidth && "loBit out of range"); | 
| 1456 | 0 |     if (loBit <= hiBit) { | 
| 1457 | 0 |       setBits(loBit, hiBit); | 
| 1458 | 0 |       return; | 
| 1459 | 0 |     } | 
| 1460 | 0 |     setLowBits(hiBit); | 
| 1461 | 0 |     setHighBits(BitWidth - loBit); | 
| 1462 | 0 |   } | 
| 1463 |  |  | 
| 1464 |  |   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. | 
| 1465 |  |   /// This function handles case when \p loBit <= \p hiBit. | 
| 1466 | 0 |   void setBits(unsigned loBit, unsigned hiBit) { | 
| 1467 | 0 |     assert(hiBit <= BitWidth && "hiBit out of range"); | 
| 1468 | 0 |     assert(loBit <= BitWidth && "loBit out of range"); | 
| 1469 | 0 |     assert(loBit <= hiBit && "loBit greater than hiBit"); | 
| 1470 | 0 |     if (loBit == hiBit) | 
| 1471 | 0 |       return; | 
| 1472 | 0 |     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { | 
| 1473 | 0 |       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); | 
| 1474 | 0 |       mask <<= loBit; | 
| 1475 | 0 |       if (isSingleWord()) | 
| 1476 | 0 |         U.VAL |= mask; | 
| 1477 | 0 |       else | 
| 1478 | 0 |         U.pVal[0] |= mask; | 
| 1479 | 0 |     } else { | 
| 1480 | 0 |       setBitsSlowCase(loBit, hiBit); | 
| 1481 | 0 |     } | 
| 1482 | 0 |   } | 
| 1483 |  |  | 
| 1484 |  |   /// Set the top bits starting from loBit. | 
| 1485 | 0 |   void setBitsFrom(unsigned loBit) { | 
| 1486 | 0 |     return setBits(loBit, BitWidth); | 
| 1487 | 0 |   } | 
| 1488 |  |  | 
| 1489 |  |   /// Set the bottom loBits bits. | 
| 1490 | 0 |   void setLowBits(unsigned loBits) { | 
| 1491 | 0 |     return setBits(0, loBits); | 
| 1492 | 0 |   } | 
| 1493 |  |  | 
| 1494 |  |   /// Set the top hiBits bits. | 
| 1495 | 0 |   void setHighBits(unsigned hiBits) { | 
| 1496 | 0 |     return setBits(BitWidth - hiBits, BitWidth); | 
| 1497 | 0 |   } | 
| 1498 |  |  | 
| 1499 |  |   /// Set every bit to 0. | 
| 1500 | 0 |   void clearAllBits() { | 
| 1501 | 0 |     if (isSingleWord()) | 
| 1502 | 0 |       U.VAL = 0; | 
| 1503 | 0 |     else | 
| 1504 | 0 |       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); | 
| 1505 | 0 |   } | 
| 1506 |  |  | 
| 1507 |  |   /// Set a given bit to 0. | 
| 1508 |  |   /// | 
| 1509 |  |   /// Set the given bit to 0 whose position is given as "bitPosition". | 
| 1510 | 0 |   void clearBit(unsigned BitPosition) { | 
| 1511 | 0 |     assert(BitPosition < BitWidth && "BitPosition out of range"); | 
| 1512 | 0 |     WordType Mask = ~maskBit(BitPosition); | 
| 1513 | 0 |     if (isSingleWord()) | 
| 1514 | 0 |       U.VAL &= Mask; | 
| 1515 | 0 |     else | 
| 1516 | 0 |       U.pVal[whichWord(BitPosition)] &= Mask; | 
| 1517 | 0 |   } | 
| 1518 |  |  | 
| 1519 |  |   /// Set bottom loBits bits to 0. | 
| 1520 | 0 |   void clearLowBits(unsigned loBits) { | 
| 1521 | 0 |     assert(loBits <= BitWidth && "More bits than bitwidth"); | 
| 1522 | 0 |     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); | 
| 1523 | 0 |     *this &= Keep; | 
| 1524 | 0 |   } | 
| 1525 |  |  | 
| 1526 |  |   /// Set the sign bit to 0. | 
| 1527 | 0 |   void clearSignBit() { | 
| 1528 | 0 |     clearBit(BitWidth - 1); | 
| 1529 | 0 |   } | 
| 1530 |  |  | 
| 1531 |  |   /// Toggle every bit to its opposite value. | 
| 1532 | 0 |   void flipAllBits() { | 
| 1533 | 0 |     if (isSingleWord()) { | 
| 1534 | 0 |       U.VAL ^= WORDTYPE_MAX; | 
| 1535 | 0 |       clearUnusedBits(); | 
| 1536 | 0 |     } else { | 
| 1537 | 0 |       flipAllBitsSlowCase(); | 
| 1538 | 0 |     } | 
| 1539 | 0 |   } | 
| 1540 |  |  | 
| 1541 |  |   /// Toggles a given bit to its opposite value. | 
| 1542 |  |   /// | 
| 1543 |  |   /// Toggle a given bit to its opposite value whose position is given | 
| 1544 |  |   /// as "bitPosition". | 
| 1545 |  |   void flipBit(unsigned bitPosition); | 
| 1546 |  |  | 
| 1547 |  |   /// Negate this APInt in place. | 
| 1548 | 0 |   void negate() { | 
| 1549 | 0 |     flipAllBits(); | 
| 1550 | 0 |     ++(*this); | 
| 1551 | 0 |   } | 
| 1552 |  |  | 
| 1553 |  |   /// Insert the bits from a smaller APInt starting at bitPosition. | 
| 1554 |  |   void insertBits(const APInt &SubBits, unsigned bitPosition); | 
| 1555 |  |   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); | 
| 1556 |  |  | 
| 1557 |  |   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). | 
| 1558 |  |   APInt extractBits(unsigned numBits, unsigned bitPosition) const; | 
| 1559 |  |   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; | 
| 1560 |  |  | 
| 1561 |  |   /// @} | 
| 1562 |  |   /// \name Value Characterization Functions | 
| 1563 |  |   /// @{ | 
| 1564 |  |  | 
| 1565 |  |   /// Return the number of bits in the APInt. | 
| 1566 | 0 |   unsigned getBitWidth() const { return BitWidth; } | 
| 1567 |  |  | 
| 1568 |  |   /// Get the number of words. | 
| 1569 |  |   /// | 
| 1570 |  |   /// Here one word's bitwidth equals to that of uint64_t. | 
| 1571 |  |   /// | 
| 1572 |  |   /// \returns the number of words to hold the integer value of this APInt. | 
| 1573 | 0 |   unsigned getNumWords() const { return getNumWords(BitWidth); } | 
| 1574 |  |  | 
| 1575 |  |   /// Get the number of words. | 
| 1576 |  |   /// | 
| 1577 |  |   /// *NOTE* Here one word's bitwidth equals to that of uint64_t. | 
| 1578 |  |   /// | 
| 1579 |  |   /// \returns the number of words to hold the integer value with a given bit | 
| 1580 |  |   /// width. | 
| 1581 | 0 |   static unsigned getNumWords(unsigned BitWidth) { | 
| 1582 | 0 |     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | 
| 1583 | 0 |   } | 
| 1584 |  |  | 
| 1585 |  |   /// Compute the number of active bits in the value | 
| 1586 |  |   /// | 
| 1587 |  |   /// This function returns the number of active bits which is defined as the | 
| 1588 |  |   /// bit width minus the number of leading zeros. This is used in several | 
| 1589 |  |   /// computations to see how "wide" the value is. | 
| 1590 | 0 |   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } | 
| 1591 |  |  | 
| 1592 |  |   /// Compute the number of active words in the value of this APInt. | 
| 1593 |  |   /// | 
| 1594 |  |   /// This is used in conjunction with getActiveData to extract the raw value of | 
| 1595 |  |   /// the APInt. | 
| 1596 | 0 |   unsigned getActiveWords() const { | 
| 1597 | 0 |     unsigned numActiveBits = getActiveBits(); | 
| 1598 | 0 |     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; | 
| 1599 | 0 |   } | 
| 1600 |  |  | 
| 1601 |  |   /// Get the minimum bit size for this signed APInt | 
| 1602 |  |   /// | 
| 1603 |  |   /// Computes the minimum bit width for this APInt while considering it to be a | 
| 1604 |  |   /// signed (and probably negative) value. If the value is not negative, this | 
| 1605 |  |   /// function returns the same value as getActiveBits()+1. Otherwise, it | 
| 1606 |  |   /// returns the smallest bit width that will retain the negative value. For | 
| 1607 |  |   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so | 
| 1608 |  |   /// for -1, this function will always return 1. | 
| 1609 | 0 |   unsigned getMinSignedBits() const { | 
| 1610 | 0 |     if (isNegative()) | 
| 1611 | 0 |       return BitWidth - countLeadingOnes() + 1; | 
| 1612 | 0 |     return getActiveBits() + 1; | 
| 1613 | 0 |   } | 
| 1614 |  |  | 
| 1615 |  |   /// Get zero extended value | 
| 1616 |  |   /// | 
| 1617 |  |   /// This method attempts to return the value of this APInt as a zero extended | 
| 1618 |  |   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a | 
| 1619 |  |   /// uint64_t. Otherwise an assertion will result. | 
| 1620 | 0 |   uint64_t getZExtValue() const { | 
| 1621 | 0 |     if (isSingleWord()) | 
| 1622 | 0 |       return U.VAL; | 
| 1623 | 0 |     assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); | 
| 1624 | 0 |     return U.pVal[0]; | 
| 1625 | 0 |   } | 
| 1626 |  |  | 
| 1627 |  |   /// Get sign extended value | 
| 1628 |  |   /// | 
| 1629 |  |   /// This method attempts to return the value of this APInt as a sign extended | 
| 1630 |  |   /// int64_t. The bit width must be <= 64 or the value must fit within an | 
| 1631 |  |   /// int64_t. Otherwise an assertion will result. | 
| 1632 | 0 |   int64_t getSExtValue() const { | 
| 1633 | 0 |     if (isSingleWord()) | 
| 1634 | 0 |       return SignExtend64(U.VAL, BitWidth); | 
| 1635 | 0 |     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); | 
| 1636 | 0 |     return int64_t(U.pVal[0]); | 
| 1637 | 0 |   } | 
| 1638 |  |  | 
| 1639 |  |   /// Get bits required for string value. | 
| 1640 |  |   /// | 
| 1641 |  |   /// This method determines how many bits are required to hold the APInt | 
| 1642 |  |   /// equivalent of the string given by \p str. | 
| 1643 |  |   static unsigned getBitsNeeded(StringRef str, uint8_t radix); | 
| 1644 |  |  | 
| 1645 |  |   /// The APInt version of the countLeadingZeros functions in | 
| 1646 |  |   ///   MathExtras.h. | 
| 1647 |  |   /// | 
| 1648 |  |   /// It counts the number of zeros from the most significant bit to the first | 
| 1649 |  |   /// one bit. | 
| 1650 |  |   /// | 
| 1651 |  |   /// \returns BitWidth if the value is zero, otherwise returns the number of | 
| 1652 |  |   ///   zeros from the most significant bit to the first one bits. | 
| 1653 | 0 |   unsigned countLeadingZeros() const { | 
| 1654 | 0 |     if (isSingleWord()) { | 
| 1655 | 0 |       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; | 
| 1656 | 0 |       return llvm::countLeadingZeros(U.VAL) - unusedBits; | 
| 1657 | 0 |     } | 
| 1658 | 0 |     return countLeadingZerosSlowCase(); | 
| 1659 | 0 |   } | 
| 1660 |  |  | 
| 1661 |  |   /// Count the number of leading one bits. | 
| 1662 |  |   /// | 
| 1663 |  |   /// This function is an APInt version of the countLeadingOnes | 
| 1664 |  |   /// functions in MathExtras.h. It counts the number of ones from the most | 
| 1665 |  |   /// significant bit to the first zero bit. | 
| 1666 |  |   /// | 
| 1667 |  |   /// \returns 0 if the high order bit is not set, otherwise returns the number | 
| 1668 |  |   /// of 1 bits from the most significant to the least | 
| 1669 | 0 |   unsigned countLeadingOnes() const { | 
| 1670 | 0 |     if (isSingleWord()) | 
| 1671 | 0 |       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); | 
| 1672 | 0 |     return countLeadingOnesSlowCase(); | 
| 1673 | 0 |   } | 
| 1674 |  |  | 
| 1675 |  |   /// Computes the number of leading bits of this APInt that are equal to its | 
| 1676 |  |   /// sign bit. | 
| 1677 | 0 |   unsigned getNumSignBits() const { | 
| 1678 | 0 |     return isNegative() ? countLeadingOnes() : countLeadingZeros(); | 
| 1679 | 0 |   } | 
| 1680 |  |  | 
| 1681 |  |   /// Count the number of trailing zero bits. | 
| 1682 |  |   /// | 
| 1683 |  |   /// This function is an APInt version of the countTrailingZeros | 
| 1684 |  |   /// functions in MathExtras.h. It counts the number of zeros from the least | 
| 1685 |  |   /// significant bit to the first set bit. | 
| 1686 |  |   /// | 
| 1687 |  |   /// \returns BitWidth if the value is zero, otherwise returns the number of | 
| 1688 |  |   /// zeros from the least significant bit to the first one bit. | 
| 1689 | 0 |   unsigned countTrailingZeros() const { | 
| 1690 | 0 |     if (isSingleWord()) | 
| 1691 | 0 |       return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); | 
| 1692 | 0 |     return countTrailingZerosSlowCase(); | 
| 1693 | 0 |   } | 
| 1694 |  |  | 
| 1695 |  |   /// Count the number of trailing one bits. | 
| 1696 |  |   /// | 
| 1697 |  |   /// This function is an APInt version of the countTrailingOnes | 
| 1698 |  |   /// functions in MathExtras.h. It counts the number of ones from the least | 
| 1699 |  |   /// significant bit to the first zero bit. | 
| 1700 |  |   /// | 
| 1701 |  |   /// \returns BitWidth if the value is all ones, otherwise returns the number | 
| 1702 |  |   /// of ones from the least significant bit to the first zero bit. | 
| 1703 | 0 |   unsigned countTrailingOnes() const { | 
| 1704 | 0 |     if (isSingleWord()) | 
| 1705 | 0 |       return llvm::countTrailingOnes(U.VAL); | 
| 1706 | 0 |     return countTrailingOnesSlowCase(); | 
| 1707 | 0 |   } | 
| 1708 |  |  | 
| 1709 |  |   /// Count the number of bits set. | 
| 1710 |  |   /// | 
| 1711 |  |   /// This function is an APInt version of the countPopulation functions | 
| 1712 |  |   /// in MathExtras.h. It counts the number of 1 bits in the APInt value. | 
| 1713 |  |   /// | 
| 1714 |  |   /// \returns 0 if the value is zero, otherwise returns the number of set bits. | 
| 1715 | 0 |   unsigned countPopulation() const { | 
| 1716 | 0 |     if (isSingleWord()) | 
| 1717 | 0 |       return llvm::countPopulation(U.VAL); | 
| 1718 | 0 |     return countPopulationSlowCase(); | 
| 1719 | 0 |   } | 
| 1720 |  |  | 
| 1721 |  |   /// @} | 
| 1722 |  |   /// \name Conversion Functions | 
| 1723 |  |   /// @{ | 
| 1724 |  |   void print(raw_ostream &OS, bool isSigned) const; | 
| 1725 |  |  | 
| 1726 |  |   /// Converts an APInt to a string and append it to Str.  Str is commonly a | 
| 1727 |  |   /// SmallString. | 
| 1728 |  |   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, | 
| 1729 |  |                 bool formatAsCLiteral = false) const; | 
| 1730 |  |  | 
| 1731 |  |   /// Considers the APInt to be unsigned and converts it into a string in the | 
| 1732 |  |   /// radix given. The radix can be 2, 8, 10 16, or 36. | 
| 1733 | 0 |   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | 
| 1734 | 0 |     toString(Str, Radix, false, false); | 
| 1735 | 0 |   } | 
| 1736 |  |  | 
| 1737 |  |   /// Considers the APInt to be signed and converts it into a string in the | 
| 1738 |  |   /// radix given. The radix can be 2, 8, 10, 16, or 36. | 
| 1739 | 0 |   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | 
| 1740 | 0 |     toString(Str, Radix, true, false); | 
| 1741 | 0 |   } | 
| 1742 |  |  | 
| 1743 |  |   /// Return the APInt as a std::string. | 
| 1744 |  |   /// | 
| 1745 |  |   /// Note that this is an inefficient method.  It is better to pass in a | 
| 1746 |  |   /// SmallVector/SmallString to the methods above to avoid thrashing the heap | 
| 1747 |  |   /// for the string. | 
| 1748 |  |   std::string toString(unsigned Radix, bool Signed) const; | 
| 1749 |  |  | 
| 1750 |  |   /// \returns a byte-swapped representation of this APInt Value. | 
| 1751 |  |   APInt byteSwap() const; | 
| 1752 |  |  | 
| 1753 |  |   /// \returns the value with the bit representation reversed of this APInt | 
| 1754 |  |   /// Value. | 
| 1755 |  |   APInt reverseBits() const; | 
| 1756 |  |  | 
| 1757 |  |   /// Converts this APInt to a double value. | 
| 1758 |  |   double roundToDouble(bool isSigned) const; | 
| 1759 |  |  | 
| 1760 |  |   /// Converts this unsigned APInt to a double value. | 
| 1761 | 0 |   double roundToDouble() const { return roundToDouble(false); } | 
| 1762 |  |  | 
| 1763 |  |   /// Converts this signed APInt to a double value. | 
| 1764 | 0 |   double signedRoundToDouble() const { return roundToDouble(true); } | 
| 1765 |  |  | 
| 1766 |  |   /// Converts APInt bits to a double | 
| 1767 |  |   /// | 
| 1768 |  |   /// The conversion does not do a translation from integer to double, it just | 
| 1769 |  |   /// re-interprets the bits as a double. Note that it is valid to do this on | 
| 1770 |  |   /// any bit width. Exactly 64 bits will be translated. | 
| 1771 | 0 |   double bitsToDouble() const { | 
| 1772 | 0 |     return BitsToDouble(getWord(0)); | 
| 1773 | 0 |   } | 
| 1774 |  |  | 
| 1775 |  |   /// Converts APInt bits to a float | 
| 1776 |  |   /// | 
| 1777 |  |   /// The conversion does not do a translation from integer to float, it just | 
| 1778 |  |   /// re-interprets the bits as a float. Note that it is valid to do this on | 
| 1779 |  |   /// any bit width. Exactly 32 bits will be translated. | 
| 1780 | 0 |   float bitsToFloat() const { | 
| 1781 | 0 |     return BitsToFloat(static_cast<uint32_t>(getWord(0))); | 
| 1782 | 0 |   } | 
| 1783 |  |  | 
| 1784 |  |   /// Converts a double to APInt bits. | 
| 1785 |  |   /// | 
| 1786 |  |   /// The conversion does not do a translation from double to integer, it just | 
| 1787 |  |   /// re-interprets the bits of the double. | 
| 1788 | 0 |   static APInt doubleToBits(double V) { | 
| 1789 | 0 |     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); | 
| 1790 | 0 |   } | 
| 1791 |  |  | 
| 1792 |  |   /// Converts a float to APInt bits. | 
| 1793 |  |   /// | 
| 1794 |  |   /// The conversion does not do a translation from float to integer, it just | 
| 1795 |  |   /// re-interprets the bits of the float. | 
| 1796 | 0 |   static APInt floatToBits(float V) { | 
| 1797 | 0 |     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); | 
| 1798 | 0 |   } | 
| 1799 |  |  | 
| 1800 |  |   /// @} | 
| 1801 |  |   /// \name Mathematics Operations | 
| 1802 |  |   /// @{ | 
| 1803 |  |  | 
| 1804 |  |   /// \returns the floor log base 2 of this APInt. | 
| 1805 | 0 |   unsigned logBase2() const { return getActiveBits() -  1; } | 
| 1806 |  |  | 
| 1807 |  |   /// \returns the ceil log base 2 of this APInt. | 
| 1808 | 0 |   unsigned ceilLogBase2() const { | 
| 1809 | 0 |     APInt temp(*this); | 
| 1810 | 0 |     --temp; | 
| 1811 | 0 |     return temp.getActiveBits(); | 
| 1812 | 0 |   } | 
| 1813 |  |  | 
| 1814 |  |   /// \returns the nearest log base 2 of this APInt. Ties round up. | 
| 1815 |  |   /// | 
| 1816 |  |   /// NOTE: When we have a BitWidth of 1, we define: | 
| 1817 |  |   /// | 
| 1818 |  |   ///   log2(0) = UINT32_MAX | 
| 1819 |  |   ///   log2(1) = 0 | 
| 1820 |  |   /// | 
| 1821 |  |   /// to get around any mathematical concerns resulting from | 
| 1822 |  |   /// referencing 2 in a space where 2 does no exist. | 
| 1823 | 0 |   unsigned nearestLogBase2() const { | 
| 1824 | 0 |     // Special case when we have a bitwidth of 1. If VAL is 1, then we | 
| 1825 | 0 |     // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to | 
| 1826 | 0 |     // UINT32_MAX. | 
| 1827 | 0 |     if (BitWidth == 1) | 
| 1828 | 0 |       return U.VAL - 1; | 
| 1829 | 0 | 
 | 
| 1830 | 0 |     // Handle the zero case. | 
| 1831 | 0 |     if (isNullValue()) | 
| 1832 | 0 |       return UINT32_MAX; | 
| 1833 | 0 | 
 | 
| 1834 | 0 |     // The non-zero case is handled by computing: | 
| 1835 | 0 |     // | 
| 1836 | 0 |     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. | 
| 1837 | 0 |     // | 
| 1838 | 0 |     // where x[i] is referring to the value of the ith bit of x. | 
| 1839 | 0 |     unsigned lg = logBase2(); | 
| 1840 | 0 |     return lg + unsigned((*this)[lg - 1]); | 
| 1841 | 0 |   } | 
| 1842 |  |  | 
| 1843 |  |   /// \returns the log base 2 of this APInt if its an exact power of two, -1 | 
| 1844 |  |   /// otherwise | 
| 1845 | 0 |   int32_t exactLogBase2() const { | 
| 1846 | 0 |     if (!isPowerOf2()) | 
| 1847 | 0 |       return -1; | 
| 1848 | 0 |     return logBase2(); | 
| 1849 | 0 |   } | 
| 1850 |  |  | 
| 1851 |  |   /// Compute the square root | 
| 1852 |  |   APInt sqrt() const; | 
| 1853 |  |  | 
| 1854 |  |   /// Get the absolute value; | 
| 1855 |  |   /// | 
| 1856 |  |   /// If *this is < 0 then return -(*this), otherwise *this; | 
| 1857 | 0 |   APInt abs() const { | 
| 1858 | 0 |     if (isNegative()) | 
| 1859 | 0 |       return -(*this); | 
| 1860 | 0 |     return *this; | 
| 1861 | 0 |   } | 
| 1862 |  |  | 
| 1863 |  |   /// \returns the multiplicative inverse for a given modulo. | 
| 1864 |  |   APInt multiplicativeInverse(const APInt &modulo) const; | 
| 1865 |  |  | 
| 1866 |  |   /// @} | 
| 1867 |  |   /// \name Support for division by constant | 
| 1868 |  |   /// @{ | 
| 1869 |  |  | 
| 1870 |  |   /// Calculate the magic number for signed division by a constant. | 
| 1871 |  |   struct ms; | 
| 1872 |  |   ms magic() const; | 
| 1873 |  |  | 
| 1874 |  |   /// Calculate the magic number for unsigned division by a constant. | 
| 1875 |  |   struct mu; | 
| 1876 |  |   mu magicu(unsigned LeadingZeros = 0) const; | 
| 1877 |  |  | 
| 1878 |  |   /// @} | 
| 1879 |  |   /// \name Building-block Operations for APInt and APFloat | 
| 1880 |  |   /// @{ | 
| 1881 |  |  | 
| 1882 |  |   // These building block operations operate on a representation of arbitrary | 
| 1883 |  |   // precision, two's-complement, bignum integer values. They should be | 
| 1884 |  |   // sufficient to implement APInt and APFloat bignum requirements. Inputs are | 
| 1885 |  |   // generally a pointer to the base of an array of integer parts, representing | 
| 1886 |  |   // an unsigned bignum, and a count of how many parts there are. | 
| 1887 |  |  | 
| 1888 |  |   /// Sets the least significant part of a bignum to the input value, and zeroes | 
| 1889 |  |   /// out higher parts. | 
| 1890 |  |   static void tcSet(WordType *, WordType, unsigned); | 
| 1891 |  |  | 
| 1892 |  |   /// Assign one bignum to another. | 
| 1893 |  |   static void tcAssign(WordType *, const WordType *, unsigned); | 
| 1894 |  |  | 
| 1895 |  |   /// Returns true if a bignum is zero, false otherwise. | 
| 1896 |  |   static bool tcIsZero(const WordType *, unsigned); | 
| 1897 |  |  | 
| 1898 |  |   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based. | 
| 1899 |  |   static int tcExtractBit(const WordType *, unsigned bit); | 
| 1900 |  |  | 
| 1901 |  |   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to | 
| 1902 |  |   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least | 
| 1903 |  |   /// significant bit of DST.  All high bits above srcBITS in DST are | 
| 1904 |  |   /// zero-filled. | 
| 1905 |  |   static void tcExtract(WordType *, unsigned dstCount, | 
| 1906 |  |                         const WordType *, unsigned srcBits, | 
| 1907 |  |                         unsigned srcLSB); | 
| 1908 |  |  | 
| 1909 |  |   /// Set the given bit of a bignum.  Zero-based. | 
| 1910 |  |   static void tcSetBit(WordType *, unsigned bit); | 
| 1911 |  |  | 
| 1912 |  |   /// Clear the given bit of a bignum.  Zero-based. | 
| 1913 |  |   static void tcClearBit(WordType *, unsigned bit); | 
| 1914 |  |  | 
| 1915 |  |   /// Returns the bit number of the least or most significant set bit of a | 
| 1916 |  |   /// number.  If the input number has no bits set -1U is returned. | 
| 1917 |  |   static unsigned tcLSB(const WordType *, unsigned n); | 
| 1918 |  |   static unsigned tcMSB(const WordType *parts, unsigned n); | 
| 1919 |  |  | 
| 1920 |  |   /// Negate a bignum in-place. | 
| 1921 |  |   static void tcNegate(WordType *, unsigned); | 
| 1922 |  |  | 
| 1923 |  |   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag. | 
| 1924 |  |   static WordType tcAdd(WordType *, const WordType *, | 
| 1925 |  |                         WordType carry, unsigned); | 
| 1926 |  |   /// DST += RHS.  Returns the carry flag. | 
| 1927 |  |   static WordType tcAddPart(WordType *, WordType, unsigned); | 
| 1928 |  |  | 
| 1929 |  |   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. | 
| 1930 |  |   static WordType tcSubtract(WordType *, const WordType *, | 
| 1931 |  |                              WordType carry, unsigned); | 
| 1932 |  |   /// DST -= RHS.  Returns the carry flag. | 
| 1933 |  |   static WordType tcSubtractPart(WordType *, WordType, unsigned); | 
| 1934 |  |  | 
| 1935 |  |   /// DST += SRC * MULTIPLIER + PART   if add is true | 
| 1936 |  |   /// DST  = SRC * MULTIPLIER + PART   if add is false | 
| 1937 |  |   /// | 
| 1938 |  |   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must | 
| 1939 |  |   /// start at the same point, i.e. DST == SRC. | 
| 1940 |  |   /// | 
| 1941 |  |   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. | 
| 1942 |  |   /// Otherwise DST is filled with the least significant DSTPARTS parts of the | 
| 1943 |  |   /// result, and if all of the omitted higher parts were zero return zero, | 
| 1944 |  |   /// otherwise overflow occurred and return one. | 
| 1945 |  |   static int tcMultiplyPart(WordType *dst, const WordType *src, | 
| 1946 |  |                             WordType multiplier, WordType carry, | 
| 1947 |  |                             unsigned srcParts, unsigned dstParts, | 
| 1948 |  |                             bool add); | 
| 1949 |  |  | 
| 1950 |  |   /// DST = LHS * RHS, where DST has the same width as the operands and is | 
| 1951 |  |   /// filled with the least significant parts of the result.  Returns one if | 
| 1952 |  |   /// overflow occurred, otherwise zero.  DST must be disjoint from both | 
| 1953 |  |   /// operands. | 
| 1954 |  |   static int tcMultiply(WordType *, const WordType *, const WordType *, | 
| 1955 |  |                         unsigned); | 
| 1956 |  |  | 
| 1957 |  |   /// DST = LHS * RHS, where DST has width the sum of the widths of the | 
| 1958 |  |   /// operands. No overflow occurs. DST must be disjoint from both operands. | 
| 1959 |  |   static void tcFullMultiply(WordType *, const WordType *, | 
| 1960 |  |                              const WordType *, unsigned, unsigned); | 
| 1961 |  |  | 
| 1962 |  |   /// If RHS is zero LHS and REMAINDER are left unchanged, return one. | 
| 1963 |  |   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set | 
| 1964 |  |   /// REMAINDER to the remainder, return zero.  i.e. | 
| 1965 |  |   /// | 
| 1966 |  |   ///  OLD_LHS = RHS * LHS + REMAINDER | 
| 1967 |  |   /// | 
| 1968 |  |   /// SCRATCH is a bignum of the same size as the operands and result for use by | 
| 1969 |  |   /// the routine; its contents need not be initialized and are destroyed.  LHS, | 
| 1970 |  |   /// REMAINDER and SCRATCH must be distinct. | 
| 1971 |  |   static int tcDivide(WordType *lhs, const WordType *rhs, | 
| 1972 |  |                       WordType *remainder, WordType *scratch, | 
| 1973 |  |                       unsigned parts); | 
| 1974 |  |  | 
| 1975 |  |   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no | 
| 1976 |  |   /// restrictions on Count. | 
| 1977 |  |   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); | 
| 1978 |  |  | 
| 1979 |  |   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no | 
| 1980 |  |   /// restrictions on Count. | 
| 1981 |  |   static void tcShiftRight(WordType *, unsigned Words, unsigned Count); | 
| 1982 |  |  | 
| 1983 |  |   /// The obvious AND, OR and XOR and complement operations. | 
| 1984 |  |   static void tcAnd(WordType *, const WordType *, unsigned); | 
| 1985 |  |   static void tcOr(WordType *, const WordType *, unsigned); | 
| 1986 |  |   static void tcXor(WordType *, const WordType *, unsigned); | 
| 1987 |  |   static void tcComplement(WordType *, unsigned); | 
| 1988 |  |  | 
| 1989 |  |   /// Comparison (unsigned) of two bignums. | 
| 1990 |  |   static int tcCompare(const WordType *, const WordType *, unsigned); | 
| 1991 |  |  | 
| 1992 |  |   /// Increment a bignum in-place.  Return the carry flag. | 
| 1993 | 0 |   static WordType tcIncrement(WordType *dst, unsigned parts) { | 
| 1994 | 0 |     return tcAddPart(dst, 1, parts); | 
| 1995 | 0 |   } | 
| 1996 |  |  | 
| 1997 |  |   /// Decrement a bignum in-place.  Return the borrow flag. | 
| 1998 | 0 |   static WordType tcDecrement(WordType *dst, unsigned parts) { | 
| 1999 | 0 |     return tcSubtractPart(dst, 1, parts); | 
| 2000 | 0 |   } | 
| 2001 |  |  | 
| 2002 |  |   /// Set the least significant BITS and clear the rest. | 
| 2003 |  |   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); | 
| 2004 |  |  | 
| 2005 |  |   /// debug method | 
| 2006 |  |   void dump() const; | 
| 2007 |  |  | 
| 2008 |  |   /// @} | 
| 2009 |  | }; | 
| 2010 |  |  | 
| 2011 |  | /// Magic data for optimising signed division by a constant. | 
| 2012 |  | struct APInt::ms { | 
| 2013 |  |   APInt m;    ///< magic number | 
| 2014 |  |   unsigned s; ///< shift amount | 
| 2015 |  | }; | 
| 2016 |  |  | 
| 2017 |  | /// Magic data for optimising unsigned division by a constant. | 
| 2018 |  | struct APInt::mu { | 
| 2019 |  |   APInt m;    ///< magic number | 
| 2020 |  |   bool a;     ///< add indicator | 
| 2021 |  |   unsigned s; ///< shift amount | 
| 2022 |  | }; | 
| 2023 |  |  | 
| 2024 | 0 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } | 
| 2025 |  |  | 
| 2026 | 0 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } | 
| 2027 |  |  | 
| 2028 |  | /// Unary bitwise complement operator. | 
| 2029 |  | /// | 
| 2030 |  | /// \returns an APInt that is the bitwise complement of \p v. | 
| 2031 | 0 | inline APInt operator~(APInt v) { | 
| 2032 | 0 |   v.flipAllBits(); | 
| 2033 | 0 |   return v; | 
| 2034 | 0 | } | 
| 2035 |  |  | 
| 2036 | 0 | inline APInt operator&(APInt a, const APInt &b) { | 
| 2037 | 0 |   a &= b; | 
| 2038 | 0 |   return a; | 
| 2039 | 0 | } | 
| 2040 |  |  | 
| 2041 | 0 | inline APInt operator&(const APInt &a, APInt &&b) { | 
| 2042 | 0 |   b &= a; | 
| 2043 | 0 |   return std::move(b); | 
| 2044 | 0 | } | 
| 2045 |  |  | 
| 2046 | 0 | inline APInt operator&(APInt a, uint64_t RHS) { | 
| 2047 | 0 |   a &= RHS; | 
| 2048 | 0 |   return a; | 
| 2049 | 0 | } | 
| 2050 |  |  | 
| 2051 | 0 | inline APInt operator&(uint64_t LHS, APInt b) { | 
| 2052 | 0 |   b &= LHS; | 
| 2053 | 0 |   return b; | 
| 2054 | 0 | } | 
| 2055 |  |  | 
| 2056 | 0 | inline APInt operator|(APInt a, const APInt &b) { | 
| 2057 | 0 |   a |= b; | 
| 2058 | 0 |   return a; | 
| 2059 | 0 | } | 
| 2060 |  |  | 
| 2061 | 0 | inline APInt operator|(const APInt &a, APInt &&b) { | 
| 2062 | 0 |   b |= a; | 
| 2063 | 0 |   return std::move(b); | 
| 2064 | 0 | } | 
| 2065 |  |  | 
| 2066 | 0 | inline APInt operator|(APInt a, uint64_t RHS) { | 
| 2067 | 0 |   a |= RHS; | 
| 2068 | 0 |   return a; | 
| 2069 | 0 | } | 
| 2070 |  |  | 
| 2071 | 0 | inline APInt operator|(uint64_t LHS, APInt b) { | 
| 2072 | 0 |   b |= LHS; | 
| 2073 | 0 |   return b; | 
| 2074 | 0 | } | 
| 2075 |  |  | 
| 2076 | 0 | inline APInt operator^(APInt a, const APInt &b) { | 
| 2077 | 0 |   a ^= b; | 
| 2078 | 0 |   return a; | 
| 2079 | 0 | } | 
| 2080 |  |  | 
| 2081 | 0 | inline APInt operator^(const APInt &a, APInt &&b) { | 
| 2082 | 0 |   b ^= a; | 
| 2083 | 0 |   return std::move(b); | 
| 2084 | 0 | } | 
| 2085 |  |  | 
| 2086 | 0 | inline APInt operator^(APInt a, uint64_t RHS) { | 
| 2087 | 0 |   a ^= RHS; | 
| 2088 | 0 |   return a; | 
| 2089 | 0 | } | 
| 2090 |  |  | 
| 2091 | 0 | inline APInt operator^(uint64_t LHS, APInt b) { | 
| 2092 | 0 |   b ^= LHS; | 
| 2093 | 0 |   return b; | 
| 2094 | 0 | } | 
| 2095 |  |  | 
| 2096 | 0 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { | 
| 2097 | 0 |   I.print(OS, true); | 
| 2098 | 0 |   return OS; | 
| 2099 | 0 | } | 
| 2100 |  |  | 
| 2101 | 0 | inline APInt operator-(APInt v) { | 
| 2102 | 0 |   v.negate(); | 
| 2103 | 0 |   return v; | 
| 2104 | 0 | } | 
| 2105 |  |  | 
| 2106 | 0 | inline APInt operator+(APInt a, const APInt &b) { | 
| 2107 | 0 |   a += b; | 
| 2108 | 0 |   return a; | 
| 2109 | 0 | } | 
| 2110 |  |  | 
| 2111 | 0 | inline APInt operator+(const APInt &a, APInt &&b) { | 
| 2112 | 0 |   b += a; | 
| 2113 | 0 |   return std::move(b); | 
| 2114 | 0 | } | 
| 2115 |  |  | 
| 2116 | 0 | inline APInt operator+(APInt a, uint64_t RHS) { | 
| 2117 | 0 |   a += RHS; | 
| 2118 | 0 |   return a; | 
| 2119 | 0 | } | 
| 2120 |  |  | 
| 2121 | 0 | inline APInt operator+(uint64_t LHS, APInt b) { | 
| 2122 | 0 |   b += LHS; | 
| 2123 | 0 |   return b; | 
| 2124 | 0 | } | 
| 2125 |  |  | 
| 2126 | 0 | inline APInt operator-(APInt a, const APInt &b) { | 
| 2127 | 0 |   a -= b; | 
| 2128 | 0 |   return a; | 
| 2129 | 0 | } | 
| 2130 |  |  | 
| 2131 | 0 | inline APInt operator-(const APInt &a, APInt &&b) { | 
| 2132 | 0 |   b.negate(); | 
| 2133 | 0 |   b += a; | 
| 2134 | 0 |   return std::move(b); | 
| 2135 | 0 | } | 
| 2136 |  |  | 
| 2137 | 0 | inline APInt operator-(APInt a, uint64_t RHS) { | 
| 2138 | 0 |   a -= RHS; | 
| 2139 | 0 |   return a; | 
| 2140 | 0 | } | 
| 2141 |  |  | 
| 2142 | 0 | inline APInt operator-(uint64_t LHS, APInt b) { | 
| 2143 | 0 |   b.negate(); | 
| 2144 | 0 |   b += LHS; | 
| 2145 | 0 |   return b; | 
| 2146 | 0 | } | 
| 2147 |  |  | 
| 2148 | 0 | inline APInt operator*(APInt a, uint64_t RHS) { | 
| 2149 | 0 |   a *= RHS; | 
| 2150 | 0 |   return a; | 
| 2151 | 0 | } | 
| 2152 |  |  | 
| 2153 | 0 | inline APInt operator*(uint64_t LHS, APInt b) { | 
| 2154 | 0 |   b *= LHS; | 
| 2155 | 0 |   return b; | 
| 2156 | 0 | } | 
| 2157 |  |  | 
| 2158 |  |  | 
| 2159 |  | namespace APIntOps { | 
| 2160 |  |  | 
| 2161 |  | /// Determine the smaller of two APInts considered to be signed. | 
| 2162 | 0 | inline const APInt &smin(const APInt &A, const APInt &B) { | 
| 2163 | 0 |   return A.slt(B) ? A : B; | 
| 2164 | 0 | } | 
| 2165 |  |  | 
| 2166 |  | /// Determine the larger of two APInts considered to be signed. | 
| 2167 | 0 | inline const APInt &smax(const APInt &A, const APInt &B) { | 
| 2168 | 0 |   return A.sgt(B) ? A : B; | 
| 2169 | 0 | } | 
| 2170 |  |  | 
| 2171 |  | /// Determine the smaller of two APInts considered to be signed. | 
| 2172 | 0 | inline const APInt &umin(const APInt &A, const APInt &B) { | 
| 2173 | 0 |   return A.ult(B) ? A : B; | 
| 2174 | 0 | } | 
| 2175 |  |  | 
| 2176 |  | /// Determine the larger of two APInts considered to be unsigned. | 
| 2177 | 0 | inline const APInt &umax(const APInt &A, const APInt &B) { | 
| 2178 | 0 |   return A.ugt(B) ? A : B; | 
| 2179 | 0 | } | 
| 2180 |  |  | 
| 2181 |  | /// Compute GCD of two unsigned APInt values. | 
| 2182 |  | /// | 
| 2183 |  | /// This function returns the greatest common divisor of the two APInt values | 
| 2184 |  | /// using Stein's algorithm. | 
| 2185 |  | /// | 
| 2186 |  | /// \returns the greatest common divisor of A and B. | 
| 2187 |  | APInt GreatestCommonDivisor(APInt A, APInt B); | 
| 2188 |  |  | 
| 2189 |  | /// Converts the given APInt to a double value. | 
| 2190 |  | /// | 
| 2191 |  | /// Treats the APInt as an unsigned value for conversion purposes. | 
| 2192 | 0 | inline double RoundAPIntToDouble(const APInt &APIVal) { | 
| 2193 | 0 |   return APIVal.roundToDouble(); | 
| 2194 | 0 | } | 
| 2195 |  |  | 
| 2196 |  | /// Converts the given APInt to a double value. | 
| 2197 |  | /// | 
| 2198 |  | /// Treats the APInt as a signed value for conversion purposes. | 
| 2199 | 0 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { | 
| 2200 | 0 |   return APIVal.signedRoundToDouble(); | 
| 2201 | 0 | } | 
| 2202 |  |  | 
| 2203 |  | /// Converts the given APInt to a float vlalue. | 
| 2204 | 0 | inline float RoundAPIntToFloat(const APInt &APIVal) { | 
| 2205 | 0 |   return float(RoundAPIntToDouble(APIVal)); | 
| 2206 | 0 | } | 
| 2207 |  |  | 
| 2208 |  | /// Converts the given APInt to a float value. | 
| 2209 |  | /// | 
| 2210 |  | /// Treats the APInt as a signed value for conversion purposes. | 
| 2211 | 0 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { | 
| 2212 | 0 |   return float(APIVal.signedRoundToDouble()); | 
| 2213 | 0 | } | 
| 2214 |  |  | 
| 2215 |  | /// Converts the given double value into a APInt. | 
| 2216 |  | /// | 
| 2217 |  | /// This function convert a double value to an APInt value. | 
| 2218 |  | APInt RoundDoubleToAPInt(double Double, unsigned width); | 
| 2219 |  |  | 
| 2220 |  | /// Converts a float value into a APInt. | 
| 2221 |  | /// | 
| 2222 |  | /// Converts a float value into an APInt value. | 
| 2223 | 0 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { | 
| 2224 | 0 |   return RoundDoubleToAPInt(double(Float), width); | 
| 2225 | 0 | } | 
| 2226 |  |  | 
| 2227 |  | /// Return A unsign-divided by B, rounded by the given rounding mode. | 
| 2228 |  | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | 
| 2229 |  |  | 
| 2230 |  | /// Return A sign-divided by B, rounded by the given rounding mode. | 
| 2231 |  | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | 
| 2232 |  |  | 
| 2233 |  | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range | 
| 2234 |  | /// (e.g. 32 for i32). | 
| 2235 |  | /// This function finds the smallest number n, such that | 
| 2236 |  | /// (a) n >= 0 and q(n) = 0, or | 
| 2237 |  | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all | 
| 2238 |  | ///     integers, belong to two different intervals [Rk, Rk+R), | 
| 2239 |  | ///     where R = 2^BW, and k is an integer. | 
| 2240 |  | /// The idea here is to find when q(n) "overflows" 2^BW, while at the | 
| 2241 |  | /// same time "allowing" subtraction. In unsigned modulo arithmetic a | 
| 2242 |  | /// subtraction (treated as addition of negated numbers) would always | 
| 2243 |  | /// count as an overflow, but here we want to allow values to decrease | 
| 2244 |  | /// and increase as long as they are within the same interval. | 
| 2245 |  | /// Specifically, adding of two negative numbers should not cause an | 
| 2246 |  | /// overflow (as long as the magnitude does not exceed the bit width). | 
| 2247 |  | /// On the other hand, given a positive number, adding a negative | 
| 2248 |  | /// number to it can give a negative result, which would cause the | 
| 2249 |  | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is | 
| 2250 |  | /// treated as a special case of an overflow. | 
| 2251 |  | /// | 
| 2252 |  | /// This function returns None if after finding k that minimizes the | 
| 2253 |  | /// positive solution to q(n) = kR, both solutions are contained between | 
| 2254 |  | /// two consecutive integers. | 
| 2255 |  | /// | 
| 2256 |  | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation | 
| 2257 |  | /// in arithmetic modulo 2^BW, and treating the values as signed) by the | 
| 2258 |  | /// virtue of *signed* overflow. This function will *not* find such an n, | 
| 2259 |  | /// however it may find a value of n satisfying the inequalities due to | 
| 2260 |  | /// an *unsigned* overflow (if the values are treated as unsigned). | 
| 2261 |  | /// To find a solution for a signed overflow, treat it as a problem of | 
| 2262 |  | /// finding an unsigned overflow with a range with of BW-1. | 
| 2263 |  | /// | 
| 2264 |  | /// The returned value may have a different bit width from the input | 
| 2265 |  | /// coefficients. | 
| 2266 |  | Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | 
| 2267 |  |                                            unsigned RangeWidth); | 
| 2268 |  |  | 
| 2269 |  | /// Compare two values, and if they are different, return the position of the | 
| 2270 |  | /// most significant bit that is different in the values. | 
| 2271 |  | Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, | 
| 2272 |  |                                                   const APInt &B); | 
| 2273 |  |  | 
| 2274 |  | } // End of APIntOps namespace | 
| 2275 |  |  | 
| 2276 |  | // See friend declaration above. This additional declaration is required in | 
| 2277 |  | // order to compile LLVM with IBM xlC compiler. | 
| 2278 |  | hash_code hash_value(const APInt &Arg); | 
| 2279 |  |  | 
| 2280 |  | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | 
| 2281 |  | /// with the integer held in IntVal. | 
| 2282 |  | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); | 
| 2283 |  |  | 
| 2284 |  | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | 
| 2285 |  | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | 
| 2286 |  | void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes); | 
| 2287 |  |  | 
| 2288 |  | } // namespace llvm | 
| 2289 |  |  | 
| 2290 |  | #endif |